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Solutions for Klein-Gordon Equation in Randall-Sundrum-Kerr Scenario
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We study the scalar perturbations of rotating black holes in framework of extra dimensions type Randall-
Sundrum(RS).

We study the scalar perturbations of a rotating black hole,
in a framework of extra dimensions described by a Randall-
Sundrum model[1]. The extraction of energy from rotat-
ing black holes is possible due to the well-known effect
of superradiance[2–4]: the reflected wave has an amplitude
larger than the incoming wave, and thereby is amplified. We
consider the process of superradiance for this background.
The conditions for superradiance and the reflection coeffi-
cients are found for scalar field perturbations.

We analyze the scalar perturbations of the metric

ds2 = l2/y2[
ds2

Kerr +dy2] , (1)

in which ds2
Kerr is the Kerr metric in the Boyer-Lindquist co-

ordiantes(t, r,θ,φ).
The equation for scalar field dynamicsΦ(Xµ,y), (Xµ =

t, r,θ,φ) with massµ2 is the Klein-Gordon equation
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Due to the axial symmetry and stationarity of the background
metric we can expand the scalar field in the appropriate har-
monics which are defined by the symetry group of motion of
the metric,Φ(Xµ,y) = R(r)S(θ)Ω(y)eimφe−iωt . After some al-
gebra we obtain two equations, thereby decoupling the bulk
evolution equation from the genuine brane fields. The angular
and radial variables can be easily separated by the usual meth-
ods [6]. In the end, we obtain three equations with separated
variables to radial, angular, and bulk coordinates,
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d
dy

(
f (y)3/2 dΩ(y)
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)
+Q2Ω(y) f (y)3/2 +µ2 f (y) = 0. (5)

Let us make the usual replacements in order to reduce Eq.(3)
to the standard wave-like type

d2Ψ(r)
dr2∗

+Ψ(r)
[
ω2−V(r,ω)

]
= 0, (6)

with the potential for massless scalar perturbation defined by

V(r,ω) =
4Mra(mω)− (ma)2 +∆((aω)2 +Q2r2 +P)

(r2 +a2)2 +

∆(3r2−4Mr +a2)
(r2 +a2)3 − 3∆2r2

(r2 +a2)4 . (7)

The branes are situated atz= 0 andz= d (or aty = l and
y = led/l respectively). Therefore, the solution for equation
(5) is

Ω(y) = y2
[
AJ√

4−k2(Qy)+BY√
4−k2(Qy)

]
, (8)

in which A, B are constants,J√
4−k2(Qy), Y√

4−k2(Qy) are

Bessel’s functions andk2 = µ2l2.
In the two-brane world model, the boundary conditions for

the perturbations comes from the Israel junction conditions
[7] which imply the constraint for the massless scalar field

Y1(Qn)J1(xn) = Y1(xn)J1(Qnl), Qn =
xn

l
el/d. (9)

We note that at spatial infinity the “effective potential”ω2−
V has the asymptotic form

ω2−V → ω2−Q2, r∗→+∞, (10)

while at the event horizon the asymptotic form of the equation
is

ω2−V → (ω−mΩ)2, r∗→−∞, (11)

in which Ω = a
2Mr+

, r+ = M +
√

M2−a2. In equation

(10), we see that whenQ2 is larger thanω2 the effective poten-
tial is clearly negative at sufficiently larger and the scalar field
perturbations are unstable. Thus, we need to be restricted by
the case whenQ2 < ω2

qn, whereωqn is the lowest (fundamen-
tal) quasinormal mode. In that case, the asymptotic solutions
of the wave equation (6) have the form:

Ψ→ BLmωe−i(ω−mΩ)r∗ , r∗→−∞ (12)
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Ψ→ e−i(
√

ω2−Q2)r∗ +ALmωei(
√

ω2−Q2)r∗ , r∗→+∞. (13)

Here the requirement that the wave should have an ingoing
group velocity at the event horizon is satisfied. The wave
comes from infinity, partially passes through the potential bar-
rier reaching the event horizon, the rest reflects back. From
the constancy of the Wronskian, i.e. from equality of the
Wronskian at both asymptotics, we have:1− |ALmω|2−
|BLmω|2 ω−mΩ√

ω2−Q2
= 0. It means that, similar to the ordinary

Kerr case,|ALmω|> 1, i.e. the amplitude of the reflected wave
is larger than that of the incident wave if the following condi-
tion of superradiance takes place:

mΩ > ω. (14)

In order to find the reflection coefficient let us consider the
near region wave behavior, whenr − r+ ¿ 1/ω. In this ap-
proximation Eq.(3) reads:

∆
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)
+[r4

+(ω−mΩ)2−L(L+1)∆]R(r) = 0.

(15)
The general solution of this equation is

R= Az−iχ(1−z)L+1F(a−c+1,b−c+1,2−c,z)+

Bziχ(1−z)L+1F(a,b,c,z), (16)

in which

χ = (ω−mΩ)
r2
+

r+− r−
, z=

r− r+

r− r−
. (17)

Following [2] we obtain the reflection coefficientb/a

b
a

= 2i(ω2−Q2)L+1/2χ
(1−)L

2L+1
(

L!
(2L−1)!

)2

× (r+− r−)2L+1

(2L)!(2L+1)!
(k2 +4χ2). (18)

By estimating the possible influence of the RS model onto
superradiance let us find the eigenvaluesQn of the bulk equa-
tion (8). We can solve equation (9) numerically. The spectrum
of egenvaluesQn does not depend ond, and depend onl very
mildy, provided thatl is small.

The first ten modes forl = 0.0001andd = 0.0005m. are
shown in the Table I.

TABLE I: Qn eigenvalues

n Qn n Qn
1 3.83171 6 19.6159
2 7.01559 7 22.7601
3 10.1735 8 25.9037
4 13.3237 9 29.0468
5 16.4706 10 32.1897

For black holes of one tenth of solar mass we definitely
avoid GL instability [8]. In spite of this, the superradi-
ant instability hinted by [9] appears, because this massless
scalar perturbation simulate a massive parturbation in the
4−dimensional Kerr black hole which is unstable.
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