
ISSN 0100-879X

BIOMEDICAL SCIENCES
AND

CLINICAL INVESTIGATIONwww.bjournal.com.brwww.bjournal.com.br

  Volume 43 (01) 1-123 January 2010

Braz J Med Biol Res, January 2010, Volume 43(1) 52-56

Role of 11β-hydroxysteroid dehydrogenase 2 renal activity in 
potassium homeostasis in rats with chronic renal failure 

N.L. Yeyati, M.E. Altuna, M.C. Damasco and M.A. Mac Laughlin

Faculdade de Medicina 
de Ribeirão Preto

Campus
Ribeirão Preto

Institutional Sponsors

The Brazilian Journal of Medical and Biological Research is partially financed by 

http://www.bjournal.com.br
http://www.bjournal.com.br/
http://www.fmrp.usp.br/
http://www.fmrp.usp.br/
http://www.ribeirao.usp.br
http://www.unicamp.br/
http://www.faepa.br/
http://www.usp.br/
http://www.usp.br/
http://www.fapesp.br/
http://portal.mec.gov.br
http://www.mct.gov.br/
http://www.capes.gov.br/
http://www.brasil.gov.br
http://www.cnpq.br/
http://www.shimadzu.com.br
http://www.gehealthcare.com/worldwide.html


Brazilian Journal of Medical and Biological Research (2010) 43: 52-56
ISSN 0100-879X

Role of 11β-hydroxysteroid dehydrogenase 2 
renal activity in potassium homeostasis 

in rats with chronic renal failure 

N.L. Yeyati1, M.E. Altuna2, M.C. Damasco2 and M.A. Mac Laughlin1

1Departamento de Fisiología y Biofísica, Facultad de Medicina, 
Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina

2Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, 
Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina

Abstract

Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11β-hydroxysteroid dehydrogenase 2 
(11β-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has 
been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone 
and 11β-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR), in maintaining K+ homeostasis in 5/6 
nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental 
CRF obtained by 5/6 nephrectomy (N = 9) and sham rats (N = 10) were maintained for 4 months. Systolic blood pressure and 
plasma creatinine (Pcr) concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR 
were evaluated before and after spironolactone administration (10 mg·kg-1·day-1 for 7 days) and 11β-HSD2 activity on renal 
microsomes was determined. Systolic blood pressure (means ± SEM; Sham = 105 ± 8 and CRF = 149 ± 10 mmHg) and Pcr 
(Sham = 0.42 ± 0.03 and CRF = 2.53 ± 0.26 mg/dL) were higher (P < 0.05) while GFR (Sham = 1.46 ± 0.26 and CRF = 0.61 
± 0.06 mL/min) was lower (P < 0.05) in CRF, and plasma aldosterone (Pald) was the same in the two groups. Urinary sodium 
and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potas-
sium excretion was decreased in CRF rats (sham = 0.95 ± 0.090 (before) vs 0.89 ± 0.09 µEq/min (after) and CRF = 1.05 ± 
0.05 (before) vs 0.37 ± 0.07 µEq/min (after); P < 0.05). 11β-HSD2 activity on renal microsomes was lower in CRF rats (sham = 
0.807 ± 0.09 and CRF = 0.217 ± 0.07 nmol·min-1·mg protein-1; P < 0.05), although when normalized for mL GFR it was similar 
in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This 
adaptation may be mediated by renal 11β-HSD2 activity, which, when normalized for GFR, became similar to that of control 
rats, suggesting that mineralocorticoid receptors maintain their aldosterone selectivity.
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Potassium homeostasis is maintained up to the ad-
vanced stage of chronic renal failure (CRF) by increased 
fractional potassium excretion, while the glomerular filtration 
rate (GFR) is decreased (1-4). Although aldosterone is the 
key factor involved in K+ homeostasis, its plasma concentra-
tion in CRF varies. Both increased and normal values (5-8) 
have been reported. The specific renal effect of aldosterone 
depends on the cytoplasmic access of aldosterone to its 
specific mineralocorticoid receptors (9-12). These receptors 
bind both mineralo- and glucocorticoids with high affinity 
(13-16). The isozyme 11β-hydroxysteroid dehydrogenase 

2 (11β-HSD2) converts cortisol to cortisone (13-16), con-
sequently preventing mineralocorticoid receptor stimulation 
by cortisol and conferring specificity for aldosterone to this 
receptor. The isozyme is predominantly found in target 
aldosterone tissues: distal convoluted tubules, cortical col-
lecting ducts (17) and colon (18). Impaired renal 11β-HSD2 
activity has been described in patients with hypoxia (19) or 
impaired renal function (20) and in nephrotic rats (21), lead-
ing to sodium retention, hypokalemia and salt-dependent 
hypertension. However, an important consideration has 
not been discussed in these studies. Since GFR, an index 
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of nephron mass, is markedly reduced in CRF, this should 
be taken into account when renal 11β-HSD2 activity is 
evaluated. 

The aim of the present investigation was to study the 
role of aldosterone and 11β-HSD2 renal microsome activ-
ity in maintaining K+ homeostasis in 5/6 nephrectomized 
rats. To address this question we evaluated renal function, 
systolic blood pressure (SBP), plasma aldosterone, and 
11β-HSD2 renal microsome activity in 5/6 nephrectomized 
and sham rats. 

Material and Methods

Animals
Animals were used in compliance with the animal 

Research Guidelines of the American Heart Association 
(www.americanheart.org).

Male Wistar rats weighing 180 to 220 g were used. 
The animals had free access to Purina Rodent Laboratory 
chow and water throughout the experiment. This standard 
diet contains 282 mmol/kg K+, and 174 mmol/kg Na+. Ex-
perimental renal insufficiency was induced in rats (N = 9) 
according to the technique of Morrison (22). The two poles 
of the left kidney were removed and the right kidney was 
excised one week later. Sham rats (N = 10) submitted to 
laparotomy and manipulation of the renal pedicles were 
used as controls. 

Experimental protocol 
Rats were housed in a humidity- and temperature-

controlled environment with an automatic light/dark cycle 
of 12:12 h and studied for 4 months starting at the time of 
right kidney nephrectomy. 

Systolic blood pressure and plasma creatinine con-
centration were measured every month. At the end of 
this period, rats were adapted to metabolic cages during 
a period of 4 days. Subsequently, a blood sample and 
24-h urine were obtained. Urinary flow, GFR, obtained by 
creatinine clearance, and sodium and potassium excretion 
were determined. Spironolactone, an aldosterone antago-
nist analogue extensively used in experimental studies 
on rats (23-25), was administered by gavage (10 mg/kg 
body weight) daily for 7 days. Next, rats were returned to 
metabolic cages and the same experimental procedure 
was performed. The experimental group contained 9 rats 
and the sham-operated group 10 rats.

Measurement of 11β-HSD2 activity in renal 
microsomes

Rats were anesthetized with ether and kidneys were 
perfused with 0.9% NaCl, excised, decapsulated, and sliced. 
The slices were resuspended in 0.1 M sodium phosphate 
buffer containing 1.5 mM MgCl2, pH 7.4 (MG buffer; 25 mL 
MG buffer/g tissue) and homogenized with a Potter Teflon 
homogenizer. Homogenates were centrifuged at 12,000 g 

for 30 min. The supernatant was then centrifuged at 105,000 
g for 60 min and the microsome fraction thus obtained was 
resuspended in MG buffer. Total protein was determined 
by the method of Bradford (26). 

Isozyme activity was determined by measuring the 
conversion rate of 3H-corticosterone to 3H-11-dehydrocorti-
costerone (27). Microsomal suspensions containing 250 µg 
protein/mL were incubated in 250 µL MG buffer containing 
14 nM 3H-corticosterone and 400 µM NAD+ for 10 min at 
37°C and the reaction was stopped by the addition of ethyl 
acetate. Steroids were extracted, and then separated by 
thin layer chromatography using chloroform-ethanol (92:8). 
The 3H-corticosterone and 3H-11β-dehydrocorticosterone 
were eluted and radioactivity was counted. Enzyme specific 
isozyme activity is reported as nmol·min-1·mg protein-1.

Analytical methods
Aldosterone was measured in blood samples by radioim-

munoassay, SBP was determined by tail plethysmography 
in awake rats (28), Na+ and K+ concentrations were deter-
mined in urine samples by flame photometry, and plasma 
and urinary creatinine were determined by a modified Jaffe 
method, which prevents nonspecific reaction (29). 

Statistical analysis
Data are reported as means ± SEM. To test for statisti-

cally significant differences (P < 0.05), the Student t-test for 
paired or unpaired data, as appropriate, was performed.

Results

Rats with 5/6 nephrectomy developed a significant dete-
rioration of renal function, as shown in Table 1. In fact, after 
4 months, at the end of the experiments, plasma creatinine 
concentration and the SBP were higher (P < 0.05) and GFR 
was significantly lower in CRF rats. The validity of the use 
of creatinine clearance to evaluate GFR in Wistar rats was 
demonstrated (30). Although CRF effectively developed 

Table 1. Plasma creatinine, systolic blood pressure, glomerular 
filtration rate, and plasma aldosterone levels of sham and chron-
ic renal failure rats. 

Sham (N = 10) CRF (N = 9)

Pcr (mg/dL) 0.42 ± 0.03 2.53 ± 0.26*
SBP (mmHg) 105 ± 8 149 ± 10*
GFR (mL/min) 1.46 ± 0.26 0.61 ± 0.06*
Pald (pg/mL) 1,746 ± 191 1,615 ± 113

Data are reported as means ± SEM. Measurements were made 
4 months after 5/6 nephrectomy. CRF = chronic renal failure; Pcr 
= plasma creatinine; SBP = systolic blood pressure; GFR = glom-
erular filtration rate; Pald = plasma aldosterone. *P < 0.05 vs 
sham (Student t-test for unpaired data).
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after 5/6 nephrectomy, plasma K+ concentration (Table 2) 
continued to be normal. 

Although urinary sodium and potassium excretion did 
not differ in either group under basal conditions (Figure 
1), fractional Na+ excretion [sham: 0.19 ± 0.02% (N = 10), 
CRF: 0.45 ± 0.09% (N = 9)], and fractional K+ excretion 
[sham: 13.25 ± 1.26% (N = 10), CRF: 37.25 ± 3.50% (N = 
9)] were significantly higher (P < 0.01) in 5/6 nephrectomized 
rats. Thus, a tubular adaptation allowing the remaining 
nephrons to preserve the electrolyte balance must have 
been developed in the nephrectomized group. In contrast, 
no difference was found in plasma aldosterone between 
sham and CRF rats (Table 1), although, after treatment with 
spironolactone, the two groups responded in different ways 
(Figure 1). Sodium excretion was not modified in either 
group and K+ excretion did not change in sham rats but 
was substantially decreased in CRF rats (P < 0.05). Thus, 
plasma potassium concentration increased significantly 
only in CRF rats treated with spironolactone, as shown in 
Table 2. This specific effect of spironolactone suggests an 
adaptive response of mineralocorticoid receptors in the distal 
nephrons of CRF rats. When 11β-HSD2 renal microsome 
activity was measured, a lower value was obtained for the 
CRF group (P < 0.05; Figure 2). However, when 11β-HSD2 
activity was normalized for mL GFR, an index of remnant 
nephron mass, there was no difference between groups. 

Discussion

In the present study, plasma Na+ and K+ concentra-
tions were similar in sham and CRF rats, showing that the 
electrolyte balance was preserved throughout the 4-month 
study. The compensation of renal function in order to 
maintain electrolyte homeostasis while renal disease is 
developing has been well documented (31,32). The “intact 
nephron hypothesis” (31) considers a special mechanism 
in remnant nephrons that elevates GFR and enlarges the 
tubule. This specific adaptation facilitates Na+, K+ and wa-
ter handling (33,34). On this basis, we demonstrated that 
fractional Na+ and K+ excretion was significantly higher in 
5/6 nephrectomized rats. We emphasize the low relation-
ship of Na+ and K+ excretion in sham rats, of the order of 
1 to 4, when the expected one was 2/1 (35). It should be 
pointed out that our rats were fed a standard commercial 
Purina Rodent Laboratory diet, which in comparison with 
the occidental human diet (36) contains high K+ and low 
Na+ (see Methods). 

Plasma aldosterone levels were the same in the two 

Figure 1. Urinary sodium and potassium excretion of sham and 
chronic renal failure (CRF) rats before and after spironolactone 
treatment (10 mg·kg-1·day-1 for 1 week). Measurements were 
made 4 months after 5/6 nephrectomy or sham operation. Data 
are reported as means ± SEM. *P < 0.05 vs before treatment 
(Student t-test for paired data).

Figure 2. Renal microsome 11β-hydroxysteroid dehydrogenase 
2 (11β-HSD2) activity and 11β-HSD2 activity normalized for mL 
glomerular filtration rate (GFR) of sham and chronic renal failure 
(CRF) rats. Measurements were made 4 months after 5/6 neph-
rectomy or sham operation. Data are reported as means ± SEM. 
*P < 0.05 vs sham (Student t-test for unpaired data).

Table 2. Effect of spironolactone on plasma potassium of sham 
and chronic renal failure rats.

Plasma potassium (mEq/L)

Before spironolactone After spironolactone

Sham (N = 10) 4.77 ± 0.26 5.32 ± 0.25
CRF (N = 9) 4.89 ± 0.43 5.91 ± 0.31*

Data are reported as means ± SEM. Measurements were made 
4 months after 5/6 nephrectomy or sham operation. CRF = 
chronic renal failure. Spironolactone was administered by gav-
age (10 mg·kg-1·day-1 for 1 week). *P < 0.05 vs before (Student 
t-test for paired data).
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Audigè et al. (38) did not obtain any evidence suggesting 
enhanced kidney gene expression or activity of 11β-HSD2. 
They concluded that endogenous 11β-HSD2 is able to cope 
with the increased corticosterone concentrations charac-
teristic of the aging process. Yet, the progressive loss of 
nephron mass associated with advanced age (39,40), which 
must impair GFR, was not taken into account by Audigè et 
al. (38). In the present investigation, GFR was markedly 
reduced as a consequence of a 5/6 reduction in the renal 
mass (Table 1). When we normalized 11β-HSD2 activity for 
mL GFR, we did not observe a difference between sham 
and CRF rats (Figure 2). Thus, when reduction of nephron 
mass is considered, 11β-HSD2 activity appears to be suf-
ficient to maintain mineralocorticoid receptor specificity in 
the remnant nephrons. 

In conclusion, the present study demonstrates one of the 
mechanisms that may contribute to K+ homeostasis up to the 
advanced stage of renal failure. Despite normal aldosterone 
plasma level, plasma K+ concentration remained normal. 
The isozyme 11β-HSD2 can, when taking the reduced 
nephron mass into account, be able to preserve K+ balance 
by protecting mineralocorticoid receptors. 
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