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The Embedding of Spacetime into Cauchy Developments
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Using the Campbell-Magaard theorem we show that any analytic spacetime can be locally embedded into
the Cauchy development of legitimate initial data for the five dimensional vacuum Einstein equations. The
embedding presents the domain of dependence property and the Cauchy stability with respect to those initial
data.

I. INTRODUCTION Kowalewski theorem which demands the analyticity of the
functions [8].

Nowadays the subject of extra dimensions has attracted the !N this paper we shall reconsider the embedding from an-
attention of physics motivated by the so-called braneworldth€r perspective. We have found that for any given analytic
scenarios [1, 2]. According to these models the ordinarySpacet'me' there cor_respond initial dajcg set_s, legitimate for the
spacetime (the observed spacetime associated to the pH¥oPlem of Cauchy in General Relativity, in whose Cauchy
nomena whose energy is below the scale of TeV) is a fourdevelopment for five-dimensional vacuum Einstein equations

dimensional submanifold embedded in an ambient space wit{!® SPacetime can be locally embedded [9]. In this sense, the
higher dimension. embedding of the spacetime might be understood as the result

It happens that the embedding of a space into another CE%: the physical evolution of the initial data. This formulation

not be made freely. The embedding demands certain geom ave some advantages in comparison W'.th the ongmaI_CM
e% eorem, since we can establish the stability and domain of

ric compatibility between the spaces. Hence itis natural to as : . . I
, . ependence properties of the embedding relative to the initial
whether these models impose some constraints on the geomn:

. : ata. For details, the reader is referred to [9].
etry of the ordinary spacetime we observe. Does every four-
dimensional spacetime can be obtained in these scenarios?

Of course this issue only can be properly addressed in the
context of embedding theorems. There are well known gen-
eral results which guarantee that any manifold can be isomet-
rically embedded in some flat space of sufficient high dimen- The usual procedure adopted to solve the embedding prob-
sions. The dimension of the ambient space depends on tH@m Concerning the CM theorem is similar to an initial value
type of the embedding considered. For example, if the emProblem in General Relativity. Schematically we can say that
bedding is local and analytic themn+ 1)/2 is the maxi- the spacetimgM,g) is taken as part of initial data and it
mum number of dimensions we would need to embedrany s propagated by the dynamical part of the vacuum Einstein
dimensional manifold [3]. ConsideringGf local embedding €equations along the extra dimension in order to generate the
this number increases tgn+3) /2 [4]. five-dimensional spacél\ﬁ,g“) into which the spacetime is

Here we are concerned with models which propose ambiembedded. However this propagation is not a real physical
ent spaces with five dimensions, as the Randall-Sundrum (R®)olution since the direction of evolution is spacelike. Hence,
type models [2] and the so-called non-compactified Kaluzafor example, there is no reason why we should expect a causal
Klein models (NKK)[3]. In these cases, the ambient space hagonnection between different slices of the ambient space.
only one extra dimension. However its geometry is not pre- Nevertheless we can show that there exist a 5D neighbor-
scribeda priori. Instead it is admitted that the ambient spacey, 5540 of pin M and a functionp such that its gradierifio

satisfies field_ equ_ations: !Einste_zin vacuum equa_ltions (NKK"S timelike everywhere if©. Therefore the inverse images of
models) or Einstein equation with the cosmological constant . ~ .
(RS type models) ¢ are acausal spacelike hypersurface®otet us considek

. . the hypersurface that contains the pgintSincelg is time-
The Campbell-Magaard theorem and its variants are of sp ypersu ! pamis! e1st

cial relevance for these models[7]. It can be stated in foIIow?fke then the induced metric i& by the embedding of this

ing way: Given anyn-dimensional analytical spag@,g), hypersurface ir(O, q) is positive definite. Consider now the
whereg stands for the metric, for any poirg € M there exists

a vacuum solution of Einstein equationgimy- 1)-dimensions > is a hypersurface of 5D vacuum space, then, it is clear that
into which a neighborhood gf in M can be embedded. ! . ' ’ ;
9 a h eK satisfy the vacuum constraint .h Therefore, the triple

However showing the existence of the embedding is no%h,K,Z) constitutes a legitimate initial data set for the Cauchy

II. DYNAMICAL APPROACH

extrinsic curvaturk of X relative to 6, g). By construction,

enough for physical purposes. Itis important to ensure that th roblem in General Relativity[10]

embedding possesses the desirable physical properties of s A onsider nowd (%), the domain of dependence Bfrela-
bility and domain of dependence. The CM theorem is not ap-. ~ ' )
propriate to address these issues since it is based on Cauche to (O’ g). It can be shown (see [11], page 425) that since
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empty open set which is a neighborhoodpaf M contained

in D(X). ThereforfMND(Z),g) is embedded itD (X)),

i.e., in a Cauchy development ¢h,K,X). In other words

the dynamical evolution of the initial dath, K,X) generates

a five-dimensional vacuum space into which the spacetime is
locally embedded. In this sense, we can say that this local em-
bedding is dynamically generated by the physical propagation
of those initial data (see figure).

This perspective have some advantages because it allow us
to establish the domain of dependence property and the stabil-
ity of the embedding relative to the initial datia, K,X). This
is a direct consequence of the fact that the spacetime is em-
bedded into the Cauchy developmentbfK,%) which, as it
is well known[10], exhibit these properties.

Indeed if we consider another pompe M in the future do-
main of dependend@™ (Z) it follows that theg(q), the value
of the metric aty, depends only od™ (q) N Z, that is, the ini-

] o tial data in the causal past qf This is the domain of depen-
FIG. 1. Sketch of the local embedding of spacetiMeinto the  jence property and it guarantees that any perturbation outside
Eka;uf%zyr g?;i'ﬁg?f;?ggeorfs{Tr'ft;"’(‘gdata given in an acausal space- j- )5 does not affect the spacetime @since the em-

bedding is causal connected to the initial data and the signals
travel with a finite speed.

Another very interesting property is the Cauchy stability. It
means that dependence of the induced metrd is continu-
ous with respect the initial data. Roughly speaking it express
the idea that new initial valuds andK’ sufficiently close to
theh andK, in respect to the Sobolev norm (for details, see
[9]), give rise to a new metric which will induce a metriclih
which is Lorentzian and close to the original spacetime met-

Iric 0.

s is an acausal hypersurface®@fthenD (=) is open inO. Of
courseD(Z) is a non-empty set, sinéée D(X). The domain
of dependenc® (2) is an open subset &fl. Endowed with
the vacuum metrig, it represents a five-dimensional manifold
(D(%),0) which is a solution of the vacuum Einstein equa-
tions. This means th@D (¥),g) is a Cauchy development for
the Einstein vacuum equations of the initial dgteK, ), that
is, it corresponds to the manifold which arises from physica
evolution of the initial data.

Now we shall show that there is a region of the spaceNne
which is embedded iD (%). We know thatM andD (Z) are The authors thank CNPg-Fapesq (Pronex) for financial sup-
open and both contain the poipt ThenMND(Z) is a non-  port.
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