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MRI Relaxometry: Methods and Applications
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Aspects of magnetic resonance relaxation measurements in human tissues are discussed. The influence of
pulse sequences and parameters are compared and analyzed for different tissues. By controlling the acquisition
parameters and data fitting the relaxation rate can be useful in several clinical situations. The influence of
repetition and echo time, predicted in sequences of signal acquisition, on measurement of transversal relaxation
time (T2) was evaluate using simulated MRI signal.
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I. INTRODUCTION

The use of magnetic resonance imaging (MRI) as a quanti-
tative tool has attracted great interest by various research cen-
ters. The improvement in the sensitivity and the reduction of
the subjectivity of visual evaluation created a significant im-
pact on diagnosis of tissue abnormalities, such as tissue iron
overload.

The most common MRI techniques for quantitative diag-
nosis at the lesion level are relaxometry (R), magnetization
transfer (MT) and Spectroscopy (MRS). However, one impor-
tant issue is standardizing a calibrating protocol to be used in
different scanners that is imperative to allow the use of MRI
as a quantitative tool.

Most commonly, MRI can be weighted in T2 (transver-
sal relaxation time) and/or T1 (longitudinal relaxation time),
where the nature of the image contrast is based on relative con-
tributions from different tissues. On the other hand, one can
create a map, based on the relaxation time itself, also known as
relaxometry. Such map can be constructed considering each
one of these parameters separately or together. Generally, ap-
plications for tissue characterization make use of spin-echo
sequences, with two or more different times of echo (TE) and
a long time of repetition (TR), and are currently being applied
to evaluate brain, breast, muscle and liver tissue [1-7].

We present here the relevant principles of T2 weighted re-
laxometry. Section 2 reviews important aspects of relaxation
rate (R2) for specific tissues and specific MRI sequences ded-
icated to relaxometry. With these sequences an R2 map can be
produced and overlaid onto the images. Section 2.1 discusses
the condition under which the TE for each tissue optimizes the
sensitivity of the exam. In section 2.2 we present image ac-
quisition and processing that allows the best fit between signal
intensity and TE. Details and results of particular applications
to evaluate tissue lesions and liver iron overload by relaxom-
etry are discussed on section 3. The variance between the
experimental data and fitted curve will also be discussed.

II. THEORY AND METHODS

The theory of relaxometry, or the measurement of relax-
ation rates, is based on the physical aspects of nuclei relax-

ation to the ground state after being excited by an RF pulse.
This relaxation is produced by randomly occurring variations
in the local magnetic field strength. T2 relaxation is due to a
dephasing of individual magnetic moments of the protons, and
begins immediately after the RF pulse. Protons will become
out of phase as they experience a slightly different magnetic
field and then rotate at a slightly different frequency. This
transversal relaxation occurs both due to magnetic field inho-
mogeneities produced by the magnet or by magnetic particles
present in the tissues and due to movement of the molecules
in the tissue.

A. Imaging acquisition and processing

Relaxometry maps may be generated either by spin-echo
or by gradient echo sequences. In the latter, T2∗ is being
measured, rather than T2. Therefore, the results may be nois-
ier since the influence of inhomogeneities in the magnetizing
field is greater.

To generate a map of relaxation rate (R2=1/T2) or relax-
ation time (T1 or T2), using spin echo sequences, at least two
images are necessary. The sensitivity of this technique de-
pends on sequence, time of repetition (TR), time of echo (TE),
the number of images acquired with different TE, and on the
model adopted for fitting the experimental data.

When using a single spin echo acquisition, for T2 weighted
images, the selected TEs values should be close of the T2
of the tissue. If TE is much longer than T2, the fit will be
weighted by the relaxed part of signal intensity versus TE. In
general, relaxometry uses a multi-spin-echo sequence (MSE).
In this case, if the first echo was much shorter than T2 of the
tissue, a larger number of echoes will be necessary to evaluate
a high value of T2. This means a high repetition rate and, con-
sequently, thermal effects will contribute to dephase the spins,
making T2 even shorter. On the other hand, if the first TE is
long the delay between two images will allow the acquisition
of only a few images in the range of TE to best calculate T2.
One possibility to avoid this incompatibility of an MSE is to
use single spin-echo sequence (SSE), and repeat the acquisi-
tion for different echoes. Unfortunately, this method will need
an undesirably long time of scanner [8]. In the case of very
short T2 short values of TE will be necessary. St Pierreet al.
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showed that a single spin echo sequence may be used to im-
prove the precision of the relaxometry technique to evaluate
iron overload in tissue [9].

Increasing TR also increases the signal-to-noise ratio
(SNR) in relaxometry evaluation. Generally, TR is at least
three times T1. However, increasing TR increases the acqui-
sition time. Another important aspect in relaxometry is the
value and the number of TEs. The larger the number of TEs
the better is the SNR .....[9]. The values of TE should be cho-
sen in a range centered close to the values of T2 for the sam-
ple. A value of T2 close to TE, but sufficiently longer than T2
fluctuations in region of interest (ROI) of the tissue, will give
more accurate T2 measurements.

For tissues where the signal intensity decays rapidly, such
as tissues with iron overload, the signal intensity (SI)versus
TE is well fit by a single-exponential function [7,10]. More-
over, SNR increases when the images are pre-processed by a
smooth filter. However, this process decreases the spatial res-
olution of the relaxometry map [11]. It is common to quantify
T2 values by the regression of the natural logarithm of the sig-
nal intensity versus TE with two exponential functions. The
T2 determination is uncertain if the relaxation of the SI does
not follow a single-exponential behavior. An even more seri-
ous uncertainty in T2 results appears if an offset signal is not
subtracted from the SI before the curve fitting. In practice, a
single exponential decay of the signal intensity (SI)versusTE
should not be applied for all tissues as it will be show in the
next section.

In quantitative magnetic resonance imaging, the accuracy
of an image derived from relaxation rates is primarily depen-
dent on the processing of the image data that must be un-
corrupted by acquisition artifacts [12]. Respiratory motion,
for example, is a predominant source of artifacts, especially
for axial MR images of the abdomen [13]. Besides tradi-
tional noise suppression, another important method of image
processing is providing a reference signal intensity to com-
pensate differences of image brightness from the same tissue
acquired with different TE. One can use a homogeneous phan-
tom with an MRI signal intensity equivalent to the average
signal of the tissue being investigated. Therefore, the value
of the intensity from the phantom for each TE may be used
to correct the scanner drift of the signal intensities from the
tissue being investigated [6].

B. T2 analysis by simulated data

To the first approximation, the relaxation of signal intensity,
following a spin-echo pulse sequence assumes an exponential
decay, given by the expression [14]:

SSE = So

[
1−2e

− TR−TE/2
T1 +e

− TE
T1

]
e
− TE

T2 , (1)

where S0 is the proton density, T1 and T2 are longitudinal
and transversal relaxations, respectively. The parameters (So,
T1 and T2) characterize the tissue properties and the image

contrast should be weighted with each one of these parameters
by controlling TE and TR during the image acquisition.

In practice, the use of equation 1 to fit the SSE versusTE
curve poses a difficult task. Equation 1 does not separate T1
and T2 contributions sufficiently to detect fine abnormalities
of tissues. Generally, one can eliminate T1 contribution from
expression 1 by using a TR much longer than T1, as most
biological tissues have a T1 shorter than 250 ms. When the
tissue has a long T1, as in the Cerebral Spinal Fluid (CSF)
(T1∼2500 ms and T2∼1400 ms), a very long TR will be nec-
essary in order for T2 to dominate the signal decay.

The dependency of the MRI signal on TE was simulated
using equation 1 for different values of T1, T2 and TR. As
shown in Fig. 1, the signals were plotted using. The fol-
low procedure: a) large variation on T1 (500, 1000, 1500),
T2=100 ms; TR=2500 and S0= 1000; b) 10% of variation
on T2 (90, 100, 110), T1 = 500 ms, TR=5xT1 and S0=
1000; c) 10% of variation on S0 (900, 1000, 1100), T2=
100 ms, T1=500, TR=5xT1 ms; d) large variation on TR
(1000,2000,3000), T2=100 ms, T1=1000 ms and S0= 1000).
A Gaussian noise of 1% was added to all simulated signals to
represent statistical fluctuations of detection system and the
random variations of the local electromagnetic field due to
eddy currents induced within tissues.

The simulated signals were fitted using single and bi-
exponential curve, according to:

SSE = Soe
− TE

T2 +Soffset , (single−) (2)

SSE = So1e
− TE

T21 +So2e
− TE

T22 +Soffset , (bi−) (3)

where So is the maximum signal from the sample and Soffset
is an offset signal from the system.

To evaluate the variation on parameters S0 and T2, the fit
was made considering two methods: all arbitrary parameters
free and some parameters fixed. This second one was made
using the following protocol:

Single-exponential: offset was considered fixed and equal
to zero;

Bi-exponential: S01 equal to S02 and the offset was fixed
equal to the noise level estimated for each signal. In the sim-
ulated data the offset was zero.

Simulations were performed using a program written in
MatLab 6.5 and the relaxometry parameters were estimated
by fitting the simulated data using a non-linear curve fit ac-
cording toχ2 minimization algorithm, based on Levenberg-
Marquardt method, with an interval of confidence of 95%.

The relaxation curves simulated for three different T2
(Fig. 1.A) show a maximum variance in the region where TE
is approximately equal to T2. 10% of variance on proton den-
sity (Fig. 1.B) implies one visible variance on the decay of the
signal intensity. It was observed that a large variance on T1
causes small variance on signal intensity for TR=5T1. Large
variations on T1 of the tissue won’t cause considerable mod-
ification on relaxometry, if TR>>T1, T2. However, if TR is
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The absolute deviation of T2 for all conditions of simulation presented in table 1 and 2 
was smaller when T2 was obtained considering the offset fixed and equal zero and with equal 
amplitudes of S01 and S02 for the bi-exponential curve. For these parameters, the value obtained 
for T2 was similar for both single and bi-exponential fits. 

When all parameters of equation 3 were allowed to be adjusted, the fluctuation in both 
T21 and T22 was large. Figure 3 shows that using a bi-exponential fit (equation 3), results in large 
uncertainties in T2 values. Besides, the number of iterations necessary to have the fitted data 
converging to a 95% confidence is greater than when some parameter is maintained fixed.
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Figure 1: Signal intensity versus TE values simulated from equation 1 and fitted by equation 2. a) 
large variation on T1, with TR>>T1; b)10% of variation on T1 for TR=2.5*T1; c)  10% of variation 
on T2, with TR=2,500 ms, T1= 500 ms; d) TR=[T1, 2T1and 3T1] , with T1=1,000 ms, T2=100 ms.   
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Figure 1: Signal intensity versus TE values simulated from equation 1 and fitted by equation 2. a) 
large variation on T1, with TR>>T1; b)10% of variation on T1 for TR=2.5*T1; c)  10% of variation 
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FIG. 1: Signal intensity versus TE values simulated from equation 1 and fitted by equation 2. a) large variation on T1, with TR>>T1; b)10%
of variation on T1 for TR=2.5*T1; c) 10% of variation on T2, with TR=2,500 ms, T1= 500 ms; d) TR=[T1, 2T1and 3T1] , with T1=1,000 ms,
T2=100 ms.

equivalent to T1, small variations will result in a considerable
modification on signal amplitude.

Table 1 and 2 show the distribution of relaxometry parame-
ters obtained from single- and bi-exponential fit of the simu-
lated curves of Fig. 1. Although the offset level (Soffset) has
been considered zero in the simulated data, a fluctuation of
about 1%, relative to proton density (S0) was observed. The
shorter TR, the larger is the deviation of T2 obtained both by
single- and by bi-exponential fit.

The absolute deviation of T2 for all conditions of simula-
tion presented in table 1 and 2 was smaller when T2 was ob-
tained considering the offset fixed and equal zero and with
equal amplitudes of S01 and S02 for the bi-exponential curve.
For these parameters, the value obtained for T2 was similar
for both single and bi-exponential fits.

When all parameters of equation 3 were allowed to be ad-
justed, the fluctuation in both T21 and T22 was large. Fig. 3
shows that using a bi-exponential fit (equation 3), results in
large uncertainties in T2 values. Besides, the number of it-
erations necessary to have the fitted data converging to a 95%
confidence is greater than when some parameter is maintained

fixed.

FIG. 2: Map of relaxation rate R2 (1/T2) on Liver and spleen region
superimposed on anatomic MRI image acquired on 40 year old man.
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TABLE I: Relaxometry parameter obtained from Single- and Bi-exponential fitting of simulated MRI signal from a spin-echo sequence versus
TE. In this tableT̄2 is the average value of T2. Shadowed cells show the varying parameters.

Simulated parameters Single-exponential
S= S0e−

TE
T2 +So f f set

Bi-exponential

S= S01e
− TE

T21 +S02e
− TE

T22 +So f f set
S0 TR T1 T2 So f f set A T2 So f f set S01 S02 T2,1 T2,2 T̄2
1000 2500 500 90 7.2 988.5 89.1 7.2 491.2 497.3 89.0 89.0 89.0
1000 2500 500 100 13.4 982.7 96.1 2.5 486.0 495.0 96.9 103.9 100.4
1000 2500 500 110 -5.0 1003 109.3 2.9 496.0 499.0 99.9 114.0 107.0
1000 2500 1000 100 11.4 914.3 94.2 6.1 444.3 468.0 102.8 90.7 96.8
1000 2500 1500 100 -4.1 824.0 99.3 7.2 385.8 428.8 101.5 91.4 96.5
1000 2000 500 100 -12.0 878.9 101.7 15.9 417.2 449.5 95.2 90.6 92.9
1000 3000 500 100 -10.0 957.2 102.7 15.2 435.8 501.0 98.8 94.5 96.7
900 2500 500 100 4.2 879.8 101.1 6.9 403.0 477.9 105.6 95.3 100.5
1100 2500 500 100 4.8 1067 101.4 8.4 489.7 578.8 105.6 95.5 100.6

TABLE II: Relaxometry parameter obtained from Single- and Bi-exponential fitting of simulated MRI signal from a spin-echo sequence versus
TE. In this fit, the offset was maintained fixed. Shadowed cells show the varying parameter.

Simulated parameters Single-exponential

S= S0e
− TE

T21

Bi- exponentialS= S0

(
e
− TE

T21 +e
− TE

T22

)

S0 TR T1 T2 So f f set S0 T2 S0 f f set S0 T21 T22 T̄2
1000 2500 500 90 0.0 991.0 91.2 0.0 495.0 91.7 91.7 91.7
1000 2500 500 100 0.0 988.3 100.2 0.0 494.1 100.2 100.2 100.2
1000 2500 500 110 0.0 1000 107.7 0.0 510.0 107.6 107.6 107.6
1000 2500 1000 100 0.0 918.9 97.8 0.0 459.4 97.2 97.2 97.2
1000 2500 1500 100 0.0 822.2 97.8 0.0 411.1 97.8 97.8 97.8
1000 2000 500 100 0.0 873.7 97.3 0.0 436.0 97.3 97.3 97.3
1000 3000 500 100 0.0 952.5 99.6 0.0 476.5 99.6 99.6 99.6
900 2500 500 100 0.0 881.7 102.6 0.0 490.8 102.6 102.6 102.6
1100 2500 500 100 0.0 1070 102.6 0.0 534.6 102.7 102.7 102.7

III. SINGLE- VERSUS BI-EXPONENTIAL FIT

Generally, T2 has been evaluated using single- or bi-
exponential fitting to the experimental data with no attention
given to the mathematical protocol to best adjust appropriate
parameters. For example, the value of T2 obtained from an
exponential fit could be strongly influenced by the choice of
the amplitude of the signal offset (So f f set). A bi-exponential
function makes the fitting more critical, since besides the vari-
ation of amplitude of offset, the exponential terms will interact
to permit the best fit. In this case, both the amplitude and re-
laxation time parameters fluctuate between mean values. This
criticality is clearly observed from simulated results presented
in section 2.1. For example, for 5 simulated signals with 1%
of noise, generated using the same parameters (TR=2,500 ms,
T1=500ms, and T2=100ms) the fluctuation of the adjusted pa-
rameter was about 0.8 % when the single-exponential fitting
was done keeping the offset fixed and about 4% when all other
parameters were free. The results in table 1 and 2 show the
criticality of the bi-exponential fit when all 5 parameters were
free to be adjusted. The adjusted parameters were more stable
when both amplitudes were considered equal and the offset
was fixed. This mathematical procedure of getting the relax-
ometry parameters guarantees the best resolution of this pro-
cedure to detect small relaxation changes of tissues.

IV. IN VIVO APPLICATIONS

In this section we will present examples of relaxometry
applications to quantify T2 or R2 values in some biological
tissues. To guarantee a relative comparison between differ-
ent tissues, the same sequence and processing were used to
generate R2 maps. Images were acquired in a 1.5 T scanner
(Siemens Magneton Vision) using a multi-spin-echo sequence
(16 echoes) with TE multiples of 22.5 ms [22.5, 45,. . . 360
ms], with long TR (TR¿= 2,000 ms). Due to the long repeti-
tion time, no respiratory-gating or breath-holding techniques
were employed to avoid movement artifacts. R2 maps were
superposed onto an intensity image for best visualization.

A. Tissue Iron Overload

The higher the concentration of iron stored on the tissue,
the shorter will be the value of T2 (longer R2), and the shorter
should be the TE values. Generally, patients that regularly re-
ceive blood transfusions have the level of iron in the body in-
creased, especially those who are not submitted to iron chela-
tion therapy. The organs that most accumulate iron are liver,
heart and spleen.

Relaxometry is a potential tool to quantify iron overload in
tissue [5-8,14]. But its accuracy depends strongly on good
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Figure 3: Single-exponential fit of mean intensity signal versus TE for liver and spleen region 
drawn on figure 2 shown in a linear (A) and logarithmic (B) scale.  

 
3.2 – Breast relaxometry 

Nowadays, there has been a marked increase in the use of MRI for breast 

tissue evaluation. Multiple research studies have confirmed the potential of 

relaxometry for early breast cancer detection, diagnosis, and evaluation of 

response to therapy [16]. From T2-weighted images, differentiation between 

adipose and glandular tissue types is clear due to their distinctly different T2 

values. For the same reason relaxometry differentiate easily normal from 

abnormal tissue. 

Figure 4 shows a breast MRI T2-weighted image (TE=202.5 ms, TR=2000 

ms) from a 54 year old woman. The R2 map was evaluated using the same 

protocol of acquisition and processing presented previously. Figure 5 shows the 

relaxation curve fitted by a single-exponential curve for the three different regions 

of breast indicated in figure 4. 

FIG. 3: Single-exponential fit of mean intensity signal versus TE for liver and spleen region drawn on Fig. 2 shown in a linear (A) and
logarithmic (B) scale.

FIG. 4: Map of relaxation rate R2 (1/T2) of the left breast superposed
on T2-weighted image. This image was acquired on a 54 year old
woman.

controls, on the protocol of measurement and on processing
[9].

Figure 2 shows an R2 map, acquired in an asymptomatic
subject (40 year old), from the liver and spleen region. The R2
was obtained by fitting the signal intensity in a pixel-by-pixel
basis using a single-exponential curve. A 3x3 matrix mask
smooth filter was applied to reduce respiratory artifacts. As
liver and spleen tissues have a short T2 (∼40 ms), only the 9
first images, with TE multiples of 22.5 ms, were used. Fig. 3
shows the fit of the mean intensity versus TE, for both liver
and spleen regions marked on Fig. 2. As T1 for these tissues
are shorter than the TR, a single-exponential curve gives a
good fit.

 

 

 
Figure 4: Map of relaxation rate R2 (1/T2) of the left breast superposed on T2-weighted image. 
This image was acquired on a 54 year old woman.  
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Figure 5: Single-exponential fit of mean intensity signal versus TE from three different region of 

the breast: fibrogandular tissue ( ); damaged tissue ( ) and adipose tissue ( ) of the whole left 
breast area.    

 
 
3.3 – Brain Relaxometry 

T2 relaxometry in human brain has also been successfully used to 

differentiate normal from abnormal tissues. Increased signal on T2-weighted MRI 

FIG. 5: Single-exponential fit of mean intensity signalversusTE
from three different region of the breast: fibrogandular tissue (∆);
damaged tissue (o) and adipose tissue (♦) of the whole left breast
area.

B. Breast relaxometry

Nowadays, there has been a marked increase in the use of
MRI for breast tissue evaluation. Multiple research studies
have confirmed the potential of relaxometry for early breast
cancer detection, diagnosis, and evaluation of response to
therapy [16]. From T2-weighted images, differentiation be-
tween adipose and glandular tissue types is clear due to their
distinctly different T2 values. For the same reason relaxome-
try differentiate easily normal from abnormal tissue.

Figure 4 shows a breast MRI T2-weighted image
(TE=202.5 ms, TR=2000 ms) from a 54 year old woman. The
R2 map was evaluated using the same protocol of acquisition
and processing presented previously. Fig. 5 shows the relax-
ation curve fitted by a single-exponential curve for the three
different regions of breast indicated in Fig. 4.
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FIG. 6: Map of relaxation rate R2 of an axial slice from a human
brain superposed on T2-weighted image. Regions with short T2 are
indicated with bright color and long T2 with black color.

 

 

 
Figure 6: Map of relaxation rate R2 of an axial slice from brain a human brain superposed on T2-
weighted image. Regions with short T2 are indicated by bright color and long T2 with black color. 
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Figure 7: Single-exponential fit of mean intensity signal versus TE from different brain tissues of 
an axial slice. 

 
 

Table 3 shows the relaxometry parameters for liver, spleen, breast and 

brain tissues, determined using the same procedure used for the simulated 

FIG. 7: Single-exponential fit of mean intensity signal versus TE
from different brain tissues of an axial slice.

C. Brain Relaxometry

T2 relaxometry in human brain has also been successfully
used to differentiate normal from abnormal tissues. Increased
signal on T2-weighted MRI is a feature to identify cerebral
abnormalities. The measurement of T2 has been shown to be
useful in the assessment of hippocampal sclerosis, particularly
if there are only subtle changes that may not be evident visu-
ally, in the evaluation of some tissue regions as contralateral
hippocampus, amygdale, white matter, and thalamus [1,2,17].

Figure 6 shows an R2 map of an axial slice from a 48 year
old woman brain, superimposed onto a T2 weighted image.
This map was generated by fitting single-exponentials of cor-
responding pixels of images obtained using the same multi-
spin sequence and protocol of processing presented in the pre-
vious sections.

Due to the large number of subdivisions of brain anatomy,
sometimes it is difficult to select a small region to perform re-
laxometry. Nevertheless, with a whole brain map, small seg-
mented regions are selected and the mean T2 value, or his-
togram, for each segment can be generated. Fig. 7 shows the
single-exponential fit for the three regions selected on Fig. 6.
The T2 values in white and gray matter were 97 and 93 ms,
respectively. For the CSF T2 was 1,530 ms.

Table 3 shows the relaxometry parameters for liver, spleen,
breast and brain tissues, determined using the same procedure
used for the simulated study. The signal of offset was esti-
mated getting the signal intensity when the TE was infinite. A
fitting was also made for zero offset.

V. DISCUSSION

In this study, we observed that when the T2 is being deter-
mined by a single-exponential fit, the offset should be mea-
sured and maintained fixed when evaluating variation on re-
laxometry measurement caused by abnormalities on a specific
region. When using a linear fit to the natural logarithm of the
signal intensity without first subtracting an offset amplitude,
the T2 of the tissue will be uncertain and the data will not be
well fit. The relaxometry parameter will be unable to evalu-
ate small abnormalities in tissue. For example, when only two
echoes are used for a relaxometry measurement, it is impos-
sible to predict an offset signal and the T2 value is obtained
by linear fitting of the natural logarithm of the signal intensity
versus TE.

In fibroglandular and adipose breast tissues the relaxation
times (T21 and T22) obtained from a bi-exponential fit were
different. It implies that although the data were visually well
fitted by a single-exponential function, the relaxation of signal
has different rate in different portions of the curve. So, fitting
the data using a bi-exponential function with the amplitude of
both exponential terms equal (S01=S02) and one offset value
fixed for the same study, we are looking at the relaxometry
rate of segments that are proton density and T2 – weighted
separately. If the image was acquired using the ideal range for
TE adjusted on sequence, the amplitude obtained from this
last protocol of fitting should be approximately equal to the
amplitude of signal for TE equal to T2 of the tissue.

The R2 map has a contrast equivalent to a T2 weighted
image with the advantage of representing quantitative infor-
mation that is extremely useful for abnormality diagnosis. In
summary care must be taken to standardize the whole proce-
dure for proton relaxation measurements in MRI in order to
give clinical value to this parameter.

In conclusion, this work emphasizes the principals of the
relaxation of the protons in different tissue environments and
how handling the data to extract the relaxometry parameters
as quantitative diagnostic with low error. In practical, the
MR signal comes simultaneously from relaxation of protons
present in different environments, each with distinct density
and T2 value, being the signal a sum of all contributions like
equation 1. Because of that, a bi-exponential fitting is ex-
tremely necessary, except in cases when TR is much longer
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TABLE III: Relaxometry parameter obtained from Single- and Bi-exponential fitting of MRI signal from a spin-echo sequence versus TE on
liver, spleen, breast and brain region. The superscript “F” means fixed parameter during the fitting.

Tissue
Single-Exponential Bi-Exponential
y0 So T2 y0 So1 T21 So2 T22

Liver
23.7 648.4 55 24.8 307.2 54.2 342.7 55.1
0F 636.5 63.0 23F 323.9 55.3 323.9 55.3

Spleen
2.8 484.5 73.9 2.8 242.8 73.9 243.8 73.9
0F 484.5 75.3 2.8F 242.1 73.9 242.1 73.9

Breast: Fibroglandular
23.3 1012.7 65.9 23.3 705.6 65.9 307.0 70.0
0F 993.7 73.5 23.3F 512.2 64.8 512.2 72.0

Breast: Adipose
165.3 1931.0 75 165.3 964.0 75.0 967.6 75.0
0F 1970 96.7 165.3F 965.8 75.0 965.8 75.0

Breast: Lesion
38.7 1241.9 146.3 38.7 1160.0 190 273.7 32.0
0F 1333.7 206.3 38F 709.0 105.3 709.0 37.0

Brain: CSF
40 514.6 1638 42.6 256.0 1629 256 1629
0F 568.3 1767 40F 257.0 1631.0 257.0F 1631

Brain: Gray Mater
18.6 745.1 90.9 18.0 522.4 90.9 222.7 90.9
0F 741.1 100.2 18F 372.5 91.2 372.5F 91.2

Brain: White Matter
13.4 749.6 89.6 13.4 524.8 89.6 224.8 89.6
0F 746.5 96.1 13F 347.7 89.8 347.7 89.8

than TE. Because of the dispersion on MR signal, due to the
intrinsic noise of MRI technique, the fitting of the data is criti-
cal and a special attention is also necessary during mathemat-
ical processing.
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