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The Embedding of Spacetime into Cauchy Developments
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Using the Campbell-Magaard theorem we show that any analytic spacetime can be locally embedded into
the Cauchy development of legitimate initial data for the five dimensional vacuum Einstein equations. The
embedding presents the domain of dependence property and the Cauchy stability with respect to those initial
data.

I. INTRODUCTION

Nowadays the subject of extra dimensions has attracted the
attention of physics motivated by the so-called braneworld
scenarios [1, 2]. According to these models the ordinary
spacetime (the observed spacetime associated to the phe-
nomena whose energy is below the scale of TeV) is a four-
dimensional submanifold embedded in an ambient space with
higher dimension.

It happens that the embedding of a space into another can
not be made freely. The embedding demands certain geomet-
ric compatibility between the spaces. Hence it is natural to ask
whether these models impose some constraints on the geom-
etry of the ordinary spacetime we observe. Does every four-
dimensional spacetime can be obtained in these scenarios?

Of course this issue only can be properly addressed in the
context of embedding theorems. There are well known gen-
eral results which guarantee that any manifold can be isomet-
rically embedded in some flat space of sufficient high dimen-
sions. The dimension of the ambient space depends on the
type of the embedding considered. For example, if the em-
bedding is local and analytic thenn(n+ 1)/2 is the maxi-
mum number of dimensions we would need to embed anyn-
dimensional manifold [3]. Considering aC∞ local embedding
this number increases ton(n+3)/2 [4].

Here we are concerned with models which propose ambi-
ent spaces with five dimensions, as the Randall-Sundrum (RS)
type models [2] and the so-called non-compactified Kaluza-
Klein models (NKK)[5]. In these cases, the ambient space has
only one extra dimension. However its geometry is not pre-
scribeda priori. Instead it is admitted that the ambient space
satisfies field equations: Einstein vacuum equations (NKK-
models) or Einstein equation with the cosmological constant
(RS type models).

The Campbell-Magaard theorem and its variants are of spe-
cial relevance for these models[7]. It can be stated in follow-
ing way: Given anyn-dimensional analytical space(M,g),
whereg stands for the metric, for any pointp∈M there exists
a vacuum solution of Einstein equations in(n+1)-dimensions
into which a neighborhood ofp in M can be embedded.

However showing the existence of the embedding is not
enough for physical purposes. It is important to ensure that the
embedding possesses the desirable physical properties of sta-
bility and domain of dependence. The CM theorem is not ap-
propriate to address these issues since it is based on Cauchy-

Kowalewski theorem which demands the analyticity of the
functions [8].

In this paper we shall reconsider the embedding from an-
other perspective. We have found that for any given analytic
spacetime, there correspond initial data sets, legitimate for the
problem of Cauchy in General Relativity, in whose Cauchy
development for five-dimensional vacuum Einstein equations
the spacetime can be locally embedded [9]. In this sense, the
embedding of the spacetime might be understood as the result
of the physical evolution of the initial data. This formulation
have some advantages in comparison with the original CM
theorem, since we can establish the stability and domain of
dependence properties of the embedding relative to the initial
data. For details, the reader is referred to [9].

II. DYNAMICAL APPROACH

The usual procedure adopted to solve the embedding prob-
lem concerning the CM theorem is similar to an initial value
problem in General Relativity. Schematically we can say that
the spacetime(M,g) is taken as part of initial data and it
is propagated by the dynamical part of the vacuum Einstein
equations along the extra dimension in order to generate the

five-dimensional space
(

M̃, g̃
)

into which the spacetime is

embedded. However this propagation is not a real physical
evolution since the direction of evolution is spacelike. Hence,
for example, there is no reason why we should expect a causal
connection between different slices of the ambient space.

Nevertheless we can show that there exist a 5D neighbor-
hoodÕ of p in M̃ and a functionφ such that its gradient∇φ
is timelike everywhere iñO. Therefore the inverse images of
φ are acausal spacelike hypersurfaces ofÕ. Let us considerΣ
the hypersurface that contains the pointp. Since∇φ is time-
like then the induced metric inΣ by the embedding of this

hypersurface in
(

Õ, g̃
)

is positive definite. Consider now the

extrinsic curvatureK of Σ relative to
(

Õ, g̃
)

. By construction,

Σ is a hypersurface of 5D vacuum space, then, it is clear that
h e K satisfy the vacuum constraint inΣ. Therefore, the triple
(h,K,Σ) constitutes a legitimate initial data set for the Cauchy
problem in General Relativity[10].

Consider nowD(Σ), the domain of dependence ofΣ rela-

tive to
(

Õ, g̃
)

. It can be shown (see [11], page 425) that since
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FIG. 1: Sketch of the local embedding of spacetimeM into the
Cauchy developmentD(Σ) of initial data given in an acausal space-
like four dimensional hypersurfaceΣ.

Σ is an acausal hypersurface ofÕ, thenD(Σ) is open inÕ. Of
courseD(Σ) is a non-empty set, sinceΣ ∈ D(Σ). The domain
of dependenceD(Σ) is an open subset of̃M. Endowed with
the vacuum metric̃g, it represents a five-dimensional manifold
(D(Σ) , g̃) which is a solution of the vacuum Einstein equa-
tions. This means that(D(Σ) , g̃) is a Cauchy development for
the Einstein vacuum equations of the initial data(h,K,Σ), that
is, it corresponds to the manifold which arises from physical
evolution of the initial data.

Now we shall show that there is a region of the spacetimeM
which is embedded inD(Σ). We know thatM andD(Σ) are
open and both contain the pointp. ThenM∩D(Σ) is a non-

empty open set which is a neighborhood ofp in M contained
in D(Σ). Therefore(M∩D(Σ) ,g) is embedded in(D(Σ) , g̃),
i.e., in a Cauchy development of(h,K,Σ). In other words
the dynamical evolution of the initial data(h,K,Σ) generates
a five-dimensional vacuum space into which the spacetime is
locally embedded. In this sense, we can say that this local em-
bedding is dynamically generated by the physical propagation
of those initial data (see figure).

This perspective have some advantages because it allow us
to establish the domain of dependence property and the stabil-
ity of the embedding relative to the initial data(h,K,Σ). This
is a direct consequence of the fact that the spacetime is em-
bedded into the Cauchy development of(h,K,Σ) which, as it
is well known[10], exhibit these properties.

Indeed if we consider another pointq∈M in the future do-
main of dependenceD+ (Σ) it follows that theg(q), the value
of the metric atq, depends only onJ− (q)∩Σ, that is, the ini-
tial data in the causal past ofq. This is the domain of depen-
dence property and it guarantees that any perturbation outside
J− (q)∩ Σ does not affect the spacetime atq since the em-
bedding is causal connected to the initial data and the signals
travel with a finite speed.

Another very interesting property is the Cauchy stability. It
means that dependence of the induced metric inM is continu-
ous with respect the initial data. Roughly speaking it express
the idea that new initial valuesh′ andK′ sufficiently close to
the h andK, in respect to the Sobolev norm (for details, see
[9]), give rise to a new metric which will induce a metric inM
which is Lorentzian and close to the original spacetime met-
ric g.
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