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We discuss two methods used for the study of unconventional superconductors: ultrasound attenuation and
collective modes. These two methods, as well as microwave absorption, turn out to be coupled and have
become very important now. Within models built by path integration technique we analyze some recent ideas
concerning possible realization of the mixture of different d-wave states in high temperature superconductors
(HTSC). We specifically consider the mixture of dx2−y2 and dxy states. We study the collective mode spectrum
and the ultrasound attenuation in the mixed state, and show that each of the two methods allows us to distinguish
a pure d-wave state from a mixed one. They also allow us to identify the type of pairing and order parameter in
unconventional superconductors, including the presence and topology of gap nodes, the magnitude of the gap,
and degree of admixture in the mixed state.

1 Introduction

The study of ultrasound attenuation (UA) and collective
modes (CM) in unconventional superconductors (USC) has
become very important now [1-9]. UA experiments are im-
portant to study the topology of nodes of SC gap, structure
of order parameter and type of pairing. They also allow
estimate of the gap value and the extent of admixture in a
possible mixed state [4, 7, 8]. The significance of studying
CM arises from their effect on UA and microwave absorp-
tion (MWA) experiments, neutron scattering, photoemission
and Raman scattering. The large peak in the dynamical spin
susceptibility in HTSC arises from a weakly damped spin-
density-wave CM. This gives rise to a dip between the sharp
low energy peak and the higher binding energy hump in the
ARPES spectrum. Also, the CM of amplitude fluctuation of
the d-wave gap yields a broad peak above the pair-breaking
threshold in the B1g Raman spectrum [7]. The contribution
of collective modes to UA and MWA may be substantial.
Such compounds as Sr2RuO4 show that it will also be nec-
essary in addition to accounting the lattice symmetry and
the spin-orbital interaction to take into account the complex
topology of the Fermi surface. After decades of search for
the collective mode in USC they have now been observed by

UA [5] as well as by MWA experiments [4].

2 Collective modes in HTSC under
d-pairing

In the path integration method the superconducting state
with d-wave pairing is described by the following effec-
tive action [1, 2], obtained by integration over fast and slow
Fermi-fields:

Seff = g−1
∑
p,ia

c†ia(p)cia(p)+
1
2
ln det

M(cia, c
†
ia)

M(c(0)ia , c
(0)†
ia )

(1)

where c(0)ia is the condensate value of Bose-fields cia and
M(cia, c

†
ia) is the 4 × 4 matrix depending on Bose-fields

and parameters of quasi-fermions.
The number of degrees of freedom in the case of d-wave

pairing is equal to 10, i.e, we must have five complex canon-
ical variables, which can be naturally chosen in the form
c1 = c11+c22, c2 = c11−c22, c3 = c12+c21, c4 = c13+c31,
c5 = c23 + c32. In the canonical variables, the effective ac-
tion has the form

�

Seff = (2g)−1
∑
p,j

c†j(p)cj(p)(1 + 2δj1) +
1
2
ln det

M(c†j , cj)

M(c(0)†j , c
(0)
j )

, (2)

where

M11 = Z−1[iω + ξ − µ( �H�σ)]δp1p2
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M22 = Z−1[−iω + ξ + µ(Hσ)]δp1p2

M12 = (βV )−1/2(
15
32π

)1/2[c1(1 − 3cos2θ) + c2sin2θcos2φ+ c3sin2θsin2φ+ c4sin2θcosφ+ c5sin2θsinφ]
M21 = M∗

12 (3)

�

This functional determines all the properties of the model
superconducting Fermi system with d-wave pairing. We use
this effective action for analyzing the collective mode spec-
trum in a model of HTSC.

In the first approximation, the spectrum is determined
by the quadratic form of the effective action obtained as a
result of the shift, cia(p) → cia(p) + c

(0)
ia (p), in Bose fields

by a condensate wave function c(0)ia (p) whose form is deter-
mined by the SC phase. The spectrum can be found from the
equation det Q = 0 where Q is the matrix of the quadratic
form.

Let us consider the results of calculation of the CM spec-
trum for the SC phases appearing in the symmetry classifi-
cation of HTSC. We consider the following states: dx2−y2 ,
dxy , dxz , dyz and d3z2−r2 . For each SC phase, five high fre-
quency modes were determined as well as five modes whose
energies are either zero or small, � ∆0.

The high-frequency modes are as follows (measured in
units of ∆0). For 3z2 − r2: E1 = 2.0 − i1.65, E2,3 =
1.85− i0.69, and E4,5 = 1.64− i0.50, for dx2−y2 and dxy:
E1 = 1.88− i0.79,E2 = 1.66− i0.50,E3 = 1.14− i0.68,
E4 = 1.13− i0.71, and E5 = 1.10− i0.65, for dxz and dyz:
E1 = 1.76 − i1.1, E2 = 1.7 − i0.48, E3 = 1.14 − i0.68,
E4 = 1.13 − i0.73, and E5 = 1.04 − i0.83.

The results on high-frequency modes can be useful in
determining the order parameter and the type of pairing
in HTSC as well as for interpreting the ultrasound and
microwave absorption experiments in these systems. We
should note here that collective modes are damped more
strongly in case of d-pairing than in case of p-pairing. This
is connected with the nodal structure of energy gap. As a
rule one has point nodes under p-pairing and lines of nodes
under d-pairing.

3 Collective modes in the mixture of
two d-wave states

Recent experiments [10] and theoretical considerations [11,
12] suggest that in HTSC the mixture of different d-wave
states is realized. We have calculated for the first time the
CM spectrum in a mixed dx2−y2 + idxy state of HTSC. We
used the model of d-pairing for superconductors (HTSC,
heavy fermions etc) created by P. N. Brusov and N. P.
Brusova within path integration technique earlier [13]. We
have shown that in spite of the spectra in both dx2−y2

and dxy states being identical the spectrum in the mixture
dx2−y2 +idxy state turns out to be quite different from them.

Thus, ultrasound and/or microwave absorption experiments
could be used to distinguish the mixture of two d-wave states
from pure d-wave states.

While it is widely believed that there is d-wave pairing in
oxide superconductors, there is no resolution to whether it is
a pure d-wave state or a mixed one. This uncertainty arises
because it is not known convincingly whether we have exact
zero gap along some chosen lines in momentum space (like
the case of dx2−y2) or the gap is anisotropic but nonzero
everywhere (except maybe some points). Existing exper-
iments (tunneling etc.) do not provide a definite answer.
There are some experiments [10] which could be explained
[11] assuming the realization in HTSC of a mixed states,
like dx2−y2 + idxy. Annett et al. [12] considered the pos-
sibility of mixture of different d-wave states in HTSC and
came to the conclusion that dx2−y2 + idxy is the most likely
state. We suggest here one of the possible ways to distin-
guish the mixture of two d-states from pure d-states. For
this we considered the mixed dx2−y2 + idxy state and cal-
culated the spectrum of collective modes in this state. The
comparison of this spectrum with the spectrum of the pure
d-wave states of HTSC shows that they are significantly dif-
ferent and could be the probe of the symmetry of the order
parameter in HTSC.

We have used the model of d-pairing in HTSC and
HFSC, described by Eqs. (2) and (3) and considered the
mixed dx2−y2 + idxy state. The order parameter in this state
takes the following form


 1 0 0

0 −1 0
0 0 0


 + i


 0 1 0

1 0 0
0 0 0


 (4)

and the gap ∆(T ) = ∆0(T )sin2θ. The gap equation has
the following form

g−1 +
α2Z2

2βV

∑
p

sin4Θ
ω2 + ξ2 + ∆2

0sin
4Θ

= 0 (5)

where ∆0 = 2cZα and α = (15/32π)1/2.
The spectrum of collective excitations in the first ap-

proximation is determined by the quadratic part of Sh, ob-
tained after shift cj → cj + c0j where c0j are the conden-
sate values of cj , which take the following form, c0j (p) =
(βV )1/2cδp0b

0
j and b02 = 2, b03 = 2i with all remaining

components of b0j equal to zero. Excluding terms involving
g−1 by gap equation, one obtains the following form for the
quadratic part of Sh:
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Seff =
α2Z2

8βV

∑
p

[c0Y ∗][c+0Y ]
ω2 + ξ2 + [c0Y ∗][c+0Y ]

∑
j

(1 + 2δj1)c+j (p)cj(p)

+
Z2

4βV

∑
p1+p2=p

1
M1M2

{(iω1 + ξ1)(iω2 + ξ2)
(
[c+(p)Y (p2)]

[c(p)Y ∗(p1)] + [c+(p)Y (p1)][c(p)Y ∗(p2)]
) − ∆2[c+(p)Y (−p1)]

[c+(−p)Y (−p2)] − ∆+2[c(p)Y ∗(−p1)][c(−p)Y ∗(−p2)]] } . (6)

�

Here [cY ∗] = c1(1 − 3cos2θ) + c2sin
2θcos2φ +

c3sin
2θsin2φ + c4sin2θcosφ + c5sin2θsinφ. The coef-

ficients of the quadratic form are proportinal to the sums of
the products of Greens functions of quasifermions. At low
temperature, T � Tc, we can go from a summation to an
integration. After calculating all integrals except over an-

gular variables and equating the determinant of the result-
ing quadratic form to zero, one gets the following set of
equations. These determine the whole spectrum of collec-
tive modes for the dx2−y2 + idxy state. The index i refers to
the collective mode branch number.

�

∫ 1

0

dx

∫
dφ{

√
ω2 + 4f
ω

ln

√
ω2 + 4f + ω√
ω2 + 4f − ωg1 + (g1 − 3

2
f1)lnf} = 0, i = 1

∫ 1

0

dx

∫
dφ{ ω√

ω2 + 4f
ln

√
ω2 + 4f + ω√
ω2 + 4f − ωg1 + (g1 − 3

2
f1)lnf} = 0, i = 1

∫ 1

0

dx

∫
dφ{

√
ω2 + 4f
ω

ln

√
ω2 + 4f + ω√
ω2 + 4f − ωgi + (gi − 1

2
g)lnf} = 0, i = 2, 3, 4

∫ 1

0

dx

∫
dφ{ ω√

ω2 + 4f
ln

√
ω2 + 4f + ω√
ω2 + 4f − ωgi + (gi − 1

2
g)lnf} = 0, i = 2, 3, 4 (7)

�

Here g1 = (1 − 3x2)2, g2 = (1 − x2)2cos22φ, g3 =
g = 4(1 − x2)x2cos2φ, g4 = 4(1 − x2)x2sin2φ, g5 =
(1−x2)2sin2φ, f1 = (1/4)[(1−3x2)2+3(1−x2)2cos22φ],
f = (1 − x2)2. We have used the substitutions cosθ = x,
ω = ω/∆0.

Solving these equations numerically we have found
five high frequency modes in each state obtained from the
second equations, while the first one appears to give ei-
ther Goldstone modes or modes with very low energy, ∼
0.03∆0 − 0.08∆0. Below we give the results for high
frequency modes (Ei is the energy of the i’th branch).
E1,2 = ∆0(T )(1.93 − i0.41), E3 = ∆0(T )(1.62 − i0.75),
E4,5 = ∆0(T )(1.59−i0.83). This should be compared with
the spectrum in the pure dx2−y2 and dxy states obtained by
us: E1 = ∆0(T )(1.88−i0.79),E2 = ∆0(T )(1.66−i0.50),
E3 = ∆0(T )(1.14 − i0.68), E4 = ∆0(T )(1.13 − i0.71),
E5 = ∆0(T )(1.10 − i0.65)

We see that in spite of the spectra in the parent d states
being identical, the spectrum of the mixed state is differ-
ent. In pure state all modes are non degenerate while in the

mixed state two high frequency modes are twofold degener-
ate. The energies of high frequency modes in the pure state
are ranged between 1.1∆0 and 1.88∆0, while in the mixed
state they are between 1.59∆0 and 1.93∆0 (the collective
modes have higher frequencies). Note also that the damp-
ing of collective modes in pure d-states is more than in the
mixed state. It can be easily understood, because in pure
states the gap vanishes along chosen lines while in mixed
state it vanishes just at two points (poles). The difference
between the CM spectrum in pure and mixed d-wave states
provide a possibility to probe the symmetry by ultrasound or
microwave absorption. Note that while there is no restriction
in principle on UA or MWA frequencies, real experiments
will typicaly require frequencies ∼ tens of GHz to stay in
the collisionless regime.

Overall, by study of collective modes we have a chance
to address two important issues: (i) Does the gap disappear
along some chosen lines? (ii) Do we have a pure or mixed
d-wave state in HTSC ?
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4 Ultrasound attenuation in mixed
state

We have also calculated UA for the mixed dx2−y2 + idxy

state. We have used the following expression [9]: �

αλ(�q, ω) = 2πM2

∫
d3p

(2π)3
{ [nF (E) − nF (E′)][ (u2u′2 − ∆2

4EE′ )δ(ω + E − E′)

− (ν2ν′2 − ∆2

4EE′ )δ(ω − E + E′) ]

+ [1 − nF (E) − nF (E′)][ (ν2u′2 +
∆2

4EE′ )δ(ω − E − E′)

− (u2ν′2 +
∆2

4EE′ )δ(ω + E + E′) ] } (8)

�

Here E, u, ν depend on �p, while E′, u′, ν′ depend on
�p + �q. The last two terms describe pairbreaking processes
and under standard UA experimental condition ω � ∆
and they are negligible for states with nonvanishing gap.
While all authors consider the first two terms only, the de-
tailed analysis of the role of the pairbreaking processes in
anisotropic SC with gap vanishing along some directions, as
in case of pure d-wave state, is still lacking. For the mixture
of two d-wave states this problem is less relevant since there
are just two poles where gap disappears. Because of this
we use only the first two terms which describe scattering of
phonons by unpaired electrons.

Eqn (8) represents the most general result and is compli-
cated. Approximation ω � ∆ allows some simplification.
Evaluating integration with respect to electron momentum
we have obtained the ultrasound attenuation coefficient.

The UA in the mixed state is different from UA in the
pure state. In pure dx2−y2 state the UA along nodal direc-
tion is linear at low temperature while along antinodal di-
rections UA is qualitatively close to exponential behavior
(for 2D models) [6]. We have found for 3d systems that
in case of equal admixture of the dxy state (for which gap
∝ sin2θ) the UA has a maximum for θ = 0, π, but not
along the nodal direction. This occurs because the transfer
of phonon momentum to Cooper pair along this direction
leads to decay of Cooper pair into initial electrons with mo-
menta along the nodes. This is the cause of additional sound
attenuation and this contribution turns out to be significant.
Comparison of our results with experiments on UA allow to
distinguish mixed state from pure one as it has been noted
above for collective modes.

5 Conclusions

Two methods to distinguish mixed d-wave states from pure
d-wave states have discussed, namely collective mode with
frequency spectrum and ultrasound attenuation. The results

on high frequency modes can be useful in determining the
order parameter and type of pairing in USC as well as for
interpretation of ultrasound and microwave absorption ex-
periments in these systems. The 2D p-wave case has been
considered earlier [3, 14, 15], and the 2D ‘clapping’ mode
ω ∼ √

2∆ has been obtained by us [2] for the first time.
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