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Abstract

The target of any immunization is to activate and expand lymphocyte
clones with the desired recognition specificity and the necessary
effector functions. In gene, recombinant and peptide vaccines, the
immunogen is a single protein or a small assembly of epitopes from
antigenic proteins. Since most immune responses against protein and
peptide antigens are T-cell dependent, the molecular target of such
vaccines is to generate at least 50-100 complexes between MHC
molecule and the antigenic peptide per antigen-presenting cell, sensi-
tizing a T cell population of appropriate clonal size and effector
characteristics. Thus, the immunobiology of antigen recognition by T
cells must be taken into account when designing new generation
peptide- or gene-based vaccines. Since T cell recognition is MHC-
restricted, and given the wide polymorphism of the different MHC
molecules, distinct epitopes may be recognized by different individu-
als in the population. Therefore, the issue of whether immunization
will be effective in inducing a protective immune response, covering
the entire target population, becomes an important question. Many
pathogens have evolved molecular mechanisms to escape recognition
by the immune system by variation of antigenic protein sequences. In
this short review, we will discuss the several concepts related to
selection of amino acid sequences to be included in DNA and peptide
vaccines.

Key words

« Vaccines

« MHC

« Antigen recognition
«» Antigen processing
« T cells

» Molecular evolution

Molecular mechanisms involved in
MHC-restricted antigen presentation
and recognition by T cells

Vaccination with DNA- or peptide-based
vaccines relies on T cell recognition, either
in the afferent (T cell-dependent antibody-
mediated responses) or in both the afferent
and effector limbs of the immune response
(T cell-mediated responses - e.g., delayed
hypersensitivity). In order to induce protec-

tive immunity, epitopes contained in these
“new generation” subunit vaccines must 1)
match epitopes naturally presented to the
immune system during infection; ii) be rec-
ognized by the entire target population, and
iii) induce an immune response of an ad-
equate isotype. The central event in the cel-
lular immune response to invading microor-
ganisms is the specific recognition of for-
eign peptides bound to major histocompat-
ibility complex (MHC) molecules by the o3
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T cell receptor (TCR). In most immunologi-
cal systems, including post-infectious pro-
tective immune responses, only some pep-
tides from a large number of potential candi-
dates are actually the target of a vigorous
immune response. The epitopes to which a
natural immune response is generated upon
immunization with the whole protein are
called dominant epitopes. Immunization with
overlapping peptides induces suboptimal re-
sponses to additional peptides, the so-called
“cryptic” epitopes. A large number of fac-
tors influence dominance and crypticity of
peptide epitopes, basically availability for
MHC binding, MHC binding itself, and the
recognition of the MHC:peptide complex by
T cells via their antigen receptors (1). While
peptide vaccines may bind directly to the
MHC, recombinant vaccines must undergo
proteolytic processing through the MHC class
II pathway in endosomal vesicles, and ex-
pression products of DNA vaccines enter
both the cytoplasmic/endoplasmic reticulum
MHC class I pathway and can also be uptaken
by professional antigen-presenting cells (2).
The steps involved in antigen presentation
and recognition by T cells that may influence
the selection of antigenic protective epitopes
from whole proteins will be reviewed.

Availability of peptides for MHC
binding in antigen presentation
pathways

Several factors influence the availability
of a given peptide sequence for processing
and presentation, at both the quantitative
and qualitative levels. An abundant protein
has a higher chance of yielding peptides
available for presentation. In intracellular
eukaryotic parasites like Trypanosoma cruzi,
proteins that are secreted may be a major
source of peptides for the MHC class I pres-
entation pathway (3). Cleavage site-specific
proteases and transporter proteins involved
in the processing of protein antigens into
peptides also seem to play a role in the
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selection of antigenic peptides. Proteasomes,
which generate peptides from cytoplasmic
proteins for the class I pathway, seem to
have preferred cleavage sites flanking domi-
nant CD8+ T cell epitopes in protein se-
quences (4). The human TAP (transporter
associated with antigen presentation) mole-
cule selects peptides according to a binding
motif on their three amino-terminal and two
carboxy-terminal residues (5). Cathepsin and
carboxypeptidase, which are present in the
phagolysosomal compartment and are in-
volved in proteolytic processing of endocy-
tosed proteins in the MHC class II pathway,
display preferential cleavage of dibasic (RR,
KK, KR or RK) sites (6). Peptides eluted
from human HLA class Il molecules fre-
quently display proline residues close to their
N-terminus, consistent with N-aminopepti-
dase activity (7).

HLA polymorphism and binding of T
cell epitopes

T cells recognize antigen via the variable
regions of the clonotypic T cell antigen re-
ceptor molecule (TCR). Zinkernagel’s (8)
pioneering experiments and succeeding re-
finements performed by many authors dis-
closed that T cells recognize antigen as pro-
teolytic peptide fragments together with the
individual’s own MHC molecule. CD8+ T
cells recognize peptide antigen as 8-10-resi-
due-long peptides embedded into the anti-
gen-binding groove of MHC class I mol-
ecules (the products of gene loci H2-K, -S,
and -L in mice; HLA-A, -B and -C in hu-
mans). CD4+ T cells recognize peptide frag-
ments of 13 residues or longer embedded
into the open-ended antigen-binding groove
of MHC class II molecules (the products of
gene loci H2 I-A and I-E in mice; HLA-DR,
-DQ and -DP in humans).

The structure of MHC molecules com-
plexed with different peptides was solved by
X-ray crystallography studies. Bound pep-
tides are buried in the antigen-binding groove
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formed between the helices of the MHC
molecule, leaving only a few of their side
chains available for direct TCR contact (9-
12). Peptides bind to MHC class Il in an
extended conformation where the side chain
of each amino acid residue is rotated 120°
relative to the previous one; nine residues lie
within the antigen-binding groove (10) while
flanking residues may also interact with the
TCR (13). A network of hydrogen bonds
between the peptide main chain and residues
on the groove assures a tight interaction
between peptide and MHC; specific binding
of certain peptides to an MHC molecule
comes from the interaction of peptide side
chains with the irregular surface of the floor
and sides of the groove, the “pockets” and
ridges formed by the protrusion of MHC
residues. The major pockets in the floor of
the groove of HLA-DR molecules are occu-
pied by the side chains of residues 1, 4, 6,
and 9 of the bound peptide (10,11).

Each human individual carries up to
twelve different alleles from the six HLA
class I and class II loci. HLA molecules are
highly polymorphic, with more than 600
allelic forms for HLA class I and class 11
(14). This polymorphism is concentrated in
the region encoding the peptide-binding
groove, yielding very diverse amino acid
sequences in this region among different
HLA alleles. Thus, most pockets in the HLA
groove are shaped by clusters of polymor-
phic HLA residues, with peculiar chemical
and size characteristics in different HLA
molecules. For example, a positively charged
side chain (e.g. lysine) in one HLA molecule
may interact preferentially with negatively
charged residues (e.g. aspartic or glutamic
acid) in a bound peptide; conversely, a hy-
drophobic residue in the same position of
another HLA molecule may only accept pep-
tides with hydrophobic residues in the corre-
sponding position (15). It follows that each
allelic HLA molecule only binds peptides
with amino acid sequences that are capable
ofinteracting with its antigen-binding groove.

These preferences can be evident after the
sequence alignment of peptides known to
interact with a given HLA molecule, disclos-
ing certain peptide positions where amino
acids with similar side chains occur at in-
creased frequency, the peptide-binding pref-
erences or “motifs” (16). The study of large,
MHC-selected peptide pools, and the se-
quencing of endogenous MHC-bound pep-
tides (17) or the analysis of large peptide
pools from phage display libraries selected
by binding to HLA-DR (18) allowed a gener-
alization of rules for peptide binding to indi-
vidual HLA molecules (15,19). Single-chain
substitution of “designer” (optimally bind-
ing) peptides led to the establishment of
motifs based on quantitative matrices, where
the effect of each amino acid residue in each
peptide position was taken into account, gen-
erating a numeric score, rather than the all-
or-none result for simple motifs (20). Fur-
ther study of peptides eluted from HLA-DR
and DQ suggested that residues flanking the
bound nonamers may influence overall pep-
tide binding preferences in an allele-specific
manner (21), confirming what was observed
in the mouse system (6). Since each of the
different allelic HLA molecules has differ-
ent peptide-binding preferences, a distinct
set of epitopes from a given protein antigen
will be presented to T cells in each individual
bearing a different HLA molecule.

On the whole, this implies that different
individuals may be able to recognize differ-
ent antigenic peptides from a given protein.
This interindividual variation of antigen rec-
ognition can be a problem for selecting im-
munogens for DNA, recombinant and pep-
tide vaccines, since they must contain epi-
topes recognized by individuals with a wide
range of different HLA molecules. This can
be circumvented by including additional ep-
itopes that can be presented by different
HLA alleles covering most of the popula-
tion, which can increase the complexity of
the vaccine. On the other hand, it has been
observed that several distinct HLA class [
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molecules share peptide-binding preferences
(“supermotifs”) and can bind certain com-
mon peptides with high affinity. Thus, the
identification of single peptides that can bind
multiple HLA types, the so-called “promis-
cuous” epitopes, could lead to effective cov-
erage of the human population by a peptide-
based vaccine (19).

T cell receptor recognition of MHC/
peptide complex: structure and
function

Recently, the structure of two trimolecular
complexes (TCR bound to MHC/peptide)
was solved: a complex containing a human
affl TCR bound to an HLA-A2 molecule
loaded with a nonapeptide derived from the
HTLV-1 virus (22) and a mouse TCR com-
plexed to an H-2Kb/peptide ligand (23). In
both structures, TCR VoV regions interact
with the composite surface made of residues
belonging to the antigenic peptide and to
both MHC al and o2 helices. The TCR is
oriented diagonally across the peptide-bind-
ing site of HLA-A2, with the TCR Vo con-
tacting the left end of the peptide-binding
groove, toward the amino-terminal part of
the MHC a1 helix and of the peptide, while
the TCR VB is positioned toward the car-
boxy terminus of the peptide. The third
complementarity-determining regions
(CDR3) of the TCR Vo and VB chains,
which display extremely diverse sequences
due to junctional diversity that occurred dur-
ing VDJ rearrangement, contact the center of
the bound peptide and seem to have exten-
sive conformational flexibility. In TCR:MHC
class Il:peptide complexes, a similar orienta-
tion seems to apply; however, N- and C-
terminal residues flanking the peptide’s nine
MHC-bound residues may interact with the
TCR (13). Flanking residues may also hinder
TCR interaction with MHC/peptide com-
plex (6,13).

Along a peptide, the side chains of cer-
tain residues interact with the TCR (TCR
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contact residues) while residues in other po-
sitions interact with the MHC molecule
(MHC contact residues or anchor residues).
Substitutions at MHC contact residues may
yield peptide analogs binding MHC with
different avidities from the parent peptide.
Avidity of the peptide for MHC and dosage
seems to influence the cytokine profile re-
sulting after immunization. It has been re-
ported that among peptide analogs binding
to MHC with different affinities over a
10,000-fold range, the higher affinity pep-
tide always elicits a T1-type cytokine pro-
file, while the lower affinity analog yields a
T2-type profile at low doses (24) but a T1-
type profile at higher doses (25). Peptide
analogs with conservative substitutions at
TCR contact residues may be full antago-
nists or partial agonists, inducing anergy or
partial or differential T cell activation (26,27).

Prediction of T cell epitopes

Ideally, modern subunit vaccines should
contain highly immunogenic T cell epitopes
intentionally chosen from the available path-
ogen proteins. However, a comprehensive
screening of T cell epitopes by random clon-
ing or direct synthesis of overlapping pep-
tides from large numbers of gene sequences
is often impossible. With the growing knowl-
edge on the nature of TCR recognition of the
MHC-peptide complex, several investiga-
tors tried to develop methods to predict T
cell epitopes. The first algorithms, based on
the simple alignment of antigenic peptides
(and often disregarding diversity of MHC
alleles), were no better than random when
tested on larger databases (28). MHC allele-
specific peptide-binding motifs were used in
the prediction of T cell epitopes (29-31),
minimizing the number of peptides to be
synthesized and assayed. The success of
MHC-based epitope prediction seems to lie
in the filtering out of potential T cell epi-
topes, since most natural peptides seem to
lack the capacity to interact with MHC mol-
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ecules (20). MHC binding algorithms based
on quantitative matrices yielded scores which
correlated with binding affinity (20) like the
TEPITOPE described for up to 25 distinct
HLA-DR molecules (15), or the Internet
server BIMAS (32) for several mouse and
human MHC class I alleles, which permit the
selection of high affinity binding peptides,
the ones with the greater chance of eliciting
T cell responses (33).

From the vaccine immunologist’s point
of view, however, identification of MHC
allele-specific T cell epitopes may not be
enough, since one is searching for vaccine
epitopes that can effectively cover the hu-
man population. This implies the identifica-
tion of “promiscuous” epitopes that can bind
to several MHC alleles whose combined
frequency in the population approaches
100%. The use of HLA class I supermotifs
(19), the alignment of peptides binding to
several distinct HLA-DR molecules with
TEPITOPE (15) and the identification of
sequences containing clustered motifs for
several distinct MHC molecules (34; Cunha-
Neto E and Gruber A, unpublished observa-
tions) can identify such potentially “promis-
cuous” epitopes.

Escape from presentation and recog-
nition by “molecular evolution”

For millions of years pathogens have
evolved molecular mechanisms to escape
effective presentation and recognition to the
immune system by variation of antigenic
protein sequence, after interplaying with the
host’s immune system (35). Antigen pro-
cessing and peptide transport mechanisms
are ancient in evolutionary terms. The major
features of the MHC peptide-binding groove,
like the hydrophobic nature of most pockets,
leading to preferential binding of peptides
with hydrophobic residues, are phylogeneti-
cally conserved from cartilaginous fish and
sharks to man (~250 million years) (36).
Sequence variation in or flanking an epitope

may lead to an inadequate response (37) by
several mechanisms such as loss of process-
ing signals (e.g., loss of sites for sequence-
specific proteases or a different folding pat-
tern), epitope competition and epitope se-
questration (6,38), abrogation of MHC bind-
ing (39), antagonism or partial agonism of T
cell receptor signalling (40), establishment
of ineffective “mock” dominant epitopes
(e.g., those in variant regions of CS proteins
from Plasmodia, stronger than those in con-
served regions), and molecular mimicry with
self or abundant environmental epitopes
(41,42). In the case of molecular mimicry
between host and pathogen epitopes, it is
important to identify potentially pathogenic
crossreactive epitopes to be excluded from a
protective immunogen, as in the case of
Streptococcus pyogenes M protein and rheu-
matic fever (43). Tandemly repeated do-
mains of parasitic protozoan proteins, which
are immunodominant B-cell epitopes, dis-
play nonrandom amino acid usage with few
hydrophobic residues leading to deficient
binding to MHC and T cell recognition (Abel
LCJ, Gruber A and Cunha-Neto E, unpub-
lished observations; 44). Thus, the immune
response of infected individual to “intact”
pathogen protein antigens may reflect the
evolutionary success of the parasite. DNA or
recombinant vaccines encoding whole pro-
teins or their genes will carry most molecular
sequence variation escape mechanisms
evolved by the pathogen. Immunization with
substituted synthetic peptides or DNA/pro-
teins can present neoepitopes or alter the
hierarchy of dominant/cryptic T cell epi-
topes, bypassing recognition escape mecha-
nisms (45).

Concluding remarks

The astonishing rate at which knowledge
of T cell antigen recognition has been accu-
mulating in the last decade is setting the
stage for the comprehensive search for ideal
epitopes and further “engineering” of immu-
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nogens from pathogens aiming at better vac-
cines. If widely applied, such knowledge
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