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Nonlinear dispersionless equations arise as the dispersionless limit of well know integrable hierarchies
of equations or by construction, such as the system of hydrodynamic type. Some of these equations
are integrable in the Hamiltonian sense and appear in the study of topological minimal models.
In the �rst part of the review, we will give a brief introduction to integrable models, mainly its
Lax representation. Then, we will introduce the dispersionless limit and show some of our results
concerning the two-component hyperbolic system of equations such as the polytropic gas and Born-
Infeld equations.

I Introduction

The study of integrable models or solvable nonlin-
ear partial di�erential equations is an active area of
research since the discovery of the inverse scatter-
ing method [1-3]. These models are in a sense uni-
versal since they show up in many areas of physics
such as solid state, nonlinear optics, hydrodynam-
ics, �eld theory just to name a few. Also, inte-
grable models are linked to many areas of mathematics
(see the chart in http://www.ma.hw.ac.uk/solitons/procs/

bullough1/bullough1/bullough1.html) and have beautiful
structures behind them.

In this review we want to approach the dispersion-
less limit of some integrable models and describe some
of our work on this subject [4-7]. This review is or-
ganized as follows: In Section II we review or at least
introduce some basic facts on integrable models. We
use the Korteweg-de Vries equation (KdV) as an exam-
ple. In Section III we introduce the dispersionless limit
of an integrable model using the KdV equation to ob-
tain the corresponding Riemann equation. Section IV
reviews our work with a special class of dispersionless
systems known as two-component hyperbolic systems.
We show our results concerning the Hamiltonian struc-
tures for the Riemann equation [4] the dispersionless
Lax representation for the polytropic gas dynamics [5]
and Born-Infeld equation [6]. Finally, in Section V, we
conclude with some problems that deserve further in-
vestigations.

II Integrable Models

II.1 Solitons

We are interested in nonlinear partial di�erential
equations such as the sine-Gordon equation, nonlin-
ear Schr�odinger equation, Korteweg-de Vries equation
(KdV), etc. These equations, as we will see, are very
special since they are integrable. From now on we will
illustrate the main results concerning integrability us-
ing the KdV equation.

The KdV equation has as solution what is called
today a soliton. We can trace the discovery of
the soliton back to 1834 with the Scott Russell's
experiment [8] to generate solitary waves in water,
i.e., localized single entity waves. A modern ver-
sion of his experiment is shown in Fig. 1 (see
http://www.ma.hw.ac.uk/�chris/scott russel.html for an
attempt to recreate Scott Russell's soliton). Scott Rus-
sell found that the volume V of water wave is equal to
the volume of water displaced and that the speed c of
the solitary wave is related with its amplitude a, depth
of water h and acceleration of gravity g by

c2 = g(h+ a) (1)

This equation shows that higher waves travel faster. At-
tempts to obtain (1) theoretically were done by Boussi-
nesq (1871) and Lord Rayleigh (1876) but an equation
for u(x; t) in the small amplitude (h � a) and in the
long wave regime (h� `) was deduced by Korteweg-de
Vries in 1895 [9]. This is the now famous KdV equation
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ut = uux + uxxx
(2)

where u(x; t) is the wave pro�le and ut = @u
@t , ux =

@u
@x ; : : : .

Figure 1. Generation of a solitary wave.

The interest in the KdV equation (2) was resumed

after studies of Fermi, Pasta and Ulam in 1955 [10]

on numerical models of phonons in non-linear lattices,

which are models closely related with the discretisa-

tion of the KdV equation. Motivated by these results,

Zabusky and Kruskal in 1965 [11] studied numerically

equations like (2) with periodic boundary conditions

and were led to introduce the concept of \soliton" so-

lutions. In 1967 Gardner, Greene, Kruskal and Miura

[12] solved equation (2) exactly, introducing the \In-

verse Scattering Transform Method" (ISTM), and were

able to obtain its analytic expression. The so called 1-

soliton and 2-soliton solutions of the KdV equation (2),

for rapidly decreasing boundary conditions

u(x; t)! 0 for x! �1 ;

are

c

u(x; t) =
1

2
c2sech2

�
1

2
c(x+ c2t)

�
! 1� soliton

u(x; t) = 12
3 + 4 cosh(2x� 8t) + cosh(4x� 64t)

f3 cosh(x � 28t) + cos(3x� 36t)g2 ! 2� soliton (3)

d
In Fig. 2 we have pictures for the time evolu-

tion of the KdV solitons (3) (for some brief soli-

tons movies see http://www.ma.hw.ac.uk/solitons and

http://www.physics.otago.ac.nz/Physics100/simulations/

Gamelan/java/toda). The 1-soliton solution in Fig. 2 is

the solitary wave obtained in the Scott Russell's exper-

iment. Observe that as the time evolves the wave keeps

its form. For the 2-soliton solution in Fig. 2, since the

taller the soliton the faster it moves, the two solitons

will interact nonlinearly when they meet. But, the

amazing fact is that the two solitons will almost keep

their initial form after interaction, there will be only a

shift in their positions. This particle-like character and

ability to retain its identity after interactions is what

characterize a soliton solution of a nonlinear equation

such as the KdV one.
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Figure 2. Time evolution for the solitons of the KdV equation.
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II.2 Inverse Scattering

The next breakthrough in the soliton thread came

in 1968 with the Lax [13] discovery about the meaning

of the ISTM. His observation is that the KdV equation

has the representation

@L

@t
= [B;L]

(4)

where

L = @2 +
1

6
u

B = 4 @3 +
1

2
(@u+ u@) (5)

are operators. Here @ � @
@x satis�es @f = fx + f@.

We call L the Lax operator and in some sense we can

�nd a Lax representation such as (4) for any integrable

system. In this way, starting from (4), we can apply

the ISTM for other nonlinear equations.

We can write the following eigenvalue problem for

the Lax operator L

L = �� (6)

It is easy to see that since L evolves in time as (4) we

have �t = 0, i.e., the eigenvalue problem is isospectral.

For the KdV equation (6) assumes the form

@2 

@x2
+

�
1

6
u(x; t) + �

�
 = 0 (7)

which is the time-independent Schr�odinger equation

and where t is a parameter (not the time in the

Schr�odinger equation). Now we can obtain a solu-

tion u(x; t) as follows: For some given initial condi-

tion u(x; 0) we solve (7) and obtain the scattering data

S(t = 0), since u satis�es the KdV equation we can

obtain the scattering data for any t, so from S(t) we

use the inverse scattering (as we usually do in quan-

tum mechanics) to �nd the \potential" u(x; t) from the

scattering data S(t). This is the ISTM routine and the

main steps are illustrated in the diagram bellow.

initial condition scattering data can
(given) be calculated
* *

u(x; 0) �! S(t = 0)

" # ) KdV

u(x; t)  � S(t)
inverse

scattering

Inverse Scattering Transform Method

II.3 Hamiltonian Systems

In 1970 Gardner [14] showed that the KdV equation
is a Hamiltonian integrable system. Then, Faddeev and
Zakharov in 1971 [15] were able to interpret the ISTM
as a change of variables to the action angle variables.
In fact, the representation of integrable models as inte-
grable Hamiltonian systems is the starting point to the
\Quantum Inverse Scattering Method". Before we see
how the KdV equation can be expressed in Hamiltonian
form let us review the symplectic formalism for Hamil-
tonian systems. A Hamiltonian system is described by
a phase space qi; pi, with i = 1; : : : ; N , and a Hamil-
tonian function H(pi; qi). The equations of motion are

then given by the Hamilton's equations

_qi =
@H

@pi

_pi = �@H
@qi

(8)

Alternatively, we can describe a Hamiltonian system us-
ing Poisson brackets, for the dynamical variablesA(q; p)
and B(q; p), de�ned by

fA;Bg = @A

@qi

@B

@pi
� @A

@pi

@B

@qi
(9)

which is skew-symmetric and satis�es the Jacobi iden-
tity. The variables of phase space satisfy the canonical
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relations fqi; qjg = fpi; pjg = 0 and fqi; pjg = Æij . The
Hamilton's equations (8) assume the form

_qi = fqi; Hg
_pi = fpi; Hg (10)

Putting the variables qi and pi in an 2N dimension
column z the equations (8) assume the form

d

dt

0BBBBBBB@

q1
...
qN
p1
...
pN

1CCCCCCCA
| {z }
� z

=

�
0 I
�I 0

�
| {z }
� J

0BBBBBBBB@

@=@q1
...

@=@qN
@=@p1

...
@=@pN

1CCCCCCCCA
| {z }
� ~r

H (11)

or
_za = Jab@bH a; b = 1; : : : ; 2N (12)

and even in a more compact form as

_z = J ~rH
(13)

This is the symplectic formalism for Hamiltonian sys-
tems. The Poisson brackets can be written as

fA;Bg =
�
~rA
�t
J
�
~rB
�

(14)

where Jab = �Jba andP�
Jab@dJ

bc + cyclic
�
= 0. The

canonical relations are given by fz; zg = J and (10) by

_z = fz;Hg
(15)

We can perform some generalizations, allowing J to
depend on z, J(z), and going from a discret sympletic
space, of dimension 2N , to the continuum where we
have now a �eld u(x; t) instead of z(t). Then, we have
the following \dictionary"

z(t) ! u(x; t)

H(z) ! H [u] functional

~rH ! ÆH

Æu
functional derivative

J(z) skew-symmetric matrix ! D(u) skew-adjoint operator

_z = J ~rH ! _u = D ÆH [u]

Æu

fz; zg = J(z) ! fu(x); u(x0)g = DÆ(x � x0)

fA;Bg =
�
~rA
�t
J
�
~rB
�

! fA[u]; B[u]g =
Z
dx
ÆA

Æu
D ÆB
Æu

If there is a J�1 we say that we are in a symplectic manifold, otherwise we are in a more general situation of a

Poisson manifold. Note that the functional derivative ÆH[u]
Æu is de�ned as

ÆH [u(x)]

Æu(y)
= lim

�!0

H [u(x) + �Æ(x� y)]�H [u(x)]

�
(16)

which for H [u] = u(x) yields
ÆH [u(x)]

Æu(y)
= Æ(x� y)

and for H [u] =
R
dx h(x; u; ux; uxx; : : :)

ÆH [u(x)]

Æu(y)
=

�
@

@u
� @

@x

@

@ux
+
@2

@x2
@2

@u2xx
+ : : :

�
h

where the right hand side is just the Euler-Lagrange operator acting on h.
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Now, let us return to the KdV equation (2) and
observe that it can be rewritten as

ut = uux + uxxx

=
@

@x

�
1

2
u2 + uxx

�
(17)

Introducing the Hamiltonian

H2 =

Z
dx

�
1

3!
u3 � 1

2
u2x

�
(18)

we see that ÆH2

Æu = 1
2u

2 + uxx and dH2

dt = 0. The opera-
tor

D1 =
@

@x
(19)

is skew-adjoint and satis�es the Jacobi identity. So,
(17) can be written in Hamiltonian form as

ut = D1
ÆH2

Æu
= fu(x); H2g1 (20)

where

fu(x); u(y)g1 = D1Æ(x� y) (21)

and we are omitting the explicit dependence on t.

Besides (18) the KdV equation (2) has an in�nite
number of conserved charges

c

H0 =

Z
dx u

H1 =

Z
dx

1

2
u2

H2 =

Z
dx

�
1

3!
u3 � 1

2
u2x

�
H3 =

Z
dx

�
1

4
u4 � 3uux +

9

5
u2xx

�
H4 =

Z
dx

�
1

5
u5 � 6u2u2x +

36

5
uu2xx �

108

35
u2xxx

�
... (22)

d

and it can be shown that these charges are in involution,

i.e.,

fHn; Hmg1 = 0 (23)

making the KdV equation integrable in Lioville's sense.

In 1978 Magri [16] discovered that equations like

KdV have a second Hamiltonian structure. The opera-

tor

D2 =
@3

@x3
+

1

3

�
@

@x
u+ u

@

@x

�
(24)

is skew-adjoint and satis�es Jacobi identity, and the

KdV equation can be written in the alternative Hamil-

tonian form

ut = D2
ÆH1

Æu
= fu(x); H1g2 (25)

where

fu(x); u(y)g2 = D2Æ(x� y) (26)

These charges (22) are also in involution with respect

to this second Hamiltonian structure

fHn; Hmg2 = 0 (27)

We say that the KdV equation is a bi-Hamiltonian sys-

tem. In general we say that a system is bi-hamiltonian

if there are Hamiltonian operators D1 and D2 which

are compatible, i.e., such that D1, D2 and �1D1+�2D2

satisfy the Jacobi identity. It can be shown [16] that if

a system is bi-Hamiltonian it is integrable in Lioville's

sense.

Starting with the works of Gel'fand and Dickey in

1975 [17], Adler in 1979 [18] and many others, alge-

braic developments started to take place. The key role

played by the Lax operator L, in obtaining the con-

served charges Hn, the Hamiltonian structures, the hi-

erarchy of equations that share Hn was then revealed.

In the next sections we will introduce and apply some

of these techniques in the dispersionless situation.

III Dispersionless Limit

We have seen that solitons preserve their shape and

speed after collision. The soliton solution has a nondis-

persive nature. This is so not because dispersion e�ects
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are absent but because there is a compensation by the

nonlinearities of the system. Let us look at the KdV

equation (2) more closelly. If we eliminate the nonlinear

term in (2) we get the linear dispersive equation

ut = uxxx (28)

which admits the solution

u(x; t) =

Z
dk A(k)ei(kx�w(k)t) (29)

This is a pure dispersive solution. In Fig. 3 we see that

a initial con�guration at t = 0 will disperse as time

goes on. Eliminating the dispersive term we get the

pure nonlinear equation

ut = uux (30)

It can be easily checked by substitution that

u(x; t) = f(x� ut) (31)

with f arbitrary, satis�es (30). From this solution we

conclude that the velocity of a point of the wave, with

constant amplitude u, is proportional to its amplitude

leading to the \breaking" of the wave, as shown in Fig.

3. The wave also develops discontinuities (indicated by

the vertical dashed line in Fig. 3) in its evolution. The

\miracle" of the soliton solution is due to a balance be-

tween the dispersion and the breaking of the wave, both

phenonema placed together lead to the wave pro�le to

propagate without changing its shape.

t = 0 t > 0

t = 0 t > 0 t > 0

t = 0 t > 0

Nonlinear Breaking of Wave

Dispersion of Wave

Soliton
Balance
Leads to

c

Figure 3. The balance e�ects of dispersion and breaking in a soliton.

Equation (30) is called the dispersionless KdV or
Riemann equation [19]. The interesting fact is that
this equation is a integrable Hamiltonian system. We
will return to study this equation in the next section
but for the moment let us analyse how we get disper-
sionless equations. Dispersionless equations can be ob-
tained by construction or as a quasi-classical limit of
integrable ones [20] . In the latter case we make the
scaling @

@t ! �@
@t ,

@
@x ! � @

@x and take the limit �! 0.
For the KdV equation (2) (we will change the constant
factors on it, so instead of (5) we have L = @2 + u and
B = @3 + 3

4 (@u+ u@))

4ut = uxxx + 6uux ) 4�ut = �3%0uxxx + 6�uxu

+ ut =
3
2uux

KdV +

Riemann

This is like the WKB aproximation in quantum me-
chanics and we will use it as our guideline [20].

Dispersionless integrable systems were introduced
by Lebedev and Manin [21] and Zakharov [22], and
although interesting on their own started to appear
recently in developments in low-dimensional quantum
�eld theory. It has been shown that there is a con-



Brazilian Journal of Physics, vol. 30, no. 2, June, 2000 461

nection between 2-dimensional �eld theories and inte-
grable equations of hydrodynamical type [23-25] (which
are dispersionless systems). In 2-dimensional topolog-
ical �eld theories [26] we are interested in calculating,
from the partition function

ZM =

Z
[d�] e�S[�] (32)

the correlation functions

h��(x)��(y) � � �iM = h���� � � �iM (33)

which depend only on the topology of the manifold M .
The 2-point and 3-point correlation functions are given
respectively by [27]

c

h����i = ��� = nondegenerate constant

h�����
i = c��
(t) =
@3F (t)

@t�@t�@t

�; �; 
 = 1; 2; : : : ; n (34)

where t = (t1; t2; : : : ; tn) are the coupling constants and F (t) is the free energy. The correlations (34) de�ne a
commutative and associative algebra (with an identity)

e� Æ e� = c
��e
 (35)

with e� de�ning a basis for the algebra. The associativity of the algebra, (e� Æ e�) Æ e
 = e� Æ (e� Æ e
), gives

@3F (t)

@t�@t�@t�
���

@3F (t)

@t
@tÆ@t�
=

@3F (t)

@t
@t�@t�
���

@3F (t)

@t�@tÆ@t�
(36)

d

These are the Witten-Dijkgraaf-Verlinde-Verlinde
(WDVV) equations [26,27] and can be identi�ed with
equations of hydrodynamic type. So, solutions of hy-
drodynamic equation can be identi�ed with particular
solutions of the topological �eld theory [25].

IV Two-Component Hyper-

bolic Systems

In a series of papers [28-31] Nutku and collaborators
started to study dispersionless systems of equations
that are in-between the simple Riemann equation [19]
and the more general equations of hydrodynamic type
[24]

Riemann

Two Component Hyperbolic

Equations of Hydrodynamic Type
uit = V ij(u)ujx i; j = 1; : : : ; n

In Fig. 4 we can �nd a chart with the main equations,
of the two-component hyperbolic system type, studied
on these papers.

A wealth of results concerning the integrability of
these systems were revealled. In�nitely many conser-
vation laws and multi-Hamiltonian structures were ob-
tained. In this section we will be interested in reproduce

some of these results from an algebraic point of view.
In order to achive this goal we must understand the Lax
representation for these systems.

IV.1 Riemann Equation

The Riemann equation

ut =
3
2uux (37)

is the prototype for the hyperbolic systems. We address
the following question: Is there a Lax representation for
(37)? Yes, and we can obtain it performing the semi-
classical limit [20] explained in Section 3. So, if the
KdV equation goes to the Riemann equation (37) in
the semiclassical limit, the Lax operator L = @2 + u
and B = @3 + 3

4 (@u + u@) goes to the polynomials in
the variable p

E = p2 + u

M = p3 +
3

2
up (38)

and the Lax representation (4) goes to

@E

@t
= fM;Eg (39)
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called dispersionless Lax representation (note the re-
semblance when we pass from quantum to classical me-
chanics doing @ ! p and [ ; ]! f ; g). Here

fA(x; p); B(x; p)g = @A

@p

@B

@x
� @B

@p

@A

@x
(40)

is the dispersionless Poisson bracket [21,22]. So, if we
substitute (38) in (39) we get (37).

From now on we will apply some of the techniques
described in [17] and [18] in a very informal way, since
we want to give only a 
avor of how the \machinery"
works.

Let us calculate the square root of E in (38). So,

we write the Laurent polynomial

E1=2 = p+ a0 + a1p
�1 + a2p

�2 + a3p
�3 + � � � (41)

and from E = E1=2E1=2 we obtain a0; a1; a2; a3; : : :, or
equivalently, we perform a series expansion for p!1

c

E1=2 =

�
p2
�
1 +

u

p2

��1=2
p!1
= p+

1

2
up�1 � 1

8
u2p�3 +

1

16
u3p�5 � 5

128
u4p�7 + � � � (42)
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Now we calculate E3=2 = E1=2E, E5=2 = E1=2E2 and

so on

E3=2 = p3 +
3

2
up+

3

8
u2p�1 + : : :

E5=2 = p5 +
5

2
up3 +

15

8
u2p+

5

16
u3p�1 + � � �

... (43)

The set of general Laurent polynomialA =
P+1

i=�1 aip
i

gives rise to an associative algebra g = fAg. This alge-
bra can be written as a direct sum g = g+ � g�, where
g+ = fA+g and g� = fA�g with A+ =

P
i�0 aip

i and

A� =
P

i<0 aip
i, respectively. We can recognize M in

(38) as

M = (E3=2)+ (44)

In fact, from (39) we are motivated to write

@E

@t
= f(E1=2)+; Eg ) ut = ux

@E

@t
= f(E3=2)+; Eg ) ut =

3

2
uux

@E

@t
= f(E5=2)+; Eg ) ut =

15

8
u2ux

...

(45)

and we have a hierarchy of equations. We call it dis-

persionless KdV (or Riemann) hierarchy and we write

@E

@tk
= f(E 2k+1

2 )+; Eg ; k = 0; 1; 2; 3; : : : (46)

treating u as a function of k + 1 variables

u = u(x; t0; t1; t2; : : :) (47)

For each tk we have what is called a 
ow and it can be

shown that they commute

@2E

@t`@tk
=

@2E

@tk@t`
(48)

consequently, the whole set of equations (45) is inte-

grable since, as we have already pointed out, the Rie-

mann equation is an integrable Hamiltonian system (all

the equations in (45) share the same set of conserved

charges).

The Riemann equation can be put in the form

ut =
3

2
uux =

3

4
(u2)x (49)

It follows that the quantity H / R dx u2 is conserved.

In fact
R
dx un are conserved as we can show explicitly.

These conserved charges can also be obtained from E.

Let be A any general Laurent polynomial

A = � � �+ a�1p
�1 + � � � (50)

following [18] we introduce the Adler's trace as

TrA =

Z
dxResA =

Z
dx a�1 (51)

which satis�es the usual relation TrAB = TrBA. From

(42) and (43) we see that

TrE1=2 =
1

2

Z
dx u

TrE3=2 =
3

8

Z
dx u2

TrE5=2 =
5

16

Z
dx u3

...

and we have

Hn =
2

n
TrEn=2| {z }
p!1

(52)

with _Hn = 0. From a Hamiltonian point of view the

Riemann equation is a quadri-Hamiltonian system [30].

There are Hamiltonian operators D1, D2, D3 which are

compatible and another Hamiltonian operator E which

is compatible only with D1. We can write

ut = D1
ÆH5

Æu
= D2

ÆH3

Æu
=

3

4
D3

ÆH1

Æu
=

35

8
E ÆH9

Æu

(53)

where

H1 =
R
dx u ; D1 = 2@

H3 =
1

4

Z
dx u2 ; D2 = u@ + @u

H5 =
1

8

Z
dx u3 ; D3 = u2@ + @u2

H9 =
7

128

Z
dx u5 ; E = @ 1

ux
@ 1
ux
@

(54)

Hamiltonian structures can also be obtained from the

Lax operator L (E in the dispersionless case). They

are the symplectic structures of Kostant-Kirillov [32] on

the orbits of the coadjoint representation of Lie groups

[18,33]. For dispersionless equations the corresponding

Lie algebra is given by the associative algebra of Lau-

rent polynomials endowed with the bracket (40). For

the KdV equation the Lie algebra is given by the alge-

bra of the pseudo-di�erential operators with the usual

commutator. Following this scheme the Hamiltonian
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structuresD1, D2, D3 can be derived (see [4] for details)

while we were not able to obtain E from this scheme.

IV.2 Polytropic Gas Equation

We will try to apply the results of the last Section to

some others dispersionless equations, such as the ones

in the chart of Fig. 4. The polytropic gas dynamics

equation

ut + uux + v
�2vx = 0

vt + (uv)x = 0

 � 2 (55)

was studied from a Hamiltonian point of view in [30].

In (55) u is the velocity of the 
uid, v is its density,

f = v
�2 and is related to the pressure (f(v) = p0(v)
v )

and 
 is the ratio of speci�c heats (we call an ideal gas

polytropic if the speci�c heats are constant over a large

range of temperature).

The �rst step will be to derive a Lax representation

for (55). We get a hint if we consider 
 = 2 in (55). In

this case we have the shallow water equation [19] also

known as the irrotational Benney equation [34]. Even

though we do not know the dispersive system which

originates (55) for any 
 we do know it for the case


 = 2. This is the dispersive shallow water [35] equa-

tion, also called the two boson equation in �eld theory

@J0
@t

= (2J1 + J20 + J 00)
0

@J1
@t

= (2J0J1 + J 01)
0 (56)

This equation has the following nonstandard Lax rep-

resentation [36,37]

L = @ � J0 + @�1J1
@L

@t
= [L; (L2)�1] (57)

where (L2)�1 stands for the purely nonnegative (with-

out p0 terms) part of the polynomial in p and J0 / u,

J1 / v are the two bosons �elds. Now, if we perform

the semiclassical limit and do the appropriate identi�-

cations (56) yields (55) for 
 = 2 and from (57) we get

the following dispersionless Lax representation

L = p+ u+ vp�1

@L

@t
=

1

2
f(L2)�1; Lg (58)

For any 
 we can use (58) as an ansatz to obtain the

dispersionless Lax representation for (55) and it reads

[5]

L = p
�1 + u+ v
�1

(
 � 1)2
p�(
�1)

@L
@t

=
(
 � 1)



��
L




�1

�
�1
; L

�
(59)

In [30] two sets of conserved charges were derived for

(55) when 
 6= 2. So, if (59) is really the correct Lax

pair it must somehow provide both sets accordingly to

the algebraic scheme described in the last section. In

fact, since L has singularities in p = 0 and p = 1 we

can expand L
1


�1 in powers of p in the two following

ways

c

L
1


�1 = p

(
1 +

1


 � 1

�
up�(
�1) +

v
�1

(
 � 1)2
p�2(
�1)

�
+

(2� 
)
2(
 � 1)2

h
� � �
i2

+

+
(2� 
)(3� 2
)

6(
 � 1)3

h
� � �
i3

+ � � �
)

p!1 (60a)

L
1


�1 =
vp�1

(
 � 1)
2


�1

(
1 +

1


 � 1

h
(
 � 1)2v�(
�1)

�
up(
�1) + p2(
�1)

�i
+

+
(2� 
)
2(
 � 1)2

h
� � �
i2

+
(2� 
)(3� 2
)

6(
 � 1)3

h
� � �
i3

+ � � �
)

p! 0 (60b)

So, the �rst set of charges follows from

Hn = TrLn+

�2

�1| {z }

p!1

=
R
dxHn

n = 0; 1; 2; 3; : : : (61)
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where the �rst densities are

H0 =
(
 � 2)

(
 � 1)
u

H1 =
(2
 � 3)(
 � 2)

(
 � 1)2

�
1

2!
u2 +

1

(
 � 1)(
 � 2)
v
�1

�
H2 =

(3
 � 4)(2
 � 3)(
 � 2)

(
 � 1)3

�
1

3!
u3 +

1

(
 � 1)(
 � 2)
uv
�1

�
...

Hn = (n+ 1)!C
(n+1)(
�1)�1

(
�1)

n+1 Hn+1 (62)

and

Hn =

[n2 ]X
m=0

 
�

mY
k=0

1

k(
 � 1)� 1

!
un�2m

m!(n� 2m)!

vm(
�1)

(
 � 1)m
(63)

which are the �rst set of charges obtained in [30]. The second set follows from

eHn = TrLn+
1


�1| {z }
p!0

=
R
dx eHn

n = 0; 1; 2; 3; : : : (64)

and the �rst densities are

eH0 = (
 � 1)�
2


�1 veH1 = (
 � 1)�
2


�1



(
 � 1)
uv

eH2 = (
 � 1)�
2


�1

(2
 � 1)

(
 � 1)2

�
1

2!
u2v +

v



(
 � 1)

�
...eHn =

n!

(
 � 1)
2


�1

C
n(
�1)+1
(
�1)

n
eHn (65)

where

eHn =

[n2 ]X
m=0

 
mY
k=0

1

k(
 � 1) + 1

!
un�2m

m!(n� 2m)!

vm(
�1)+1

(
 � 1)m
(66)

d

is the second set of charges obtained in [30]

In (59) L
1


�1 was expanded in p = 1, a expansion

around p = 0 provides a second consistent dispersion-

less Lax equation

@L

@t
=

��
L

�2

�1

�
�0
; L

�
(67)

which yields (with the proper rescaling) the equations

ut = v
�3vx

vt = ux (68)

From the chart in Fig. 4 we recognize this equations as

the polytropic elastic media equation.

IV.3 Born-Infeld Equation

With the Lax representation for the polytropic gas,

obtained in the last section, we can get a Lax represen-

tation for the Born-Infeld equation given in the chart

of Fig. 4

ut =

�
1

u2
+

1

v2

�
ux � 2u

v3
vx

vt =

�
1

v2
+

1

u2

�
vx � 2v

u3
ux

(69)
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In (69) the Born-Infeld equation is expressed in the

so called null coordinates version [31]. If we perform

the transformation

u = �x

v = � �xp
1 + �x�t

(70)

we obtain the Born-Infeld equation written as a second-

order equation in null coordinates

�2x�tt + �2t�xx � (4 + 2�x�t)�xt = 0 (71)

A Lax representation for (69) can be obtained as follows

[6]. In the �rst place if we do the change of variables

eu = �(u2 + v2)

ev =
1

2
uv (72)

called Verosky transformation [31], we will end up with

the equation

eut + eueux + evxev3 = 0

evt + (euev)x = 0 (73)

known as the Chaplygin gas. In view of this it would be

desirable to �rst obtain a Lax description of the Chap-

lygin gas like equations

eut + eueux + evxev�+2
= 0 ; � � 1

evt + (euev)x = 0 (74)

This is indeed possible if we set 
 ! ��, � � 1 in (59),

so (74) can be obtained from

L = p�(�+1) + eu+ ev�(�+1)

(�+ 1)2
p�+1

@L

@t
=

(�+ 1)

�

n�
L

�
�+1
�
�1
; L
o

(75)

where L
1

�+1 is expanded around p = 0 and
�
L

�
�+1
�
�1

is

the polynomial in p that produces consistent equations,

instead of the purely nonnegative polynomial used in

(59). For � = 1 the Lax operator

L = p�2 �
�

1

u2
+

1

v2

�
+

1

u2v2
p2

@L
@t

= 2

��
L

1
2

�
�1
; L

�
(76)

reproduces (69). Again, conserved charges follows from

eHn = TrLn�
1
2| {z }

p!1

=

Z
dx eHn n = 0; 1; 2; 3; : : : (77)

and the �rst Born-Infeld charges are

eH0 = �uveH1 =
1

2

�u
v
+
v

u

�
eH2 = �3

4

�
u

2v3
+

3

uv
+

v

2u3

�
... (78)

and these are exactly the charges derived in [31]. An-

other set is obtained from

Hn = TrLn+
3
2| {z }

p!0

=

Z
dxHn n = 0; 1; 2; 3; : : : (79)

and the �rst ones are

H0 = �3
2

�
1

u2
+

1

v2

�
H1 =

15

8

�
1

u4
+

11

6

1

u2v2
+

1

v4

�
H2 = �35

16

�
1

u6
� 1

u4v2
� 1

u2v4
+

1

v6

�
... (80)

This is a new set of conserved charges, for the Born-

Infeld equation (69), not found previously in [31].

V Conclusions

We believe, from the results of the Section 4, that the

study of dispersionless systems via a Lax representation

is worthwhile. So, the search for a dispersionless Lax

representation for the equations in the upper part of the

chart in Fig. 4 is being pursued. Also, the derivation of

the multi-Hamiltonian structures of these systems, as

described in [28-31], is under investigation following the

coadjoint orbit method [32,33]. Another question that

comes to mind is the dispersive generalization of these

equations. Attempts in this direction can be found in

[38].

Some topological equations are also related with the

systems discussed here. For instance, the hyperbolic

Monge-Amp�ere equation

UttUxx � (Utx)
2 = �1 (81)

may be related with the Born-Infeld equation as follows.

If we perform the change of variables
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a = Ux

b = Ut (82)

the Monge-Amp�ere equation can be written as a

�rst order system

at = bx

bt =
b2x � 1

ax
(83)

and this equation can be related to the Chaplygin gas

equation (73) through the following change of variables

eu = � bx
axev = ax (84)

Thus, we can give a Lax description for the hyper-

bolic Monge-Amp�ere equation through the Lax repre-

sentation derived in Section 4.3. Finally, the Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equations (36),

for n = 3, with

F (t1; t2; t3) =
1

2
(t1)2t3 +

1

2
t1(t2)2 + f(t2; t3) (85)

where t2 � x and t3 � t, yields the third order Monge-

Amp�ere equation

fttt = f2xxt � fxxxfxtt (86)

This equation is a bi-Hamiltonian system and has a ma-

trix Lax representation. It is then possible to generate

a whole set of nonlocal charges much like the nonlinear

sigma model (details are given in [7]). It is likely that

a dispersionless sort of Lax representation for (86) may

exist.
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