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Abstract

There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant 
of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause 
of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic 
parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefac-
tion and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic 
training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between 
men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that 
contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously 
hypertensive rats (SHR). Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles) undergo eutrophic outward 
remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, 
trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced 
adaptive changes in capillaries and venules (increased density) were similar in male and female SHR, supporting a similar 
hyperemic response to exercise.
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In this review, we focus on peripheral mechanisms 
to explain hemodynamic changes in male and female 
hypertensive individuals submitted to exercise training. 
For a better understanding we first review the mecha-
nisms that condition cardiovascular adjustments in  
hypertension and then discuss several adaptive periph-
eral mechanisms that trigger a training-induced pres-
sure fall. It is important to note that exercise training 
is also very effective in causing central adjustments 
(neuronal plasticity, excitability changes, etc.) of as-
cending/descending pathways that integrate bulbar and 
hypothalamic areas involved in cardiovascular control. 
For a comprehensive understanding of the central ef-
fects on autonomic pathways in both normotensive and 
hypertensive individuals the reader is referred to other 

excellent papers and reviews (1-13).

Mechanisms conditioning cardiovascular 
changes in hypertension

It is well known that, independent of the etiology, the 
chronic phase of hypertension is maintained mainly by 
increases in total peripheral resistance, with cardiac 
output close to normal values (14). It has also been 
proposed that hypertension is characterized by both 
overactivity of the sympathetic nervous system that 
alters vasomotor control and by several abnormalities 
in tissue microcirculation, such as increased arteriolar 
wall-to-lumen ratio and decreased vessel density, which 
together contribute to maintaining an elevated total pe-
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ripheral resistance (15-21). In spontaneously hypertensive 
rats (SHR), the best known experimental model for essential 
or primary hypertension in humans, we confirmed that high 
blood pressure levels are accompanied by remodeling of 
arterioles (increased wall-to-lumen ratio) and capillary rar-
efaction in many tissues including the skeletal muscles, in 
which we demonstrated a normal resting blood flow, besides 
the altered vascular structure (22-26).

According to Mulvany (16), vascular remodeling in 
hypertension is characterized by increased wall-to-lumen 
ratio of arteries and arterioles, being classified as eutrophic 
(decrease in both lumen and outer diameter, with unaltered 
wall thickness or cross-sectional area) or hypertrophic 
(increase in media thickening, that encroaches on the 
lumen). Mulvany (16) also postulated that remodeling of 
small arterioles in SHR is mainly associated with a eutrophic 
rather than hypertrophic mechanism. Accordingly, we have 
previously shown that high blood pressure in male SHR is 
maintained by eutrophic remodeling of arterioles since we 
observed an increased wall-to-lumen ratio without changes 
in wall thickness in the kidney, heart, diaphragm, and in 
locomotor and non-locomotor muscles (22,25). Eutrophic 
remodeling in the resistance arteries is the most prevalent 
vascular adjustment to hypertension (20) and could be ex-
plained by a combination of growth and apoptotic processes 
to maintain the media volume (15). 

Laurent et al. (18) have also proposed a cross-talk be-
tween large and small arteries. They stated that increased 
wall-to-lumen ratio and rarefaction of small arteries are key 
factors increasing blood pressure. The increased pressure 
causes large artery stiffness and determines increased pulse 
pressure, which consequently damages the small arteries 
and capillaries. More recently, Cheng et al. (21) have dem-
onstrated that several changes in capillary morphology are 
associated with elevated systolic and diastolic blood pres-
sure, even in individuals with mild pressure elevations.

Previous data from our laboratory have shown that, al-
though elevated pressure in SHR is caused by an increased 
arteriolar wall-to-lumen ratio, this process occurs differently 
in male and female SHR. While male rats exhibited an in-
creased wall-to-lumen ratio of small arterioles in all territories 
such as skeletal muscles, diaphragm, myocardium, and 
kidney (22,25), female SHR showed no change in wall-to-
lumen ratio in many tissues, with a marked increase in the 
renal arterioles (26). Indeed, Moreno et al. (27) reported 
a high kidney weight in female hypertensive rats (vs nor-
motensive controls), which could be a useful “intermediate 
phenotype” of hypertension. These observations agree with 
pressure measurements obtained by us and by others: male 
SHR had higher pressure levels than female SHR (range 
of 170-185 vs 150-160 mmHg for males and females, 
respectively) (22,25,26). In general, sex differences have 
not been extensively explored, since most of the studies 
were done with male animals. Several mechanisms are 
proposed to explain gender differences in pressure levels: 

1) increased estrogen (28) or decreased testosterone lev-
els (29,30); 2) differential activity of the renin-angiotensin 
system and its association with oxidative stress (29-31); 3) 
gender differences in vasomotor reactivity, which depends 
on the anatomic origin of the artery (32).

Mechanisms conditioning training-induced 
hemodynamic changes in SHR

It is well known that exercise training causes a large 
improvement in physical capacity in both humans and in 
animal models. In this regard, we have shown that aerobic 
training increases running performance on a treadmill, 
measured as attained velocity, time or distance of running in 
both normotensive and hypertensive male and female rats 
(24-26,33,34). Although previous aerobic capacity differs 
between strains (SHR exhibited a better performance than 
age-matched WKY normotensive controls) and genders 
(compared to males, females attained higher velocities 
during maximal exercise tests on treadmill), we have shown 
that 3 months of low-intensity aerobic training (50-60% of 
maximal exercise capacity) induced similar increases in 
treadmill performance, independent of strain and/or gender 
(24-26,33,34).

Aerobic training is currently recommended as a 
potent coadjuvant of the pharmacological treatment of 
hypertension, mainly because it attenuates (but does not 
normalize) resting blood pressure in hypertensive animals 
(2,22,23,25,34-39) and humans (40,41). 

Effects of training on blood pressure levels
 
The mechanism(s) underlying blood pressure reduction 

is (are) still controversial. A fall in blood pressure was shown 
to be associated with several factors such as decreased 
vasomotor sympathetic activity (9,38), reduced insulin 
resistance (42), decreased plasma volume and smaller 
cardiac output (35), small vascular reactivity (43), reduced 
total peripheral resistance (22,25), decreased activity of the 
renin-angiotensin system, and reduced oxidative stress 
(34,44). It has also been shown that an exercise-induced 
fall in pressure was associated with an altered balance 
between relaxing and contractile endothelium-derived fac-
tors, causing an improvement of endothelial function (32) 
and induction of anti-apoptotic genes (45). 

We have demonstrated that male SHR submitted to 3 
months of low-intensity aerobic training during the estab-
lished phase of hypertension exhibited an 8-10% fall in mean 
arterial pressure (MAP, Figure 1) (22,23,25,33,34,36-38). 
These results agree with those reported by other authors 
who have evaluated the effects of exercise training in hyper-
tensive humans (40,41,46,47) and animals (2,39). We have 
also shown that a training-induced MAP fall was strongly 
associated with both remodeling of skeletal muscle arterioles 
(normalization of wall-to-lumen ratio) and a reduction of rela-
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tive hind limb resistance, which were respectively elevated 
and significantly high in sedentary male SHR compared 
to age-matched WKY controls (22,25). Figure 1 illustrates 
this correlation, showing that a training-induced pressure 
fall was positively correlated with a decreased hind limb 
resistance in trained SHR. We also showed that a pressure 
fall in trained SHR was accompanied by normalization of 
arteriolar wall-to-lumen ratio in several tissues such as lo-
comotor and non-locomotor skeletal muscles, myocardium 
and diaphragm (Figure 2). The training-induced structural 
remodeling of these tissues (eutrophic outward remodeling 
according to Mulvany’s classification) caused, as shown in 
Figure 1, a reduction of local resistance, thus contributing 
to both the decrease of total peripheral resistance and to 
the 8-10% pressure fall. It should be noted that pressure 
was not normalized in trained SHR because the arterioles 
of non-exercised tissues (renal and splanchnic territories, 
for example, see Figure 2) remained hypertrophied, thus 
maintaining a still elevated total peripheral resistance 
(22,25). In the WKY control group there were no training-
induced changes in arteriolar wall-to-lumen ratio of any 

tissue, no resistance changes and therefore no pressure 
fall (Figures 1 and 2).

Exercise training was not effective in reducing MAP in 
age-matched female SHR submitted to a similar training 
protocol (24,26). Interestingly, as observed in Figure 3, in 
sedentary female SHR hypertension was accompanied by 
a very strong hypertrophy of the kidney arterioles (wall-to-
lumen ratio was 2 to 2.5 times greater than that observed in 
male SHR; compare Figures 3 and 2), but not in the skeletal 
muscles or heart arterioles that presented a wall-to-lumen 
ratio in the same range as that of male and female normoten-
sive controls (26). There was no hypertrophy to be reversed 
by training in skeletal muscle or heart arterioles; therefore, 
training did not change local resistance in exercised tissues 
of female SHR. As commented above, training was unable 
to change the wall-to-lumen ratio of non-exercised tissues, 
and therefore there was no reduction in total peripheral 
resistance and no pressure fall (24,26). Recently, Schlüter 
et al. (39) published an elegant meta-analysis confirming 
that sex, age and exercise duration do interfere with the 
blood pressure response to exercise. It was concluded 

Figure 1. Resting values of mean arterial pressure (MAP); relative hind limb resistance (HLR rel) and arteriolar wall-to-lumen ratio in 
the gracilis muscle of sedentary (S) and trained (T), normotensive (WKY) and spontaneously hypertensive (SHR) rats at rest. Nine to 
12 rats/group. *P < 0.05 vs WKY; †P < 0.05 vs S (two-factor ANOVA). Lower right panel, Correlation between HLR rel and respective 
MAP in sedentary/trained WKY and SHR groups. Linear regression equations are: YWKY = 1.46x - 28, r = 0.28 (P > 0.05); YSHR = 1.35x 
- 32, r = 0.83 (P < 0.05): #denotes a significant correlation (Pearson correlation test). Adapted from Ref. 22, with permission. 
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that 2-month-old SHR submitted to 3 months of treadmill 
training presented a differential response of systolic blood 
pressure: a 14-mmHg reduction in males vs 1-mmHg fall 
in females. These investigators also concluded that the 
blood pressure-lowering effect was higher when training 
started during the pre-hypertensive phase or at an early 
stage, being in this case independent of exercise duration. 
Considering only young rats in the hypertensive stage, it 
was also shown that prolonged exercise protocols caused 
a greater pressure reduction (39). These results confirmed 
several previous observations by our group regarding 
the effectiveness of exercise training in reducing blood 
pressure in males but not in females (22-26). Contrary to 
data reported by Schlüter et al. (39), we were also able 
to show that older SHR trained for up to 3 months may 
receive some benefits from exercise training, including a 
small but significant pressure reduction accompanied by 
a significant reduction of arteriolar wall-to-lumen ratio in 

locomotor muscles (Caffaro RR, Oliveira RAF, Amaral SL, 
Baldo MVC, Michelini LC, Rossoni LV, unpublished data). 

Training effects on the heart: heart rate and 
cardiac hypertrophy

In addition to a pressure fall, a heart rate reduction is also 
present in male and female SHR, in other animal models 
as well as in human hypertension (2,3,5,25,26,34,36-41). 
Indeed, resting bradycardia is an important marker of 
exercise training. Several mechanisms could contribute 
to this response. Some studies have shown that exercise 
training causes a significant reduction of intrinsic heart rate 
(48). Martins et al. (36) and Higa-Taniguchi et al. (37) also 
demonstrated that training-induced resting bradycardia 
was accompanied by increased oxytocin mRNA expression 
and increased oxytocin content within the dorsal brainstem 
(including the nucleus tractus solitarii, NTS) and the dorsal 

Figure 2. Upper panels, Photomicrographs taken from transverse sections of gracilis muscle arterioles of sedentary (s, left panel) 
and trained (t, right panel) spontaneously hypertensive (SHR) male rats. Arrows indicate wall thickness; bar = 25 mm. Lower panels, 
Effects of hypertension and training on arteriolar wall/lumen ratio in different tissues of sedentary (S) and trained (T) normotensive 
(WKY) and SHR male rats. Mean values correspond to 11-40 arterioles in the myocardium, 9-18 in the kidney and 5-9 arterioles in 
the skeletal muscles taken from 3-4 rats per group. *P < 0.05 vs WKY; †P < 0.05 vs S (two-factor ANOVA). Adapted from Ref. 25, with 
permission.
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motor nucleus of the vagus, DMV) of both WKY and SHR 
groups. In previous studies, we have already shown that 
activation of oxytocinergic projections from the paraventricu-
lar nucleus (PVN) of the hypothalamus to the NTS-DMV 
area in trained individuals caused a great improvement of 
the vagal tonus to the heart, which contributes to the ap-
pearance of resting bradycardia in trained WKY and SHR 
(10,37). Reductions of sympathetic activity to the heart and 
improvements in baroreceptor reflex control have also been 
shown to contribute to the lower heart rate after exercise 
training in hypertensive humans and animals (3,38,40), in 
such a way that trained hypertensive individuals exhibited 

reduced sympathetic and increased vagal tonus to the heart 
while trained normotensive individuals presented a signifi-
cantly higher vagal outflow to the heart. Schlüter et al. (39) 
confirmed in their review that resting heart rate is reduced 
after exercise training irrespective of the age of the rat at the 
beginning or at the end of the exercise period. Accordingly, 
we have already shown that low-intensity treadmill exercise 
training was largely efficient in causing resting bradycardia 
in both WKY and SHR (25,33,34,37). 

In a recent study, we also showed that higher training-
induced activity of PVN oxytocinergic projections to the 
dorsal brainstem during an acute bout of exercise was also 

Figure 3. Effects of hypertension and training on resting values of mean arterial pressure and on arteriolar wall-to-lumen ratio in dif-
ferent tissues of sedentary (S) and trained (T) normotensive (WKY) and spontaneously hypertensive (SHR) female rats. Mean values 
correspond to 20-30 arterioles in the myocardium and kidney and 5-15 arterioles in the skeletal muscles taken from 4-8 rats per group. 
*P < 0.05 vs WKY (two-factor ANOVA). Right panels, Photomicrographs taken from transverse sections of gastrocnemius muscle 
arterioles of sedentary (s, upper micrograph) and trained (t, lower micrograph) SHR. Arrows indicate wall thickness; bar = 25 mm. 
Adapted from Ref. 26, with permission.
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involved in the reduction of exercise tachycardia in both 
WKY and SHR groups since blockade of oxytocin receptors 
within the NTS/DMV area caused significant blunting of the 
tachycardia response (larger in the WKY) in both trained 
groups (37). Interestingly, oxytocin receptor blockade did 
not change exercise tachycardia in sedentary WKY and 
SHR, indicating that increased activity of oxytocinergic 
PVN-NTS/DMV projections is a specific response of trained 
normotensive and hypertensive individuals, also being a 
marker of training. 

Concentric cardiac hypertrophy is normally present in 
hypertension and can be defined as an increased heart 
mass (myocyte hypertrophy), usually involving increased 
interstitial fibrosis and apoptosis, which lead to cardiac 
dysfunction (13). Accordingly, many studies have shown 
an increased left ventricle weight-to-body weight (LV/BW) 
ratio in male and female SHR (22,26,39). However, in the 
compensated phase of hypertension, an increased LV/BW 
ratio is not associated with cardiac dysfunction in female 
SHR (26). Regarding the effects of exercise training on 
the heart, exercise usually causes eccentric hypertrophy. 
A meta-analysis by Schlüter et al. (39) indicated that low-
intensity treadmill training (not free running) was able to 
decrease the heart weight-to-body weight ratio in SHR, 
but only in very young rats, mostly in the pre-hypertensive 
stage. Using SHR at the established phase of hypertension, 
we were not able to demonstrate a reduction of the LV/BW 
ratio in trained male (22) and female (26) groups. In their 
recent review on cardiac hypertrophy and the differences 
between concentric and eccentric hypertrophy, Bernardo 
et al. (13) showed that the type of hypertrophy depends on 
the stimulus (pressure load or volume load) for heart wall 
remodeling. This comprehensive review demonstrated that 
endurance exercise hypertrophy, or eccentric hypertrophy 
is always associated with ventricle enlargement, but with 
a proportional change in wall thickness in such a way that 
cardiac function is normal or even enhanced. In this model, 
there is no fibrosis and hypertrophy is reversible. Therefore, 
we may assume that aerobic training brings benefits to 
the heart, promoting an eccentric hypertrophy to improve 
the ejection fraction and to ameliorate the relaxation dys-
function induced by hypertension (49-51). On the other 
hand, pathological hypertrophy induced by hypertension, 
myocardial infarction and dilated cardiomyopathy leads to 
cardiac dysfunction, fibrosis, necrosis and/or apoptosis of 
the myocardium (13). There are many candidate genes 
to explain physiological cardiac hypertrophy. A pathway 
downstream to PI3K and AKT/mTOR has been proposed, 
which is induced by growth factors, mainly insulin-like growth 
factor-1 (IGF-1) (13,50).

Effects of training on blood flow

Since exercise causes a decrease of heart rate and a 
stroke volume increase, it was assumed that cardiac out-

put does not change or changed very little after training. 
During an acute bout of exercise, however, both heart rate 
and stroke volume increased, with a significant increase 
in cardiac output in WKY and SHR groups, accompanied 
by blood flow redistribution with a larger increase in flow 
to skeletal muscle and a reduced flow to the kidney and 
splanchnic circulations (52). Indeed, the exercise-induced 
increase of blood flow in exercised tissues (proportional 
to exercise intensity) is one of the main circulatory effects 
occurring during aerobic exercise. The redistribution of 
cardiac output is responsible for maintaining an adequate 
perfusion to exercised skeletal muscles in which the meta-
bolic needs are enormously increased. Measuring hind 
limb flow by the transit-time ultrasonic technique in rats at 
rest and during an acute bout of exercise we were able to 
reproduce this phenomenon (53). Figure 4 illustrates that 
at the beginning of exercise (even at mild exercise of 0.4 
km/h) there was a large and prompt increase in hind limb 
blood flow (vasodilatation of the iliac artery) that attained a 
steady-state plateau between the 1st and 2nd min of exer-
cise. Increases in exercise intensity were accompanied by 
a further increase in hind limb flow as observed when the 
load was changed from 0.4 to 0.8 km/h (moderate exercise 
intensity). On the other hand, the same exercise protocol 
caused a mild blood flow decrease in the renal artery at 0.4 
km/h but a significant flow reduction (marked vasoconstric-
tion) when exercise intensity was changed from 0.4 to 0.8 
km/h. As observed in Figure 4, blood flow redistribution is 
accompanied by marked tachycardia (+100 to +150 bpm, 
proportional to exercise intensity), but also by a small blood 
pressure raise (+10 to +15 mmHg), which is maintained 
throughout the exercise. 

A study from our laboratory compared pressure, heart 
rate, hind limb flow, and local resistance changes at rest and 
during mild to moderate exercise in sedentary and trained 
male WKY and SHR (23). Resting pressure differed between 
groups, but pressure responses to graded exercise were 
quite similar: at the onset of exercise there was a prompt 
pressure increase (slightly higher in trained SHR) that 
was maintained during the exercise bout (Figure 5). The 
heart rate response was higher in SHR but it developed 
gradually and was proportional to exercise intensity in all 
groups. Figure 5 also illustrates a huge exercise-induced 
increase in hind limb flow during exercise (exercise hype-
remia) in both sedentary and trained WKY and SHR. The 
mechanisms controlling blood flow during exercise are still 
controversial. Removal of a sympathetic vasoconstrictor 
(responsible for maintaining resting vascular tone) (54), 
accumulation of local metabolic vasodilators such as 
adenosine, nitric oxide, osmolarity, high CO2, low O2 and 
pH (52,54) and high activity of the muscle pump (55) are 
proposed mechanisms. 

As observed in Figure 5, the onset of exercise was 
characterized by a quick flow increment that was similar 
in all groups during the first minutes. However, at higher 
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intensities (performed only by the trained groups) the relative 
flow increment was higher in trained SHR than in trained 
WKY. One also observed that flow increases during the 
onset of exercise were caused by prompt vasodilatation 
occurring at different degrees: in sedentary SHR the initial 
flow increase was attained with a marked decrease in local 
resistance while in the trained SHR it was achieved with 
a small vasodilatation, similar to that presented by WKY 
groups at mild to moderate exercise intensities. Therefore, in 

all groups the instantaneous initial vasodilatation (occurring 
in the first 1-4 s) is mainly caused by removal of sympathetic 
vasomotor tone (56). The exercise-induced reduction of re-
sistance in the trained SHR was progressive, with maximal 
vasodilatation being attained at higher intensities (Figure 
5): at 1.4 km/h the reduction of resistance in the trained 
SHR was similar to that observed early in the sedentary 
SHR and did not differ from that presented by trained WKY. 
Late vasodilatation is mostly mediated by accumulation 

Figure 4. Upper panel, Changes in absolute regional flow (Fabs) in two different tissues: iliac (N = 7) and renal (N = 10) at rest, during 
4 min of exercise (black bar) at 2 different intensities and during recovery. Lower panels, Recordings of pulsatile (AP) and mean arterial 
pressure (MAP), heart rate (HR) and mean regional absolute flow (Fabs) for 2 rats with a chronically implanted 1-mm probe (left panel, 
iliac flow and right panel, renal flow) during rest, mild (0.4 km/h) to moderate (0.8 km/h) exercise intensity (black bars) and recovery. 
Reproduced from Ref. 53, with permission.
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of local vasoactive compounds, which act directly on the 
vessel wall and indirectly to block sympathetic activation 
(functional sympatholysis). Indeed several investigators 
have confirmed that sympathetic vasomotor innervation is 
activated during exercise (52,54-56). Despite the similar 
local vasodilatation occurring in both groups, relative flow 
at high exercise load was significantly higher in trained SHR 
than in trained WKY (Figure 5), suggesting the involvement 
of other factor(s).

As shown in Figure 6, low-intensity training is effective 
in causing angiogenesis in all exercised tissues (22,25): 
capillary density was markedly increased in all locomotor 
muscles, in the heart and diaphragm of both trained WKY 
and trained SHR, without significant changes in non-loco-
motor (temporalis) and renal tissues. The larger capillary 
supply in skeletal muscles, myocardium and diaphragm 
reflects the increased oxygen uptake in exercise-activated 
tissues, being an adaptive local response to augmented flow 
during exercise. It has been shown that exercise-induced 

shear-stress is one of the possible mechanisms explaining 
angiogenesis, mainly by activation of nitric oxide, vascular 
endothelial growth factor (VEGF) and VEGF receptor (57). 
In agreement, we have demonstrated that VEGF has a key 
role in physiological angiogenesis (58). Greater capillary 
density could contribute to maintaining an increased flow 
in trained individuals, but it does not explain the differential 
changes in flow during graded exercise in trained SHR and 
trained WKY because it was similarly increased in both 
groups (Figure 6) (22,25). 

Differential changes in flow during graded exercise 
could be explained by adaptive venule responses induced 
by training. Previous studies from our laboratory have 
shown a marked venular growth in trained SHR, specific 
for small venules from 8-10 to 40-45 µm in inner diameter, 
which indicates vessel neoformation (Figure 7). Interest-
ingly training-induced venular growth is specific for the 
skeletal muscle circulation (locomotor and non-locomotor), 
and does not appear in other exercised tissues such as 

Figure 5. Left panels, Absolute values of mean arterial pressure (MAP, A) and heart rate (HR, B) at rest and during graded exercise 
(black bar) of sedentary (S) and trained (T) normotensive (WKY) and spontaneously hypertensive (SHR) rats. Right panels, Changes 
in relative hind limb flow (HLF rel, C) and relative hind limb resistance (HLR rel, D) during graded exercise (black bar) in sedentary (S) 
and trained (T) WKY and SHR. Exercise intensities are 0.4, 0.8, 1.1, and 1.4 km/h, 2 min each. Six to 12 rats/group. *P < 0.05 vs WKY; 
†P < 0.05 vs S (two-factor ANOVA). Adapted from Ref. 23, with permission.
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the myocardium and diaphragm (22,25). This specificity 
supports the participation of the muscle pump, also known 
as the venous pump, in flow adjustments during exercise 
(59). In fact, large venule conductance in the active skeletal 
muscles supports high pumping activity during exercise. It 
is important to note that training-induced venular growth is 
also specific for SHR, without any change in trained WKY 
(Figure 7). By increasing venous capacitance in an already 
large tissue (veins contain ~70% of the total blood volume), 
it contributes to reducing blood volume/vascular capacity 
and to accommodating the larger muscle inflow during 
exercise hyperemia. This is an interesting adjustment in 
trained SHR: increased venular bed, besides contributing 
to the reduction of the mean circulatory filling pressure 
(which is increased in several models of hypertension) (14), 
accommodates a large venular endothelial surface favor-
ing the production/release of endothelium-derived factors, 

which by reaching adjacent arterioles can affect vascular 
tone and thus the local flow (60). In a previous study (23), 
we also demonstrate that the greater exercise hyperemia 
in the trained SHR is positively correlated with increased 
venule density in locomotor muscles. As shown in the lower 
panel of Figure 7, the hind limb flow increase was higher 
in trained SHR rats, which exhibited an increased venular 
bed; there was no correlation in the WKY group in which 
there was no training-induced venular growth. 

In order to elucidate possible gender discrepancies in 
exercise hyperemia, we compared local flow and adaptive 
capillary/venule responses within skeletal muscles in male 
and female SHR (26). Besides the absence of a pressure 
fall in trained female SHR (which is explained by the lack of 
remodeling in skeletal muscle arterioles; compare Figures 
1-3 to Figure 8), resting hind limb resistance was lower in 
sedentary female SHR compared to male sedentary SHR, 

Figure 6. Comparison of capillary density (n/mm2) in exercised (soleus, gastrocnemius, gracilis, diaphragm, and myocardium) and 
non-exercised tissues (temporalis and kidney) of sedentary (S, open columns) and trained (T, filled columns) male normotensive 
(WKY) and spontaneously hypertensive (SHR) rats. Values are from 9-12 slices taken from 3-4 rats per group. *P < 0.05 vs WKY; †P 
< 0.05 vs S (two-factor ANOVA).
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thus causing an elevated hind limb flow at rest. In female 
SHR, training was accompanied by a significant increase 
in capillary/fiber ratio and a huge increase in venule den-
sity (Figure 8) (26). These responses (which were similar 
to those presented by trained male SHR) combined with 
an already reduced skeletal muscle resistance cause a 
large increment in vascular conductance at rest. In order 
to keep a near normal blood flow at rest, trained female 
SHR exhibited a significant increase in resting hind limb 
resistance to compensate for the high conductance. On the 

other hand, during an acute bout of exercise sympathetic 
vasoconstriction was withdrawn, allowing a large blood 
inflow in trained female SHR (26). It should be noted that 
exercise hyperemia in female SHR (data not shown) was 
similar to that observed in males and was explained by 
the similar adaptive responses of venule density within the 
skeletal muscles. 

In conclusion, different training-induced adaptive re-
sponses in the skeletal muscle arterioles of male (eutrophic 
outward remodeling) and female (no change) SHR support 

Figure 7. Upper panels, Comparison of venule density (n/mm2) in diaphragm, myocardium and skeletal muscles (soleus, gastroc-
nemius, gracilis, and temporalis) of sedentary (S) and trained (T) male normotensive (WKY) and spontaneously hypertensive (SHR) 
rats. Values are from 9-12 slices taken from 3-4 rats per group. *P < 0.05 vs WKY; †P < 0.05 vs S (two-factor ANOVA). Lower panel, 
Correlation between relative hind limb flow and respective venule density in the gracilis muscle of sedentary/trained WKY and SHR 
groups. Linear regression equations are: YWKY = -0.57x +12, r = -0.09 (P > 0.05); YSHR = 10.79x -14, r = 0.78 (P < 0.05); #denotes a 
significant correlation for SHR data (Pearson correlation test). 
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the differential pressure response: a moderate fall in male 
SHR and no pressure change in female SHR submitted to 
exercise training. On the other hand, the training-induced 
venular growth observed in both trained male and female 
SHR conditions a similar hyperemic response to exercise.
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