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Abstract

White matter injury characterized by damage to myelin is an important process in hypoxic-ischemic brain damage (HIBD). 
Because the oligodendrocyte-specific isoform of neurofascin, neurofascin 155 (NF155), and its association with lipid rafts are 
essential for the establishment and stabilization of the paranodal junction, which is required for tight interaction between myelin 
and axons, we analyzed the effect of monosialotetrahexosyl ganglioside (GM1) on NF155 expression and its association with 
lipid rafts after HIBD in Sprague-Dawley rats, weighing 12-15 g, on day 7 post-partum (P7; N = 20 per group). HIBD was induced 
on P7 and the rats were divided into two groups: one group received an intraperitoneal injection of 50 mg/kg GM1 three times 
and the other group an injection of saline. There was also a group of 20 sham-operated rats. After sacrifice, the brains of the rats 
were removed on P30 and studied by immunochemistry, SDS-PAGE, Western blot analysis, and electron microscopy. Staining 
showed that the saline group had definite rarefaction and fragmentation of brain myelin sheaths, whereas the GM1 group had 
no obvious structural changes. The GM1 group had 1.9-2.9-fold more GM1 in lipid rafts than the saline group (fraction 3-6; all 
P < 0.05) and 0.5-2.4-fold higher expression of NF155 in lipid rafts (fraction 3-5; all P < 0.05). Injection of GM1 increased the 
content of GM1 in lipid rafts as well as NF155 expression and its lipid raft association in HIBD rat brains. GM1 may repair the 
structure of lipid rafts, promote the association of NF155 (or other important proteins) with lipid rafts, stabilize the structure of 
paranodes, and eventually prevent myelin sheath damage, suggesting a novel mechanism for its neuroprotective properties.
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Perinatal hypoxia-ischemia (HI) is a common cause 
of neonatal brain damage that seriously impacts cerebral 
maturation and contributes to long-term neurological dis-
abilities, including mental retardation, cerebral palsy, and 
epilepsy. The maladaptive neurobiological response can 
be severe and result in deep cerebral white matter injury 
and substantial neuronal loss. The primary characteristic 
of white matter injury after perinatal hypoxic-ischemic brain 
damage (HIBD) is damage to myelin. Myelinated axons are 
commonly divided into four functional regions: nodes of 
Ranvier, paranodes, juxtaparanodes, and internodes (1). 
The ion channels and membrane proteins of the nodes and 
juxtaparanodes are separated by specialized paranodal 
junctions, which require an adhesion complex that consists 
of the glial-specific 155-kDa isoform of neurofascin (NF155) 
at the end loops of the oligodendrocytes and Caspr and 

contactin of the axonal membrane. The correct assembly of 
paranodal junctions is vital to the integrity of the node and 
juxtaparanodal regions, permitting fast neurotransmission 
along myelinated fibers (1-3).

NF155 is a member of the immunoglobulin L1 subfamily. 
It is specifically localized in the axo-oligodendroglial para-
nodal junctions and plays important roles in myelin sheath 
development by preserving the structure and function of 
myelin sheaths (4), especially in the establishment of the 
paranodal junction (2,5). NF155 promotes the aggregation 
of Caspr and contactin at paranodal junctions and has a 
“pioneering” role in axo-glial junction formation and node 
assembly (2). The role of NF155 in white matter diseases 
has been an area of increased interest in recent years. 
NF155 expression decreases as the result of increased 
degradation in multiple sclerosis (MS), resulting in destruc-
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tion of the paranodal complex and disturbing the insulation 
of myelin that is vital for fast neurotransmission in the 
central nervous system (CNS) (6). 

Gangliosides are a series of sphingolipids located 
mainly in the CNS and are essential for nervous system 
development and for the integrity of axons and myelin. 
Exogenous gangliosides show a neuroprotective effect 
in many cases of brain injury. Monosialotetrahexosyl 
ganglioside (GM1) is highly localized in lipid rafts (7,8). 
Lipid rafts, or specialized membrane lipid microdomains, 
have been suggested to participate in a mechanism by 
which signaling, trafficking, and the assembly of adhe-
sion complexes take place (9). Raft lipids are important 
in myelination because they maintain the structure of 
the paranodal loops (10,11). NF155 is mainly located 
at the lipid raft of paranodes. The interaction between 
oligodendroglial NF155 and axonal ligands results in 
cross-linking, stabilization, and formation of paranodal 
lipid raft assemblies (12,13). In some CNS white matter 
diseases, such as MS, the association of NF155 with rafts 
in the brain or spinal cord is reduced, thereby reducing 
the electrical isolation of myelin (14). We investigated how 
the main components of paranodal lipid rafts, GM1 and 
NF155, change quantitatively in HIBD rat. Furthermore, 
we determined whether exogenous GM1 can increase the 
association of GM1 and NF155 with lipid rafts in order to 
know whether the neuroprotective effect of GM1 is related 
to lipid raft repair.

Material and Methods

Experimental animals
Sprague-Dawley rats weighing 12-15 g were obtained 

on postpartum day 7 (P7) from the Experimental Animal 
Center, Third Military Medical University (Chongqing, 
China). The day of birth was considered to be P0. All 
experimental procedures were conducted in accordance 
with local guidelines on the ethical use of animals and with 
the National Institutes of Health “Guide for the Care and 
Use of Laboratory Animals” (NIH publication No. 80-23, 
revised 1996). The perinatal rat model of HI was used 
as described by Levine (15). Briefly, after P7 rats were 
anesthetized with ether, the left common carotid artery 
was cut between double ligatures. After surgery, the pups 
were allowed to recover for 1-1.5 h. The rat pups were 
then placed in a humidified container maintained at 37°C. 
HI was induced by perfusing the container with humidified 
8% oxygen in a nitrogen gas mixture for 2 h. After hypoxic 
exposure, the pups were returned to their biological dams. 
Sham-operated rat pups were randomly chosen from the 
same litters as the treated rats and were not subjected to 
common carotid artery ligation or to a period of hypoxia. 
After HI was induced, the neonatal rats were randomly 
divided into two groups: GM1 group (N = 20) and Saline 
group (N = 20). The GM1 group received an intraperitoneal 

(ip) injection of 100 µL GM1 (TRB Pharma, Argentina) at 
50 mg/kg at 0, 24, and 48 h after HI, three times in all. 
The Saline group received isovolumic normal saline ip 
injections at the same times. Rats from both genders were 
included in the experiments. The two groups were reared 
by dams in the same environment, that also included rats 
from the sham-operated (Sham) group (N = 20), which 
did not receive any injections.

Myelin staining
The structure of the myelin sheath in the rat brain is 

well developed at P30, and the development of the myelin 
sheath in rats at P30 is similar to that of humans at the 
ages of 2-5 years (16). We, therefore, chose P30 rats to 
detect damage to the myelin sheaths. Rats were deeply 
anesthetized and perfused with cold phosphate-buffered 
saline (PBS), followed by 4% buffered paraformaldehyde 
through the left ascending aorta. Brains were removed and 
the middle 1/3 of brains were post-fixed in 4% paraform-
aldehyde and embedded in paraffin. Paraffin-embedded 
4-µm thick samples were rinsed in distilled water after 
deparaffination and then transferred through 95% ethanol 
to a 0.1% solution of luxol fast blue (LFB; Sigma, USA) in 
95% ethanol and 0.05% acetic acid. After staining for 16 
h at 60°C, sections were washed with distilled water, dif-
ferentiated in 0.05% aqueous lithium carbonate followed by 
70% ethanol, washed, and counterstained with nuclear fast 
red before standard mounting, dehydrating, and coverslip-
ping. Staining on frontal plane 15 of the left hemisphere 
according to the rat brain atlas was observed (17).

Electron microscopy
At P30, 5 rats were randomly selected from each group 

and perfused with cold PBS, followed by 2% buffered 
paraformaldehyde and 2% glutaraldehyde through the 
left ascending aorta. After sacrifice, brains were removed 
and white matter (1 x 1 x 1 mm) from a similar area of the 
left hemisphere above left paracele was sampled from an 
area <1 mm posterior from Bragma site and >1 mm from 
midline (17) and post-fixed in 3% glutaraldehyde (0-4°C) 
and incubated with 1% osmic acid for 3 h after rinsing. 
The samples were dehydrated with acetone and embed-
ded in epoxy resin. Ultrathin sections (60 nm) were then 
cut from the resin-embedded samples and stained with 
uranyl acetate and lead citrate prior to examination by 
transmission electron microscopy.

Immunohistochemistry
Immunohistochemical characterization of the tissue 

was performed on 4-µm thick sections of paraffin-embed-
ded samples collected from a similar area as for myelin 
staining. Briefly, sections were microwaved for antigen 
retrieval and pretreated with 0.3% H2O2. Subsequently, 
the sections were blocked with goat serum and incubated 
in a primary antibody solution containing rabbit anti-myelin 



GM1 prevents damage to myelin and lipid rafts after rat HIBD 555

www.bjournal.com.br Braz J Med Biol Res 44(6) 2011

basic protein (MBP) antibody (Maixin Biotechnology, Fu-
zhou, China) overnight at 4°C. After washing, the samples 
were incubated in a secondary antibody solution consisting 
of sheep anti-rabbit (1:200, Zhongshan Biotechnology, 
China) for 1 h at room temperature. Finally, the sections 
were incubated in HRP-streptavidin (1:200, Zhongshan 
Biotechnology) for 1 h at room temperature, and the color 
reaction was developed with diaminobenzidine (DAB) and 
H2O2. After counterstaining with 0.1% cresyl violet, sec-
tions were dehydrated, coverslipped, and analyzed using 
a conventional microscope (DMIRB; Leica, Germany).

Protein extraction
Frozen rat left hemispheres were homogenized and 

added to lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 
1% Nonidet NP-40, 10% glycerol, 2 mM 4-(2-aminoethyl)-
benzenesulfonyl fluoride, 1  mg/mL leupeptin, 2  mg/mL 
aprotinin, and 2 mg/mL pepstatin), gently sonicated, in-
cubated on ice for 30 min, and centrifuged at 12,000 g for 
15 min. The extracts were normalized for equal amounts 
of total protein measured by the bicinchoninic acid (BCA) 
method. Fifty micrograms protein from each sample was 
analyzed by SDS-PAGE and Western blot. 

Detergent extraction and gradient centrifugation
Detergent extraction and gradient centrifugation were 

performed as described by Maier et al. (14). Briefly, rat 
brain hemisphere homogenates were resuspended in 
100 mg/400 µL TNE buffer (50 mM Tris, 150 mM NaCl, 5 
mM EDTA, pH 7.3), containing 1% TX100 and protease 
inhibitors (Roche, Germany), pressed 25 times with a 
glass tube/Teflon pestle, and incubated for 30 min on 
ice with occasional mixing. To determine the extent of 
association of proteins with lipid rafts, 250 µL of the ex-
tract was mixed with 500 µL 60% OptiPrep (Axis-shield, 
Norway) and loaded at the bottom of a centrifuge tube 
(CP-80wx, Hitachi, Japan), with 2.25 mL 30% OptiPrep in 
TNE buffer in the middle and 10% OptiPrep in TNE buffer 
layered on top. After centrifugation for 17 h at 200,000 
g, the gradients were formed in seven 750-µL fractions. 
Fractions were freeze-dried and redissolved. Then, equal 
volumes of each fraction were analyzed by SDS-PAGE 
and Western blot.

SDS-PAGE and Western blotting
Protein samples or gradient fractions were mixed 

with SDS sample buffer, heated for 2 min at 98°C, and 
separated by SDS-PAGE. Proteins were transferred to 
PVDF membranes. The membranes were blocked with 
5% nonfat milk and incubated overnight with primary 
anti-NF155 antibodies (1:300, Abcam, UK) or anti-GM1 
antibody (1:150, Abcam) at 4°C, followed by incubation 
with the suitable HRP-conjugated secondary antibody for 
1 h. Signals on Western blots were detected by enhanced 
chemiluminescence (Amersham, UK). Densitometric 

analysis was performed by using the Image-Pro Plus 
software (Media Cybernetics, USA).

Statistical analysis
Data are reported as means ± SD. To determine sig-

nificant differences among the three groups, statistical 
analysis was performed by one-way analysis of variance 
(ANOVA) with Bonferroni’s corrections. Differences were 
considered to be statistically significant when P < 0.05. 
Statistical analyses were performed using SPSS version 
15.0 (SPPS Inc., USA). 

Results

Morphological changes in gross brain and myelin 
sheath (LFB and MBP staining)

A bilaterally symmetric gross morphology and smooth 
surface were observed in the brains of the Sham group 
(Figure 1A). In contrast, the brains of the Saline group 
(Figure 1E) showed significant left cerebral hemisphere 
atrophy, and an occasional focus of malacia (Figure 1B). 
Brains of the GM1 group (Figure 1I) were similar to those of 
the Sham group, with no atrophy and no focus of malacia. 
In LFB staining and anti-MBP immunohistochemical stain-
ing of brain coronal sections, the cerebral cortex and white 
matter of Sham group brains (Figure 1B-D) were clearly dis-
tributed and bilaterally symmetric (Figure 1A). The corpus 
callosum (CC), cingulate (Cg), external capsule (EC), and 
internal capsule all showed LFB-positive (blue-colored) or 
MBP-positive (brown-colored) myelin sheath staining. Blue 
or brown filamentous staining was detected in the inner 
cortex, especially in the lateral Cg. In the Saline group, 
the right cerebral hemisphere showed staining similar to 
that of the Sham group brains; however, the CC and EC 
of the left cerebral hemisphere showed clear rarefaction 
and fragmentation, with distension of blood vessels (Figure 
1F-H). The brain sections of the GM1 group exhibited a 
staining pattern intermediate between that of the Sham 
and Saline groups, without obvious structural changes 
(Figure 1J-L). These observations indicate that the white 
matter was damaged after HI and that GM1 attenuated 
the damage in the myelin sheath.

Western blot analysis of the distribution of GM1 in 
lipid rafts of rat brain 

The distribution of endogenous GM1 in lipid rafts of 
the left cerebral hemispheres of all three groups was 
detected by Western blot analysis after extraction of lipid 
rafts by gradient centrifugation (Figure 2). The amount 
of GM1 in lipid rafts was significantly lower in the Saline 
group compared to the Sham group (P < 0.05) and was 
much higher in the GM1 group compared to the Saline 
group (fraction 3: 73.37 ± 5.12 vs 18.75 ± 2.04; fraction 4: 
103.07 ± 16.65 vs 36.08 ± 3.02; fraction 5: 92.97 ± 16.28 
vs 31.09 ± 5.86; fraction 6: 7.14 ± 2.30 vs 2.48 ± 0.89; all 
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P < 0.05), which indicates that the amount of endogenous 
GM1 in the lipid rafts of rat brains was reduced after HI 
and that supplementation with exogenous GM1 significantly 
increase the content of GM1 in lipid rafts.

Effects of HI and GM1 intervention on NF155 levels in 
brains and in lipid rafts

The expression level of NF155 was examined in brain 
tissue and lipid rafts of the left cerebral hemispheres of 
each group. The 200-kDa NF155 protein was detected in 
both protein extracts and lipid rafts (the protein band was 
less mobile than expected on the SDS-PAGE gel due to 
glycosylation). The Saline group showed the lowest amount 

of NF155 in brain tissue and the NF155 level in the Saline 
group was significantly lower than that in the Sham group 
(Figure 3A) (P < 0.05). The NF155 level in the GM1 group 
was higher than that in the Saline group but lower than that 
in the Sham group, although the differences were not statisti-
cally significant. Among the three groups, the Saline group 
showed the lowest level of NF155 in lipid rafts (Figure 3B). 
The lipid raft NF155 level in the GM1 group was significantly 
higher than that of the Saline group (fraction 3: 52.10 ± 4.54 
vs 24.53 ± 5.55; fraction 4: 80.19 ± 3.84 vs 53.45 ± 7.97; 
fraction 5: 54.88 ± 3.27 vs 16.15 ± 2.20; all P < 0.05). The 
fold values for fractions 3, 4, and 5 were 0.56, 0.52, and 
0.24, respectively, in the Saline group and 1.19, 0.77, and 

Figure 1. Morphological changes in gross brain (A, E, I) and myelin sheath detected by luxol fast blue (LFB) (B, F, and J) and myelin 
basic protein (MBP) (C, D, G, H, K, and L) staining in the three groups of P30 rats. After hypoxic-ischemic brain damage was induced, 
one group received an intraperitoneal injection of saline (Saline group) and another group was injected with monosialotetrahexosyl 
ganglioside (GM1; GM1 group). Sham-operated rats served as control (Sham group). The gross morphology of the Saline group brains 
(E) showed significant left cerebral hemisphere atrophy (the white arrow indicates the atrophied brain). Brains from the GM1 group (I) 
were similar to those from the Sham group (A). LFB staining in the corpus callosum (CC) and cingulum (Cg) showed compact myelin 
sheaths in the Sham group (thick black arrow; B) and clear structural abnormalities of rarefaction and fragmentation (thick black arrow) 
with distension of the blood vessels (thin black arrows) in the Saline group (F); whereas GM1 group (J) brains were similar to those of 
the Sham group rats, with improved myelin sheath density (thick black arrow). Immunohistochemical staining of MBP showed struc-
tural abnormalities of rarefaction and fragmentation in the left CC and external capsule (EC; thick black arrows) in the Saline group 
(G, H), with infiltration of inflammatory cells in the left cerebral hemisphere (thin black arrows; G, H). A high magnification view shows 
abnormalities of myelin in the CC and Cg. The staining pattern of the left CC and EC of the GM1 groups (K, L) was similar to that of the 
Sham group (C, D), without structural abnormalities. Scale bars: 3 mm for A, E, and I; 125 μm for B, F, and J, and 500 μm for C, D, G, 
H, K, and L. For Panels C, G, and K, the area framed with dashed lines was zoomed in 1.8-fold and shown in insets with thick black 
arrows indicating the changes in myelin sheath. 
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0.82, respectively, in the GM1 group. These results indicate 
that HI reduced the NF155 level in rat brains, particularly in 
lipid rafts, and that GM1 increased the expression of NF155 
in the brain, particularly in lipid rafts. 

Electron microscopy findings
Figure 4A shows that in the Sham group the myelin 

sheath retained its integrity and was compact. Figure 4B 
demonstrates that in the Saline group there was rarefaction 
of the myelin sheath with obvious separation between lamel-

lae and a disordered structure. In addition, shrinkage of the 
axoplasm was also observed in the Saline group (Figure 4C). 
Figure 4D from a rat in the GM1 group shows that, compared 
to the Saline group, the myelin sheath was compact and 
there was less separation between lamellae. 

Discussion 

NF155 is an important protein of oligodendroglial origin 
localized at the paranode, which plays an important role in 

Figure 2. Western blot analysis of monosialotetrahexosyl ganglioside (GM1) in lipid rafts from left 
cerebral hemispheres of each rat group at postpartum day 30 (P30). The Western blot (lanes 1-7) 
showed the bands of GM1 in 4 of the 7 fractions prepared by OptiPrep gradient centrifugation. 
Raft fractions (fractions 3-5) are indicated. A = absorbance. GM1 expression was significantly 
lower in lipid rafts of the Saline group compared to the Sham group (*P < 0.05), and the expres-
sion of GM1 in lipid rafts of the GM1 group was much higher than that in the Saline group (#P 
< 0.0.05, one-way analysis of variance (ANOVA) with Bonferroni’s corrections in post hoc tests). 
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Figure 3. Western blot analysis of neurofascin 155 (NF155) expression in the brain tissue and lipid rafts of rat left cerebral hemispheres 
from each group at postpartum day 30 (P30). A, NF-155 was present as a 200-kDa band in the lanes, which corresponded to a higher 
molecular mass than expected due to glycosylation. The bar graph on the right shows that NF155 content was significantly lower in the 
Saline group compared to the Sham group and was higher in the GM1 group injected with monosialotetrahexosyl ganglioside (GM1) 
than in the Saline group. Relative expression was calculated by normalization of the absorbance (A) of NF155/A to that of control 
(β-actin). B, Western blot analysis of NF155 in lipid rafts showed that the NF155 content of the Saline group was significantly lower than 
in the Sham group and was higher in the GM1 group than in the Saline group. Lanes 1-7 in the Western blot show the bands of NF155 
in 7 fractions prepared by OptiPrep gradient centrifugation. *P < 0.05 vs Sham group; #P < 0.05 vs saline group (one-way analysis of 
variance (ANOVA) with Bonferroni’s corrections in post hoc tests).
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myelin sheath development by preserving the structure and 
function of myelin sheaths. Researchers have studied the 
role of NF155 in autoimmune diseases associated with CNS 
white matter and have observed changes in its expression 
and distribution in these diseases. Auto-antibodies against 

NF155 have been identified in brain tissues from MS patients 
(13). In the white matter lesion areas in MS patients, the 
expression level of NF155 was decreased, and the expres-
sion of degraded NF155 proteins was increased. Abnormal 
ion channel distribution in axons was observed (6). Myelin 

Figure 4. Electron microscopy images of the brain. A, Myelin sheaths in a Sham group rat retained 
their integrity and were compact (white arrow). Higher magnification is shown in the inset in the lower 
right corner. B, Myelin sheath in a Saline group rat after hypoxic-ischemic brain damage (HIBD) was 
characterized by rarefaction and there was obvious separation between lamellae with disordered 
structure, as indicated by the white arrows. C, Axoplasm shrinkage can be seen in an image from a 
Saline group rat at higher magnification (black arrowheads). D, Image from a rat injected with mono-
sialotetrahexosyl ganglioside (GM1 group) after HIBD shows that, compared to the Saline group, the 
myelin sheaths are compact and there is less separation between lamellae, as indicated by the black 
arrow/arrowhead.
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