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Solutions for Klein-Gordon Equation in Randall-Sundrum-Kerr Scenario
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We study the scalar perturbations of rotating black holes in framework of extra dimensions type Randall-
Sundrum(RS).

We study the scalar perturbations of a rotating black holel et us make the usual replacements in order to reduce Eq.(3)
in a framework of extra dimensions described by a Randallto the standard wave-like type
Sundrum model[1l]. The extraction of energy from rotat- )
ing black holes is possible due to the well-known effect r 2 B
of superradiance[2—4]: the reflected wave has an amplitude dr2 +W(r) [co -V, ‘*’ﬂ =0, (6)
larger than the incoming wave, and thereby is amplified. We
consider the process of superradiance for this backgroun(\j\_/ith the potential for massless scalar perturbation defined by
The conditions for superradiance and the reflection coeffi-

cients are found for scalar field perturbations. V(r,w) = 4Mra(mw) — (ma)? + A((aw)® + Q*r? 4 P) n
We analyze the scalar perturbations of the metric ’ (r2+a?)2
ds” = |2/y2 [dierr +dy2] ) (2)

A(3r2 — 4AMr + a2 3A2r2
( ) %

in which d%,,, is the Kerr metric in the Boyer-Lindquist co- (r2+a%)3 (r2+a2)4
ordianted(t, r, 0, @).

The equation for scalar field dynamigg(XHy), (X* =
t,r,8, @ with mass? is the Klein-Gordon equation

The branes are situatedat 0 andz=d (or aty=1 and
y = le9/! respectively). Therefore, the solution for equation
(5)is

1 0 B 0o 5
VTR (gA ma@) +HP=0. 2 Qy) =y? [AJ@(Qy) +BY (@), (®)

Due to the axial symmetry and stationarity of the backgroundn which A, B are constants] /—5(Qy), Y, /,=5(Qy) are
metric we can expand the scalar field in the appropriate hagessel's functions ankf — 1212,

monics which are defined by the synznef%group of motion of |, the two-brane world model, the boundary conditions for
the metric®(XH,y) = R(r)S(6)Q(y)e™%e™'*. After some al-  the perturbations comes from the Israel junction conditions

gebra we obtain two equations, thereby decoupling the bulkz] which imply the constraint for the massless scalar field
evolution equation from the genuine brane fields. The angular

and radial variables can be easily separated by the usual meth- Y, —v | _ % J/d
ods [6]. In the end, we obtain three equations with separated 1(Qu)I10) =Y20) I (Qul). - Qn=FE (9)

variables to radial, angular, and bulk coordinates, o ) )
We note that at spatial infinity the “effective potentiaf® —

V has the asymptotic form
dg <Ad|§(r) > + % [(r? + a?)2w? — 4Mramw+
r r wz_v _>(*)2_(227 r* — 400, (10)
) ) 2 while at the event horizon the asymptotic form of the equation
+(ma)® — A((aw)*+Qr*+P)] =0, B s

W —V = (0—mQ)?, 1 — —ow, (11)

1 d /. .d99) o\ 2
sin@ do (sme de ) +5(0) [(«* -~ Q) cos'e] in which Q= 58—, ri =M+ VM2-22 In equation
(10), we see that whe®? is larger thanw? the effective poten-
tial is clearly negative at sufficiently largeand the scalar field
~5(0) ﬁ 1Pl=0 (4) perturbations are unstable. Thus, we need to be restricted by
SinFe ’ the case whe®? < wZ,, wherewy, is the lowest (fundamen-
tal) quasinormal mode. In that case, the asymptotic solutions

of the wave equation (6) have the form:

d dQ(y) .
&y (f(y)3/ zdy) +QPQW) (Y)Y +12f(y) =0. (5) W Bl M o (12)
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—i (v w?—Q2)r* i(Vw?-Q2)r * rp—r_)2+1
Y—e + ALmw€ , I — 4o (13) XM(k2+4x2). (18)
Here the requirement that the wave should have an ingoing
group velocity at the event horizon is satisfied. The wave

comes from infinity, partially passes through the potential bar-

rier reaching the event horizo_n, th_e rest reflects b‘i‘Ck' From By estimating the possible influence of the RS model onto
the constancy of the Wronskian, i.e. from equahtyzof thegyperradiance let us find the eigenval@of the bulk equa-
Wfo”%“'i‘,’ln‘g‘} both asymptotics, we .ha.vezl — (Al . tion (8). We can solve equation (9) numerically. The spectrum
[BLmo V2@ 0. It means that, similar to the ordinary ¢ oqenvalueg, does not depend ah and depend ohvery
Kerr case|A mw| > 1, i.e. the amplitude of the reflected wave mildy, provided that is small.

is larger than that of the incident wave if the following condi- ]

shown in the Table .

mQ > w. (14) ,
TABLE I: Q, eigenvalues
In order to find the reflection coefficient let us consider the N Qn n |Qn
near region wave behavior, when-r, < 1/w. In this ap- 1/3.831716 |19.6159
proximation Eq.(3) reads: 2|7.01559|7 |22.760]
3110.1735|8 |25.9037
d / dR(r) 4 2 4]13.3237]9 [29.0468
Dgr <A ar ) +[r} (w—mQ)* - L(L+1)AJR(r) = 0. 5/16.4706| 10| 32.1897
(15)
The general solution of this equation is
R=AzZX(1-2)""'F(a—c+1,b—c+1,2—c2)+ For black holes of one tenth of solar mass we definitely

avoid GL instability [8]. In spite of this, the superradi-
_ ant instability hinted by [9] appears, because this massless
BZX(1—2'1F(a,b,c,2), (16)  scalar perturbation simulate a massive parturbation in the
4—dimensional Kerr black hole which is unstable.
in which
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