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Abstract

Glioblastomas are known for their poor clinical prognosis, with recurrent tumors often exhibiting greater invasiveness and faster
growth rates compared to primary tumors. To understand the intratumoral changes driving this phenomenon, we employed
single-cell sequencing to analyze the differences between two pairs of primary and recurrent glioblastomas. Our findings
revealed an upregulation of ferroptosis in endothelial cells within recurrent tumors, identified by the significant overexpression of
the NOX4 gene. Further analysis indicated that knocking down NOX4 in endothelial cells reduced the activity of the ferroptosis
pathway. Utilizing conditioned media from endothelial cells with lower ferroptosis activity, we observed a decrease in the growth
rate of glioblastoma cells. These results highlighted the complex role of ferroptosis within tumors and suggested that targeting
ferroptosis in the treatment of glioblastomas requires careful consideration of its effects on endothelial cells, as it may otherwise

produce counterproductive outcomes.
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Introduction

Glioblastoma multiforme (GBM), the most prevalent
form of primary malignant central nervous system tumors,
poses a significant threat to patient survival and quality of
life. Constituting approximately 80% of all tumors of the
central nervous system, its complexity and high recur-
rence rate contribute to poor therapeutic outcomes,
resulting in dismal prognoses for affected individuals (1).
Notably, the three-year survival rate for patients with
gliomas is below 20%, and even with comprehensive
treatment regimens, the average survival duration post-
recurrence is merely 12 to 15 months (2).

Most brain gliomas harbor mutations in isocitrate
dehydrogenase (IDH) 1 and 2, a characteristic that has
significant implications for the disease’s pathogenesis and
patient prognosis (3,4). However, a subset of gliomas
exhibits wild-type IDH, which is often associated with a
worse prognosis (5). The recurrent nature of gliomas is a
major challenge; recurrent tumors tend to be more
aggressive than the primary tumor, highlighting the need
for innovative treatment strategies.

The tumor microenvironment (TME) of GBM has been
identified as a key factor influencing treatment efficacy
(6,7). The TME, comprising various cell types such as
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microglia, macrophages, astrocytes, oligodendrocytes,
neurons, neural progenitor cells, extracellular matrix
components, pericytes, and endothelial cells, forms a
complex network (8). This network facilitates interactions
between tumor and non-tumor cells, creating a local
environment that supports tumor cell growth, invasive-
ness, cell death resistance, and/or therapeutic resistance,
as well as immune evasion (8,9).

Therefore, alterations in the tumor microenvironment
and changes in cellular interactions are believed to
contribute to the enhanced drug resistance and invasive
capabilities observed in gliomas post-recurrence (10).
This underscores the urgent need for a deeper under-
standing of the TME’s role in glioma progression and
recurrence, which could unlock new pathways for targeted
therapies and improve patient outcome. However, the
identification of specific cellular components responsible
for these changes, as well as the determination of altered
intercellular interactions remain challenging through bulk
omics approaches.

Single-cell sequencing, on the other hand, offers a
precise means to distinguish changes in different cell
populations within the tumor and the gene expression
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variations across cell types (11-14). In this study, we
selected primary and recurrent tumor tissues from two
patients with IDH wild-type gliomas. By conducting single-
cell sequencing analysis on these tumor tissues, we
aimed to uncover the changes occurring within the
recurrent tumors of the same patient under the same
treatment regimen.

Our study particularly focuses on the signaling path-
ways related to ferroptosis between primary and recurrent
tumors. Ferroptosis is the increased susceptibility of
recurrent glioblastoma to an iron-dependent type of cell
death (15). Unlike apoptosis, autophagy, necrosis, or
pyroptosis, ferroptosis is characterized by an increase in
lipid peroxidation, leading to mitochondrial atrophy and an
increase in mitochondrial membrane density, thereby
causing an accumulation of reactive oxygen species
(ROS) (2,16—18). The increase of ferroptosis in gliomas is
associated with tumor growth slowdown, potentially offering
favorable therapeutic outcomes (19). Furthermore, genetic
features associated with ferroptosis can aid in predicting
the risk of GBM and evaluating its prognosis (20).

Within the ferroptosis signaling pathway, the NOX4
gene, belonging to the NADPH oxidase family, plays a
crucial role in converting superoxide into H,O,. This gene
is overexpressed in gliomas (21,22). Our investigation into
these pathways aimed to provide a deeper understanding
of the mechanisms behind glioma recurrence and
ferroptosis, offering new insights into potential therapeutic
targets and prognostic markers for GBM.

In our research, we validated the upregulation of
NOX4 expression on endothelial cells in the recurrent
samples through single-cell sequencing. Furthermore, by
knocking down NOX4 on the endothelial cells, we found
lower proliferation rates of glioma cells in the co-culture
system, indicated the complex effect of ferroptosis in GBM
tumor.

Material and Methods

Dataset

In this study, we utilized a publicly available single-cell
RNA sequencing dataset (scRNA: GEO, GSE131907).
Four samples (JK136, JK142, JK196, JK202) were used,
including 2 primary and 2 recurrent samples from 2
patients (Figure 1A and B).

Data preprocessing and quality control

Data quality control. We conducted data quality control
using the Scanpy (V1.9) toolkit (https://scanpy.readthe
docs.io/en/1.9.x/), filtering out cells with gene counts less
than 800 and more than 5000. The minimum read counts
were set to less than 1000 and the maximum to more than
20000, with a mitochondrial gene cutoff value of 20%. This
resulted in 8285 cells.

Data processing. Normalization was performed using
the scanpy function sc.pp.normalize_per_cell. We
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identified the top 2000 highly variable genes (sc.pp.
highly_variable_genes) for PCA analysis (sc.tl.pca). Data
integration and batch correction were carried out using
harmony (sc.external.pp.harmony_integrate). Subse-
quently, uniform manifold approximation and projection
(UMAP) dimensionality reduction and Louvain clustering
analysis were performed.

Cell lines and cell culture

Human umbilical vein endothelial cells (HUVECs) and
U251 cells were purchased from the Cell Resource
Center, Peking Union Medical College (PCRC). U251
cells were cultured in complete medium consisting of
DMEM supplemented with 10% FBS and 1% penicillin,
and HUVECs were cultured using complete human
umbilical vein endothelial cell medium (Starfish Bio,
PAHX-G131, China). U251 and HUVEC were cultured
overnight in a 37°C incubator with 5% CO..

Cell transfection. HUVEC cells were digested with
0.25% trypsin-EDTA to form a single-cell suspension,
washed, resuspended in medium, and counted. NOX4
gene siRNA and control siRNA (Table 1) at concentrations
of 50 nM were added, and transfection was carried out
using RNAimax (13778030, Thermo Scientific, USA).
Cells were then returned to the incubator for downstream
experiments. The successfully transfected HUVECs were
renamed as HUVEC-NOX4-Si-1 and HUVEC-siCtrl.

RNA extraction, reverse transcription, and Q-PCR

RNA isolation from transfected HUVECs. Forty-eight
hours post-transfection, HUVECs were harvested and
digested with trypsin. Cells were then centrifuged at 2,000 g
for 5 min at 4°C, and the cell pellet was resuspended with
Trizol. Chloroform (200 pL) was added and cells were left
at room temperature for 10 min, then centrifuged at 4°C
and 12,000 g for 15 min. The upper aqueous phase was
carefully transferred to a new 1.5-mL centrifuge tube. An
equal volume of pre-cooled isopropanol was added to the
aqueous phase, and then incubated at 4°C for 10 min. The
samples were centrifuged again at 4°C and 12,000 g for
12 min, and the RNA pellet was collected, washed with
75% ethanol, and dissolved with RNase-free water.

Reverse transcription was applied following the user
guide of the ReverTra Ace qPCR RT kit (FSQ-201,
TOYOBO, Japan), and qPCR was applied using Takara
SYBR Master Mixture (RR420, Takara, Japan) for the
quality analysis of ferroptosis-related genes NOX4, GPX4,
SLC7A11 and using f-actin as internal control. The primer
set of related genes is shown in Table 2.

Cell proliferation assay

The viability of glioma cells was assessed using the
CCK8 assay (ab228554, Abcam, USA). U251 cells were
co-cultured for 24 h with lysates from HUVEC-siCtrl and
HUVEC-NOX4si-1 cells, and the changes in the viability of
U251 cells were then measured using the CCK8 method.
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Figure 1. A, Data analysis process. B, Cell number for single-cell sequence in primary and recurrent glioblastoma multiforme patient
samples. C, Uniform manifold approximation and projection of different cell types. D, Violin plots of biomarker expression across
different cell types. E, Relative order of events (ROE) analysis of different cell types in primary and recurrent tumor samples. CAF:
cancer-associated fibroblast; OPCs: oligodendrocyte precursor cells.

Statistical analysis P-values <0.05 were considered significantly different.

Normally distributed data were compared by unpaired  GraphPad Prism (version 5.0, USA) and SPSS software
Student’s t-test for two groups comparisons, abnormally  (version 23.0, IBM, USA) were used for statistical
distributed data were compared by Mann-Whitney test.  analyses.
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Gene ID Sequence

sense (5°-3’) antisense (5°-3’)
NOX4 si-1 GGAUAAAAGCAGAACAUUCACdA GAAUGUUCUGCUUUUAUCCdAdA
siCtrl UUCUCCGAACGUGUCACGUdTAT ACGUGACACGUUCGGAGAAITAT

Table 2. gPCR primers used in the study.

Gene Sequence
NOX4
Forward CAGTCTTTGACCCTCGGTCC
Reverse GAGCCAGATGAACAGGCAGA
GPX4
Forward GAGGCAAGACCGAAGTAAACTAC
Reverse CCGAACTGGTTACACGGGAA
SLC7A11
Forward TGTGTGGGGTCCTGTCACTA
Reverse CAGTAGCTGCAGGGCGTATT
p-actin
Forward CATGTACGTTGCTATCCAGGC
Reverse CTCCTTAATGTCACGCACGAT
Results
In clinical treatment, glioblastomas often exhibit

increased aggressiveness and faster growth rates upon
recurrence. To address the difference between primary
and recurrent tumor, we selected two pairs of primary and
recurrent IDH wild-type glioblastoma samples from a
single-cell sequencing database (GSE131907) of glio-
blastoma patients. In each pair, the primary and recurrent
tumors originated from the same patient to minimize the
interference of other factors.

Initially, we employed the UMAP (uniform manifold
approximation and projection) method to distinguish
various cell types within glioblastoma, including excitatory
neurons, endothelial cells, oligodendrocyte precursor cells

(OPCs), oligopoly cells, astrocytes, T cells, cancer-
associated fibroblasts (CAFs), and myeloid cells (Figure
1C). The biomarkers used for these cellular classifications
and the percentage of those cells in different groups are
presented in Table 3.

Analysis of the relative order of events (ROE) in cell
proportions revealed an increased expression of astro-
cytes in the recurrent samples, whereas the levels of
fibroblasts, endothelial cells, and other types were
relatively decreased (Figure 1D and E).

We then analyzed the cell communication among
different cell types in primary and recurrent samples. We
found that endothelial cells had strong communication
with other tumor, stromal, and immune cells in both
primary and recurrent tumors (Figure 2A). This finding
suggested that endothelial cells may play an important
role in the growth regulation of primary and recurrent
GBMs. We further analyzed the origin of endothelial cells
in the samples, and found that 54.55% of them originated
from placental endothelial cells, while 29.14% came from
cerebellar endothelial cells (Figure 2B).

To focus on endothelial cells, we used the ferroptosis
score system to evaluate the activation of the ferroptosis
pathway. The analysis showed a significant increase in
the activation of ferroptosis in the endothelial cells of the
recurrent tumor (Figure 2C). Through gene set hetero-
geneity analysis, we confirmed that the ferroptosis path-
way in endothelial-like cells was highly expressed in
recurrent tumors. The expression levels of genes involved
in oxidation-reduction processes, such as CISD1, NOX4,
HMOX1, NQUO1, CYBB, DPP4, and NOX1, were higher
in recurrent tumors compared to primary tumors (Figure
2D). NOX4 showed the most significant difference.

Table 3. Cellular classification in primary and recurrent glioblastoma multiforme samples.

Cells Biomarker

Percentage in primary tumor

Percentage in recurrent tumor

Excitatory neurons NRGN, SLC1A7

Endothelial cells DCN, ACTN2
OPCs SMOCH1
Oligopoly cells MOG, BMP
Astrocytes AQP4, SCL1A3
T-cells CD3D, CD3E
CAFs COL1A1, COL3A1
Myeloid cells CD68, CD163

0.08% 0.66%
7.18% 0.92%
0.65% 0
15.36% 0.28%
48.37% 79.59%
0.44% 0.20%
4.87% 0.66%
23.04% 17.65%

OPCs: oligodendrocyte precursor cells; CAFs: cancer-associated fibroblasts.

Braz J Med Biol Res | doi: 10.1590/1414-431X2024e13961


https://doi.org/10.1590/1414-431X2024e13961

Endothelial cell ferroptosis influences glioblastoma growth

A

Oligodendrocyte —

Primary

5/8

Recurrence

Endothelial -
Astrocyte —
Teell -
CAF
Myloid —
) 2 2 5 w bl T 2 2 . w bl
s § 5§ & 5 2 3 37 37 & § 2
£ o e 2 £ o e 2
o ° @ o ° @
2 5 < 2 5 <
] o w kel
o] ]
= 2
(] (@]
g 374
8 200 lonion of cells (%) 61
8 0l 0 50 ® th
hEndo.Fetal.Mid.Brain_LaManno. . Q
dM2.Placenta_VentoTormo. 2 44
Vascular.endothelial.cell_IGFBP3.high.Fetal. Adrenal.Gland2. . w'
Vascular.endothelial.cell_A2M.high.Fetal.Pancreas2. . 5
PV1.Placenta_VentoTormo. . Qo
Endothelial.cell_PLVAP.high.Fetal.Pancreas3. . °a 2]
Endothelial.cell. Testis_Guo. ° o
Endothelial.cell. Fetal.Lung2. . 5
Endothelial.cell. Adult.Pancreas_Segerstolpe. . [
Endothelial.cell. Adult.Pancreas_Muraro. .
Endothelial.cell. Adult.Pancreas_Baron. . 04 1L
Endothelial.cell. Adult.Cerebellum1. ®
Endo..m..Placenta_VentoTormo. [ ]
- Q &
Endothelial <& &
S N
Q &
D Gene Expression
| : | “ | 3 ‘_{ * 3‘ : *G ’C}*}- "
{_‘“ {‘UA JV +Ca ¢ <15 %*O{ —{ ’0}4— recurrence
[P o o ¥ N - - N N - N ~ 0 < ™ N N M
5 zRocadRdig=fhesxaIxtoaaceIclRO8
°Q53:2°5538838398399¢98855388E23
@350 © 0 T=%¢8 Zgdad Z89E 55
()
(71) (2]

Figure 2. A, Cell communication analysis showed that endothelial cells had relatively strong communication with other cells in the
immune microenvironment. B, Cell origin analysis of endothelial cells in the samples. C, Ferroptosis pathway score in primary and
recurrent tumors. ***P <0.001, Student’s t-test. D, Violin plots of ferroptosis pathway related genes. CAF: cancer-associated fibroblast.

However, when comparing the expression of ferropto-
sis-related pathway genes in primary and recurrent
gliomas using the TCGA brain glioma RNAseq database
(https://portal.gdc.cancer.gov/projects/TCGA-GBM), no sig-
nificant difference was observed (Figure 3A, Wilcoxon
analysis, P=0.065). This suggested that in TCGA samples
predominantly composed of epithelial cells, changes
in endothelial cells are averaged out and undetectable.
This further highlighted the necessity of using single-cell

Braz J Med Biol Res | doi: 10.1590/1414-431X2024e13961

omics methods in tumor research for precise analysis
of different cell types. In order to overcome the limited
samples, we added another 12 GBM single-cell sequenc-
ing samples from another dataset (GSE173278) to
validate our findings. NOX4 was also significantly up-
regulated in recurrence endothelial cells compared with
the primary endothelial cells (Figure 3B, P-value <0.01).
This result strengthened our finding across a broader
range of GBM.
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Figure 3. A, Ferroptosis pathway expression analysis based on TCGA RNAseq dataset. B, NOX4 expression in endothelial cells in
primary and recurrence glioblastoma multiforme (GBM) in the GSE173278 dataset. C, NOX4 expression in human umbilical vein
endothelial cells (HUVEC) post-RNAi transfection. GPX4 gene expression in control HUVEC-siCtrl and NOX4 knockdown cells
(HUVEC-NOX4si-1). SLC7A11 gene expression in control HUVEC-siCtrl and HUVEC-NOX4si-1 cells. Data are reported as median and
interquartile range (A and B) and mean and SD (C). ***P <0.001, Mann-Whitney test and Student’s t-test.
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Figure 4. A, Experimental flowchart illustrating the co-culture of conditioned media from human umbilical vein endothelial cells
(HUVEC)-NOX4si-1 (NOX4 knockdown) cells and HUVEC-siCtrl cells (control) with U251 cells, followed by the assessment of U251 cell
proliferation changes using the CCK8 assay. B, U251 cell proliferation significantly decreased when co-cultured with HUVEC-NOX4-si-1

cell conditioned media. Data are reported as mean and SD; ***P <0.001, Student’s t-test.

To further validate whether the upregulation of the
ferroptosis pathway in endothelial cells is responsible for
the distinct growth characteristics, increased invasive-
ness, and accelerated growth rate observed in recurrent
tumors compared to primary tumors, we utilized human
umbilical vein endothelial cells (HUVECs) to simulate
endothelial cells in GBM. We knocked down the expres-
sion of the NOX4 gene in these cells using RNA
interference. The resulting NOX4 knockdown HUVEC
cells (HUVEC-NOX4si-1) showed a significant reduction
in NOX4 gene expression compared to the Control cells
(HUVEC-siCtrl) (Figure 3C). To further investigate the
impact of NOX4 knockdown on the ferroptosis pathway,
we examined the expression of ferroptosis-related genes
GPX4 and SLC7A11.

GPX4 primarily functions to reduce lipid peroxides,
thereby protecting cells from oxidative stress damage. It
uses glutathione (GSH) as a cofactor to directly reduce
lipid peroxides, preventing the chain reaction of lipid
peroxidation. The upregulation of GPX4 enhances the
cell’s ability to counteract lipid peroxidation, and is usually
associated with the inhibition of ferroptosis (17).
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The SLC7A11 gene encodes a subunit of the system
Xc’- transporter and plays a significant role in ferroptosis.
When the expression or activity of SLC7A11 is inhibited,
it leads to a decrease in GSH levels, thereby weakening
GPX4 function and making cells more susceptible to
ferroptosis. Therefore, the activity of SLC7A11 is crucial
for maintaining the cell’s anti-ferroptotic state (23,24).

We found that in HUVEC-NOX4si-1 cells, where
NOX4 gene was knocked down, there was a significant
increase in the expression of GPX4 and SLC7A11 genes
compared to the control HUVEC-siCtrl cells (Figure 3C).
This indicated that NOX4 knockdown significantly inhib-
ited the ferroptosis pathway in HUVEC cells.

Furthermore, we co-cultured the conditioned media
from HUVEC-siCtrl and HUVEC-NOX4si-1 cells with
glioma U251 cells. The results showed that the condi-
tioned media from HUVEC-NOX4si-1 cells significantly
inhibited the proliferation of U251 cells (Figure 4A and B).
This finding links the reduction of ferroptosis in endothelial
cells to the proliferation of glioma cells.

These results showed that ferroptosis of endothelial
cells can influence tumor cell growth and may play a key
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role in the increase of the tumor growth rate in recurrent
GBM tumors, which indicated that using single-cell
sequence may have clinical value.

Discussion

In this research, we employed single-cell sequencing
to delineate the differences between primary and recurrent
IDH-negative glioblastomas. A notable finding was the
enhanced communication between endothelial cells and
other cell types in both primary and recurrent tumors.
Particularly important was the significant activation of the
ferroptosis signaling pathway in endothelial cells of
recurrent tumors compared to primary ones. This activa-
tion was marked by the upregulation of redox-related
genes, notably CISD1, NOX4, HMOX1, NQO1, CYBB,
DPP4, and NOX1, with NOX4 showing the most sig-
nificant increase. This phenomenon was not observed in
the TCGA database, likely due to the limitations of
RNAseq data, which averages the expression of various
cell types within the tumor, obscuring the distinct gene
expression profiles of different cell types. Single-cell
sequencing, by providing detailed genomic characteristics
of different cell subtypes, proves more valuable in such
research.

Further investigation into the role of NOX4 over-
expression in endothelial cells revealed that knocking
down NOX4 in HUVEC endothelial cells led to a decrease
of ferroptosis activity. Co-culturing these NOX4-knock-
down HUVECs with U251 glioblastoma cells resulted in
decreased proliferation of cancer cells. suggesting a
complex interplay between endothelial cells and tumor
growth. Enhanced endothelial cell ferroptosis can promote
the proliferation of glioblastoma tumor cells, which is
consistent with our findings of higher ferroptosis pathway
expression in endothelial cells from clinical recurrent
samples.

All these findings were observed in in vitro cell lines,
and the reliance on cell culture models, such as HUVEC
and U251 cells, may not adequately mimic the in vivo
tumor microenvironment, potentially limiting the clinical
applicability of the findings. In order to overcome the
limited samples and the difference between tumor micro-
environment and cell line, we expanded to another 12
GBM single-cell sequencing samples from another data-
set (GSE173278) to validate our findings. NOX4 was also
significantly up-regulated in recurrence endothelial cells
compared with primary endothelial cells (Figure 3B,
P-value <0.01). This result strengthened our finding
across a broader range of GBM.
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Ferroptosis has been identified as a potential ther-
apeutic target for GBM (25,26). However, our findings
suggested a paradoxical mechanism in recurrent IDH-
negative glioblastomas, where upregulation of the ferrop-
tosis pathway in endothelial cells may enhance tumor cell
proliferation and invasiveness. This underscored the
importance of considering the impact of ferroptosis-based
therapies on the tumor microenvironment, as they may
have opposing effects on different cell types within GBM
tumors. However, conventional pharmacological experi-
ments often use CDX and PDX models, which have a
lower stromal cell component (10-20%) compared to
clinical tumors, limiting their ability to reflect the inter-
actions with stromal cells (27,28). These models primarily
validate the effects of drugs on tumor cells, potentially
overlooking mechanisms involving stromal cells. The
opposing effects of stromal cells in tumors may be missed
during the pre-clinical development of a ferroptosis-related
treatment, but will appear in clinical research, causing the
failure of drug development.

In tumors like GBM, characterized by extensive
communication among various cell types, changes in
stromal cells can significantly alter tumor growth char-
acteristics. Therefore, developing tumor transplantation
models with a complete stromal cell population is crucial
for the advancement of cancer therapies.

In conclusion, our study highlights the complexity of
tumor-stroma interactions in GBM, particularly the role of
endothelial cells and ferroptosis pathways. The findings
call for a more nuanced approach in developing GBM
therapies, considering the diverse cellular landscape and
the intricate interplay between different cell types within the
TME. Based on our findings of the role of ferroptosis in
tumor progression, the importance of considering how
ferroptosis-based therapies could impact the tumor micro-
environment is underscored. Developing models that
include a complete stromal cell population is crucial, as
changes in these cells can significantly alter tumor growth
characteristics and therapeutic responses in the future.
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