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Abstract

G protein-coupled receptor (GPCR) activation is followed rapidly by
adaptive changes that serve to diminish the responsiveness of a cell to
further stimulation. This process, termed desensitization, is the conse-
quence of receptor phosphorylation, arrestin binding, sequestration
and down-regulation. GPCR phosphorylation is initiated within sec-
onds to minutes of receptor activation and is mediated by both second
messenger-dependent protein kinases and receptor-specific G protein-
coupled receptor kinases (GRKs). Desensitization in response to
GRK-mediated phosphorylation involves the binding of arrestin pro-
teins that serve to sterically uncouple the receptor from its G protein.
GPCR sequestration, the endocytosis of receptors to endosomes, not
only contributes to the temporal desensitization of GPCRs, but plays
a critical role in GPCR resensitization. GPCR down-regulation, a loss
of the total cellular complement of receptors, is the consequence of
both increased lysosomal degradation and decreased mRNA synthesis
of GPCRs. While each of these agonist-mediated desensitization
processes are initiated within a temporally dissociable time frame,
recent data suggest that they are intimately related to one another. The
use of green fluorescent protein from the jellyfish Aqueora victoria as
an epitope tag with intrinsic fluorescence has facilitated our under-
standing of the relative relationship between GRK phosphorylation,
arrestin binding, receptor sequestration and down-regulation.
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Introduction

G protein-coupled receptors (GPCRs)
form the largest family of integral membrane
receptors. These receptors are seven trans-
membrane-spanning proteins that respond
to a wide variety of stimuli including light,
odour, taste, hormones and neurotransmit-
ters. Activation of a GPCR results in the
modulation of intracellular second messen-
ger levels and/or ionic conductances via the
coupling of receptors to a wide variety of
effector systems via heterotrimeric guanine

nucleotide-binding proteins (G proteins).
Agonist activation of a GPCR induces the
isomerization of the receptor to a “high-
affinity” agonist-binding conformation cata-
lyzing the exchange of GDP for GTP on the
G protein α-subunit (1). This exchange of
GDP for GTP allows the dissociation of the
Gα-subunit from the Gßγ-subunits, which
when dissociated from one another regulate
the activity of effector systems such as
adenylyl cyclase and potassium channels.

Shortly following exposure to an agonist,
GPCR responsiveness wanes as the conse-
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quence of receptor desensitization. Receptor
desensitization plays an important physiologi-
cal role by preventing overstimulation of
GPCR signaling cascades which in the case
of constitutively active mutant receptors leads
to diseases such as retinal degeneration, pre-
cocious puberty and thyroid tumors (2-4).
Moreover, receptor desensitization provides
a mechanism by which GPCR-mediated sig-
nals from multiple cellular or hormonal in-
puts can be filtered into meaningful informa-
tion. However, the up-regulation of proteins
associated with GPCR desensitization has
also been associated with diseases such as
hypertension, congestive heart failure and
drug dependence and tolerance (5-8). Con-
sequently, a firm understanding of how the
processes of receptor activation, desensiti-
zation and resensitization are related to one
another is critical to the development of
strategies aimed at ameliorating GPCR-re-
lated diseases. The present report overviews
the current understanding of GPCR regula-
tory mechanisms and how green fluorescent
protein (GFP) from the jellyfish Aqueora
victoria is facilitating this understanding.

Receptor desensitization

Phosphorylation

The desensitization of GPCR responsive-
ness results as the culmination of several
events including: the uncoupling of receptors
from their heterotrimeric G protein as the
consequence of receptor phosphorylation,
sequestration (endocytosis) of receptors to
endosomes and down-regulation of the total
cellular complement of receptors. While each
of these processes is initiated by the exposure
of receptors to agonist, they proceed at differ-
ent rates and can be dissociated on this basis.
Receptor/G protein uncoupling occurs in re-
sponse to phosphorylation by both second
messenger-dependent protein kinases (e.g.,
cAMP-dependent protein kinase, PKA) and
receptor-specific G protein-coupled receptor

kinases (GRKs) (9-11). GRK-phosphoryla-
tion of GPCRs occurs within seconds to min-
utes following the activation of a receptor by
the agonist and promotes the binding of
arrestin proteins. Arrestins when bound to
receptors sterically interdict receptor/G pro-
tein interactions (12-15). Second messenger-
dependent protein kinase-mediated phospho-
rylation of GPCRs does not promote arrestin
protein binding; rather, it is the second mes-
senger-dependent protein kinase-mediated
phosphorylation event itself that results in
receptor desensitization. For example, in the
case of the ß2-adrenergic receptor (ß2AR),
phosphorylation of a PKA consensus site in
the third intracellular loop of this receptor is
thought to sterically prevent the interactions
between the receptor and its G protein (9).
Both second messenger-dependent protein
kinases and GRKs contribute to the agonist-
dependent desensitization of GPCRs. How-
ever, unlike GRKs, second messenger-de-
pendent protein kinases exhibit the capacity
(when activated) to indiscriminately phos-
phorylate receptors that have not been ex-
posed to the agonist (9-11).

The GRK protein family of Ser/Thr ki-
nases consists of six members which can be
subclassified according to both sequence
homology and functional similarity (9-11,16):
1) rhodopsin kinase (GRK1), 2) ß-adrener-
gic receptor kinase 1 (ßARK1 or GRK2) and
ßARK2 (GRK3), 3) the GRK4 subfamily,
comprised of GRK4, GRK5 and GRK6. In
unstimulated cells GRK1, GRK2 and GRK3
are primarily localized to the cytosol and
translocate to their agonist-activated plasma
membrane-bound receptor targets. In con-
trast, GRK4, GRK5 and GRK6 exhibit sub-
stantial membrane localization in the ab-
sence of agonist activation of GPCRs. GRKs
phosphorylate GPCRs at serine and threo-
nine residues residing within the carboxyl-
terminal tail (e.g., ß2AR) or third intracellu-
lar loop (e.g., m2 muscarinic acetylcholine
receptor, m2 mAChR). The GRK protein
structure can be subdivided loosely into three
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functional domains: an amino-terminal do-
main that is thought to be important for
substrate recognition, a central catalytic do-
main and a variable carboxyl terminal do-
main critical for plasma membrane targeting
(9,16). Several distinct mechanisms for mem-
brane targeting are utilized by GRKs. These
mechanisms include farnesylation of a car-
boxyl-terminal CAAX motif (GRK1),
pleckstrin homology (PH) domain interac-
tions with G protein ßγ-subunits (GRK2 and
GRK3), palmitoylation of cysteine residues
(GRK4 and GRK6) and electrostatic interac-
tions between highly basic amino-terminal
amino acids and membrane phospholipids
(17-20). Recently, a combination of bio-
chemical techniques used in conjunction with
a GFP-tagged GRK2 has identified tubulin
as a novel GRK substrate (21).

Sequestration

Receptor sequestration is initiated within
the same time-course as phosphorylation but
proceeds somewhat slower. The agonist-pro-
moted sequestration of GPCRs to a “light-
vesicular” or “endosomal” pool of mem-
branes is also thought to contribute to the
temporal desensitization of GPCRs by re-
moving receptors to a compartment inacces-
sible to the agonist. However, the sequestra-
tion of receptors is not absolutely required
for the manifestation of GPCR desensitiza-
tion since treatments that block the endocy-
tosis of GPCRs do not prevent GPCR desen-
sitization (22,23). Rather, receptor seques-
tration appears to play a more important role
in the resensitization of GPCR responsive-
ness. This idea arose from the following
observations: 1) after agonist stimulation
ß2ARs isolated from the light vesicular pool
of membranes exhibit lower stoichiometry
of phosphorylation (24), 2) pharmacological
treatments that block receptor endocytosis
and recycling also block receptor resensiti-
zation (22,23) and 3) sequestration-defec-
tive mutants that desensitize but do not

resensitize have been identified (25). Conse-
quently, receptor sequestration is best de-
scribed as a process involving the internal-
ization of GPCRs to an endosomal compart-
ment where they become dephosphorylated
and recycled back to the plasma membrane
in their pre-ligand exposed state. The precise
endocytic mechanism by which GPCRs
endocytose remains controversial as both
clathrin-dependent and -independent mecha-
nisms have been described. However, in the
case of the ß2AR, the prominent endocytic
mechanism in many cell lines appears to be
via clathrin-coated vesicles (26).

While the molecular mechanisms in-
volved in the phosphorylation-dependent
desensitization of GPCR responsiveness have
been fairly well delineated, until recently,
the identification of the molecular interme-
diates involved in GPCR endocytosis and
resensitization has been less forthcoming.
Surprisingly, it was found that the same pro-
teins contributing to the desensitization of
GPCR responsiveness, GRKs and ß-arrestins,
also contribute to GPCR sequestration (26-
32). The involvement of GRK-mediated
phosphorylation in GPCR sequestration was
first demonstrated for the m2 mAChR (27).
These results initially conflicted with earlier
data obtained using ß2ARs lacking their pu-
tative sites for both GRK- and PKA-medi-
ated phosphorylation which sequestered nor-
mally in Chinese hamster ovary cells (33).
However, using a ß2AR-Y326A mutant,
which neither sequestered nor resensitized,
a role for GRK-mediated phosphorylation in
the sequestration of the ß2AR was also estab-
lished (28). Moreover, it was shown that in
human embryonic kidney (HEK 293) cells
the sequestration of a ß2AR lacking putative
sites for GRK- but not PKA-mediated phos-
phorylation was impaired by 50% (28). None-
theless, the observation that ß2ARs lacking
putative sites for phosphorylation still ex-
hibited a capacity for sequestration indicated
that, while GRK-mediated phosphorylation
facilitated the sequestration of the ß2AR, it
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was not absolutely required. Rather, GRK-
mediated phosphorylation promoted the bind-
ing of ß-arrestins which are absolutely re-
quired for ß2AR sequestration (29). ß-
Arrestins bind to GPCRs, uncouple them
from their cognate heterotrimeric G protein
and target them specifically for dynamin-
dependent clathrin-coated vesicle-mediated
endocytosis (26). The targeting of ß-arrestin-
bound receptors to coated pits appears to
involve an interaction between the carboxyl-
terminal domains of ß-arrestin1 and ß-
arrestin2 with the globular head of the
clathrin-heavy chain (34-36). The other two
members of the arrestin family, visual arrestin
and cone arrestin, appear to lack the clathrin-
binding motif and therefore do not support
GPCR endocytosis (34).

Down-regulation

Receptor down-regulation involves a loss
in the total cellular complement of particular
GPCR in response to prolonged or repeated
agonist stimulation. Down-regulation occurs
as the consequence of both increased lysoso-
mal degradation of pre-existing receptors
and reduced mRNA and protein synthesis
(37-40). PKA not only contributes to GPCR
desensitization by phosphorylating receptors,
but in the case of ß2AR, PKA activation
leads to a decrease in steady-state ß2AR
mRNA levels (38). It is uncertain whether
receptor sequestration represents the initial
step in the lysosomal degradation of GPCRs
following long-term agonist exposure. It is
possible that, while the majority of seques-
tered receptors are recycled back to the
plasma membrane, a small fraction of the
internalized receptors are sorted in endo-
somes for degradation in lysosomes (41).
This hypothesis is supported by a recent
study indicating that the overexpression of
ß-arrestin sequestration dominant-negatives
reduces the rate of ß2AR down-regulation
(42). Alternatively, GPCRs are targeted for
degradation via a distinct endocytic path-

way. Evidence for a distinct pathway comes
from the mutation studies where receptor
mutants have been identified which do not
sequester, but down-regulate more efficiently
(25) as well as receptor mutants that do not
down-regulate but sequester normally (43).
Moreover, tyrosine residues located in the
carboxyl-terminal tail of the ß2AR have been
implicated in receptor down-regulation but
not sequestration (37).

Use of green fluorescent protein to
study GPCR regulation

A great deal of knowledge has accumu-
lated concerning the mechanisms by which
GPCRs signal and desensitize. However, by
virtue of the nature of the membrane-delin-
eated environment in which GPCRs reside,
their study has required laborious biochemi-
cal techniques. The introduction of foreign
epitope tags into the cDNAs encoding GPCRs
has facilitated the study of both GPCR phos-
phorylation and endocytosis. This has been
particularly important for receptor systems
for which good radio-ligands and antibodies
have not been available or are prohibitively
expensive. The recent introduction of the
jellyfish Aqueora victoria GFP for use as an
autofluorescent epitope tag (44) has allowed
the visualization of GPCRs and their regula-
tory proteins in real-time with a precision
not afforded by fluorescent antibody stain-
ing of fixed cells. The ability of GFP to allow
real-time visualization of proteins in living
cells now allows us to effectively assess how
both agonist and/or the overexpression of
dominant-negative proteins affect changes
in the dynamic distribution of both GPCRs
and their regulatory proteins.

Receptor-GFP conjugates

To date GFP has been used to epitope tag
three distinct GPCRs, the cAMP chemoat-
tractant protein receptor (CAR1) in Dictos-
telium discoideum, the ß2AR and the chole-
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cystokinin type A receptor (CCKAR) (45-
48). These receptor-GFP conjugates have
been used to begin to answer several ques-
tions that cannot be adequately addressed by
immunofluorescence in fixed cell prepara-
tions. Xiao et al. (45) examined the distribu-
tion of CAR1 in living cells undergoing
cAMP-directed migration. Time-lapse im-
aging of individual cells showed that CAR1
remains evenly distributed on the cell sur-
face of a cell and all its projections during
chemotaxis. Moreover, pseudopods at mi-
gration fronts showed transiently reduced
fluorescent signals suggesting that the move-
ment of the receptors into these zones lagged
the protrusion process. The addition of GFP
to the carboxyl-terminal tail of the ß2AR
results in a receptor that is fully functional
with respect to all its measurable parameters
(e.g., G protein-coupling, receptor seques-
tration and agonist-dependent phosphoryla-
tion) and in fact appears to be better coupled
to adenylyl cyclase than the wild-type recep-
tor (46). Using the GFP-tagged ß2AR, we
showed that the diffusion rate for the ß2AR is
consistent with the free diffusion rates found
for other membrane proteins as the low den-
sity lipoproteins, indicating that their diffus-
ibility following agonist-mediated ß-arrestin
desensitization would not be a limiting step
in receptor endocytosis (46). Moreover, it
was found that in living cells the ß2AR-GFP
conjugate internalized to endosomes and that
within 15 min could be found in more com-
plicated structures formed from the fusion of
multiple endosomes. Perhaps the most inter-
esting data generated using a GFP-tagged
GPCR come from studies of a CCKAR-GFP
conjugate (49). When expressed in different
cell lines this receptor exhibited different
properties of endocytosis. In CHO, COS-1
and HeLa cells the CCKAR-GFP internal-
izes in an agonist-dependent manner, whereas
in NIH3T3 the receptor constitutively
endocytoses. The constitutive endocytosis
of the receptor could be prevented by an-
tagonist treatment of the cells. Interest-

ingly, unlike the ß2AR, the CCKAR-GFP
internalizes to endosomes but is not targeted
to lysosomes for degradation (46-48). The
apparent differences in the compartmentali-
zation of the CCKAR and the ß2AR high-
light the utility of GFP as a tool to pinpoint
receptor-specific differences in GPCR regu-
lation.

GPCR regulatory protein-GFP conjugates

In addition to coupling GFP to GPCRs, it
has been possible to couple GFP to both
GRK2 and ß-arrestin2 without affecting their
normal function as GPCR regulatory pro-
teins (21,49). The conjugation of GFP to the
carboxyl-terminus of ß-arrestin2 has greatly
facilitated our ability to assess both the nor-
mal distribution of ß-arrestin2 in cells and
the redistribution of ß-arrestin2 to the plasma
membrane in response to agonist activation
(49). ß-arrestin2 GFP not only supported
ß2AR endocytosis, but was easily observed
to redistribute in a time- and agonist dose-
dependent manner consistent with the phar-
macological characteristics of ß2AR seques-
tration (49; Ferguson SSG and Caron MG,
unpublished observations). Moreover, ß-
arrestin2 GFP translocation was GRK-de-
pendent (49). Because both GRK-mediated
phosphorylation and ß-arrestin binding to
GPCRs represent a divergent step in the
GPCR signaling and desensitization cas-
cades, this ß-arrestin2 GFP translocation as-
say represents a potentially powerful univer-
sal methodology for screening orphan recep-
tors, GRK inhibitors and novel GPCR ligands.
An additional advantage of ß-arrestin2 GFP
is that this technique offers the potential to
examine: 1) the agonist specificity of recep-
tor ß-arrestin/receptor interactions, 2)
whether ß-arrestins endocytose with recep-
tors in endocytic vesicles, 3) how drug treat-
ments affect ß-arrestin/receptor interactions
and 4) the mechanisms regulating the disso-
ciation of the GPCR/ß-arrestin endocytic
complex.
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Conclusion

The dual function of GRKs and arrestins
in the regulation of both the desensitization
and resensitization of GPCRs highlights the
complexity of the GPCR signal transduction
system. It is now clear that GPCR regulatory
processes that were traditionally considered
to be mediated by distinct mechanisms have
now been shown to exhibit considerable
overlap. This is particularly true of ß-

arrestins which when overexpressed re-es-
tablish the resensitization phenotype of mu-
tant receptors impaired in their ability to
resensitize (50). The use of both GPCR- and
ß-arrestin-GFP constructs to examine the
effects of both agonist and antagonists on
the activity and intracellular processing of
GPCRs is expected to contribute to the de-
velopment of new strategies to treat dis-
eases associated with perturbations in GPCR
function.
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