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The Effect of Correlated Noise in a Gompertz Tumor Growth Model
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We study the effect of noise in an avascular tumor growth model. The growth mechanism we consider
is the Gompertz model. The steady state probability distributions and average population of tumor cells are
analyzed within the Fokker-Planck formalism to investigate the importance of additive and multiplicative noise.
We consider the effect of correlation on tumor growth for both the case of nonzero and zero correlation time.
It is observed that the Gompertz model, driven by correlated noise exhibits a stochastic resonance and phase
transition. This behaviour is attributed to multiplicative noise. In the case of nonzero correlation time, it is
found that the correlation strength and correlation time have opposite effects on the steady state probability
distribution. The Gompertz model simulations are also shown to be in qualitative agreement with another
similiar non-bistable system, the logistic model.
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I. INTRODUCTION

Much of the attention in the recent years has been directed
towards nonlinear physics and its application to uncover bio-
logical complexities. Studies have confirmed the role of noise
in the nonlinear stochastic systems [1]. In recent years the
Fokker-Planck equation has become one of the important ap-
proaches in the studies of nonlinear dynamics based on sto-
chastic form [2, 3].

Tumor growth is a complex process. It has been a chal-
lenge for many years to search for a suitable growth law of tu-
mors. Mathematical models based on mathematical equations
such as the Gompertzian, logistic and exponential equations
are used as a basic tool for describing avascular tumor growth
[4–6]. It has been realized that tumor growth is governed by
environmental fluctuations [7]. It has also been shown that
quite often there are discrepancies between theoretical predic-
tions and clinical data due to more or less intense environ-
mental fluctuations [8]. Ferreira et al [6] analyzed the effect
of distinct chemotheraputic strategies for the growth of avas-
cular tumors. This study confirmed that an environment like
chemotherapy affects tumor growth behaviour and may lead
to morphological transitions under certain conditions.

Stochastic modelling using the Fokker-Planck equation has
been recently applied to the logistic equation to study the
steady state properties of avascular tumor growth driven by
Gaussian correlated additive and multiplicative white noise
by [9]. This work has been extended to consider the nonzero
correlation time between additive and multiplicative noise by
[10]. However among avascular tumor growth power laws the
Gompertz model has been the most broadly and successfully
applied to fit the experimental data [11–13]. Other successful
applications in the literature of the Gompertz equation to can-
cer cell growth include [14–16]. These models are however
deterministic models. In this article we wish to consider the

Gompertz model from a stochastic viewpoint by examining
the steady state properties of Gompertzian tumor cell growth
driven by correlated noise. The Gompertz model has not been
analyzed in the literature before in this context. In addition we
extend our study to consider the nonzero correlation time for
the Gompertz model.

The plan of this paper is as follows. Calculational details
outlining the theoretical formulation of the Fokker-Planck
equation applied to avascular tumor growth laws are presented
in Sec.II. Sec.III presents the results for the steady state prop-
erties and average cell populations of the Gompertz model
driven by cross-correlated additive and multiplicative noise
for the case of zero correlation time between noises. In Sec.IV
we consider nonzero correlation time and present the results
for the steady state properties of the Gompertz model driven
by cross-correlated noise for the case of nonzero correlation
time. We use our model to simulate the behaviour of the lo-
gistic model of [9], [19], and [10] and compare with the results
obtained from the Gompertz model.

Finally in Sec.V we discuss our conclusions.

II. THEORETICAL FORMULATION BASED ON THE
FOKKER-PLANCK EQUATION

Avascular tumor growth laws may be described by a single
deterministic differential equation,

dx
dt

= f (x) with x(0) = x0, (1)

where f (x) describes the tumor cell growth dynamics and x 0
is the initial tumor size.

Typically the modelling assumptions that Eq.(1) are based
on, are (i) the tumor only contains one cell type, (ii) is spa-
tially independent, (iii) does not explicitly mention nutrients,
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growth factors or host vasculature, (iv) tumor volume is pro-
portional to x(t), the number of tumor cells at time t.
The Gompertz law may be modelled by taking

f (x) = −bx [log(x/κ)] , (2)

where x is the tumor cell number, b the cell decay rate, κ is
carrying capacity, where κ = a

b , and a is the cell growth rate.
Gompertz growth is a result of two classes of competitive
processes, the first process simulates growth and the second
phase constrains growth at the saturation stage. Another alter-
native growth law which behaves similarly to the Gompertz
model is the logistic model. The logistic model is governed
by the equation where,

f (x) = ax−bx2. (3)

The solution of this equation belongs to same class of sig-
moidal functions as the Gompertz model. It models growth
exponentially in the early stages but eventually saturates due
to the quadratic term in the above equation.
Eq. (1) can be generalized to consider stochastic effects due to
external factors such as temperature, drugs, radiotherapy etc,
by introducing, (i) Gaussian multiplicative noise to represent
the effect of the treatment by altering the tumor cell dynamics
(ii) a negative additive Gaussian noise which may represent
fluctuations due to the treatment resulting in cell death. Here
we have implicitly assumed both the multiplicative and ad-
ditive noise are correlated since they have a common origin.
Modelling this stochastic behaviour yields,

dx
dt

= f (x)+ xε(t)−Γ(t), (4)

where ε(t) and Γ(t) are Gaussian multiplicative and additive
noises respectively with the following properties:

〈ε(t)〉 = 〈Γ(t)〉 = 0, (5)

〈ε(t)ε(t ′)〉 = 2Dδ(t − t ′), (6)

〈Γ(t)Γ(t ′)〉 = 2αδ(t − t ′), (7)

〈ε(t)Γ(t ′)〉 = 2λ
√

Dαδ(t − t ′), (8)

where the parameters D and α represent intensity of the mul-
tiplicative and additive noises respectively, and λ denotes the
strength of correlation between ε(t) and Γ(t) with 0 ≤ λ < 1.
Eq.(8) describes zero correlation time between additive and
multiplicative noises. To study the effect of non-zero correla-
tion time τ, the statistical property 〈ε(t)Γ(t ′)〉 is given by the
more generalized form,

〈ε(t)Γ(t ′)〉 = 〈Γ(t)ε(t ′)〉 =
λ
√

αD
τ

exp

[
−|t − t ′|

τ

]
. (9)

Eq.(9) reduces to Eq.(8) when τ → 0. According to the
Langevin Eq.(4), we can derive the Fokker-Planck Equation
for the positive values of x [17], which is given by,

∂p(x, t)
∂t

= − ∂
∂x

[A(x)p(x,t)]+
∂2

∂x2 [B(x)p(x,t)], (10)

where p(x, t) is the probability distribution function, A(x) and
B(x) are the drift and diffusion coefficients respectively de-
fined as

A(x) = f (x)+ Dx−λ
√

Dα, (11)

B(x) = Dx2 −2λ
√

Dαx+ α. (12)

According to the reflecting boundary condition, the steady-
state probability distribution function (SPDF) of Eq.(10) can
be obtained from [17], [18]. This is given by,

pst(x) =
N

B(x)
exp

[∫ x A(x′)dx′

B(x′)

]
, (13)

where N is the normalisation constant. Eq.(13) may be solved
numerically to obtain the steady state probability distribution
pst(x) and average cell population 〈x〉 for the Gompertz and
logistic models.

III. EFFECT OF ZERO CORRELATION TIME ON
AVASCULAR TUMOR GROWTH LAWS

In this section we study the properties of tumor cell growth
using the Gompertz law in the presence of cross correlated
additive and multiplicative noises for the case of zero correla-
tion time between noises. Although of course strictly speak-
ing the correlation time is never actually equal to zero, we
adopt this approach as a first approximation in considering
the biological system driven by noise. This corresponds to the
case where we deal only with correlated Gaussian white noise.
This is valid biologically when the time scale for the correla-
tion is much shorter than the time scale for the relaxation of
the driven process.

In our tumor growth modelling, we assume that the sto-
chastic characteristics arise from both external and internal
factors. We further assume that external factors represent fluc-
tuations due to some external factors such as treatments, i.e,
chemotherapy or radiotherapy. These treatments affect the tu-
mor’s net growth rate generating multiplicative noise and at
the same time they restrain the number of tumor cells which
give rise to additive noise [9, 10].

A. Gompertzian growth

The results of our calculations for the steady state proba-
bility pst(x) as a function of cell number x are presented in
Figs. 1a and 1b. In particular, we have studied the effect of
the intensity of correlation strength λ between the additive and
multiplicative noise intensities on pst(x). It is evident from the
Fig. 1a that with the increase of λ, pst(x) decreases at smaller
x values ie, x ≤ 5. However, the peak of pst(x) increases with
higher values of λ and at higher x values, pst(x) for different
λ, merge with each other and die out. This implies that higher
values of λ promote cell growth. In Fig. 1b we have studied
the effect of negative correlation strength on p st(x). It is inter-
esting to note that as the value of λ decreases, pst(x) increases
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FIG. 1: (a) Plot of pst(x) as a function of x for different values of
positive correlation parameter λ. We have used a = 1, b = 0.1, D =
0.3 and α = 3.0. (b) Plot of pst(x) as a function of x for different
values of negative correlation parameter λ. All other parameters are
same as (a). Parameter values are in arbitrary units.

at small x, and decreases at large x. This implies that decreas-
ing λ causes the tumor cells to disappear. In other words the
distribution of the cell population which was mainly peaked
about zero (for smaller values of λ) signifies high extinction
rates, and moves towards zero with the decrease of the correla-
tion parameter λ. Similar behaviour has also been obtained in
the case of logistic growth [19]. Comparing Figs. 1a and 1b,
we found that a change in sign concerning the correlation be-
tween additive and multiplicative noises has both positive and
negative effects on tumor growth. Indeed, a negative value of
λ (which corresponds to a shift to lower values of the peak
position of the pst(x)) has a meaning in this context. It corre-
sponds to a change in sign of the correlation between additive
and multiplicative noise, which corresponds to a better inter-
pretation of the Eq. (4). In fact, in Eq. (4) the additive and
multiplicative noise have opposite effects (when one is posi-
tive the other is negative). Therefore, it seems that a positive
λ indicates a negative feedback between the two noises. On
the contrary a negative λ, or alternatively a change in sign of
either of the two noise terms in Eq.(4), may be correct, to sim-
ulate positive feedback of two effects in the tumor treatment.
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FIG. 2: Plot of 〈x〉 as a function of D for different values of α, λ =
0.0. All other parameter values are the same as Fig. 1.

In Fig. 2, we present our results for average cell population
〈x〉 as a function of the intensity of multiplicative noise D for
different values of additive noise intensity α at a fixed λ = 0.0.
This is given by the equation,

〈x〉 =
∫

xpst(x)dx∫
pst(x)dx

. (14)

We observe from Fig. 2 that 〈x〉 increases first, and then
decreases with the intensity of the multiplicative noise, show-
ing a typical stochastic resonance characteristic. This means
that the appropriate intensity of multiplicative noise is suitable
for tumor cell growth and extra noise may restrain tumor cell
growth. It is evident from Fig. 2 that as α increases the peaks
die out and become flat. In Fig. 4, we also observe the same
qualitative behaviour for the logistic model.

In Fig. 3a we present the results for pst(x) as a function of
x at various values of α. This figure shows that the position of
the peaks of the distribution remains unchanged as the inten-
sity of the additive noise increases. However, the height of the
peaks decrease as α increases. In Fig. 5a, we also observe the
same qualitative behaviour for the logistic model.

We also show in Fig. 3b the average cell population 〈x〉 as
a function of α for different values of multiplicative noise in-
tensity D. We observe that 〈x〉 decreases and then increases
showing a negative stochastic resonance-like characteristic at
the values of D between 0.3 and 0.9. This is caused by the am-
plification of a weak periodic signal by means of noise. The
resonances die out with increasing D. The critical phase tran-
sition occurs at the point of inflection, κ

e , from the determinis-
tic Eq. (2) due to the sigmoidal nature of the Gompertz model.
For comparison we show the results of the logistic model in
Fig. 5(b). These results show a similiar trend to the Gom-
pertz model. It may be noted that as the point of inflection,
x = a/2b in the logistic model, (obtained from the determin-
istic Eq. (3)), is reached more slowly than in the Gompertz
model, the resonances in Fig. 5b are more pronounced than in
the Gompertz model in Fig. 3b. These resonances also die out
with increasing D as in the Gompertz model. In both mod-
els, multiplicative noise induces a phase transition and reso-
nance in tumor growth. This may require further study in or-
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FIG. 3: (a) Plot of pst(x) as a function of x for different values of α.
(b) Plot of 〈x〉 as a function of α for different values of D. All other
parameter values of both Figs. 3a and 3b are the same as Fig. 1.

der to understand the occurance of stochastic resonance-like
phenomena and the underlying mechanism(s) in the present
non-bistable systems.

IV. EFFECT OF FINITE CORRELATION TIME ON
AVASCULAR TUMOR GROWTH MODELS

In this section we study the stationary properties and av-
erage populations of tumor cell growth using the Gompertz
and logistic laws in the presence of cross correlated additive
and multiplicative noises for the case of nonzero correlated
time between noises. This reflects the inclusion of coloured
noise into our system and is more appropriate in representing
a non-sharp separation of time scales and a greater precision
in analysis of the stochastic process. This generalization re-
laxes the restriction that the correlation time is zero which is
the case when considering Gaussian white noise as in Sec. III
above.
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FIG. 4: Plot of 〈x〉 as a function of D for different values of α. All
other parameter values are the same as Fig. 1.
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FIG. 5: Plot of pst(x) as a function of x (left) for different values of α
and for fixed values of D = 0.3. Plot of 〈x〉 as a function of α (right)
for different values of D. All other parameter values of Figs. are the
same as Fig. 1.

In modelling the Gompertz and logistic growth laws driven
by cross-correlated noises for the case of nonzero correlation
time, we implement Eq. (9) instead of Eq. (8) in our proba-
bility distribution calculation (Eq. 13).

A. Gompertzian growth

First we study the effect of λ on pst(x) as function of x for
a fixed value of correlation time τ = 0.3. This is presented
in Fig.6(a). This figure shows that pst(x) as a function of x
decreases at smaller values of x i.e, below x around 7.5 and
then increases as we increase λ. For the higher values of x the
curves of different λ merge with each other and die out. On
comparing these results with the results presented in Fig. 1a
for Gompertz growth model in the case of zero correlation
time, we observe that, as expected there is no change in quali-
tative nature of the curves and these results follow the similar
trend as the previous ones. However, here we are interested
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FIG. 6: (a) Plot of pst(x) as a function of x for different values of λ
at τ = 0.3,D = 0.3, α = 3.0, a = 1 and b = 0.1. (b) Plot of pst(x) as a
function of x for different values of τ at λ = 0.2. All other parameter
values are the same as 6(a). Parameter values are in arbitrary units.

in studying how both the correlation strength λ and the cor-
relation time τ affect the probability distribution. In Fig. 6b,
we present the results of pst(x) as a function of x for a fixed
value of correlation strength λ = 0.2 and varying the correla-
tion time τ. As shown in the figure the probability as a func-
tion of x decreases as we increase τ. On comparing Figs. 6a
and 6b, we find that the correlation strength λ and the correla-
tion time τ play the opposite role on the steady state probabil-
ity i.e., pst(x) increases with the increase of λ and decreases
with the increase of τ.

To see the effect of λ and τ on the cell population, we ex-
amine in Figs. 7a and 7b, the average cell population 〈x〉, as
a function of τ for various values of λ and as a function of λ
for different values of τ, respectively. From these figures, we
observe that 〈x〉 as a function of τ increases with increasing λ
and, viewed as a function of λ, decreases with increasing val-
ues of τ. This also confirms that the correlation strength and
the correlation time have the opposite effect on the average
cell population in the case of Gompertz growth.

In Fig. 8 we examine the effect of τ on the average cell
population 〈x〉 as a function of additive noise intensity α for
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FIG. 7: Plot of 〈x〉 as a function of τ for different values of λ. (b) Plot
of 〈x〉 as a function of λ for different values of τ. All other parameter
values are the same as Fig. 6.

different values of multiplicative noise intensity D at a fixed
λ = 0.1. 〈x〉 as a function of α decreases for some fixed val-
ues of D and then increases showing a negative resonance-like
characteristic and these resonance-like characteristics die out
as D is increased. However, there is no change in qualitative
nature of the curve with the change in τ, i.e., the correlation
time has no effect on the resonance-like characteristic (see left
and right figures, these are for different τ = 0.2 and 0.6). Si-
miliar results have been obtained for the logistic models.

B. Logistic growth

We performed similar calculations for the nonzero corre-
lation time for the logistic growth. As expected, since, lo-
gistic growth law predicts similiar behaviour to the Gompertz
growth law, we obtained qualitatively similar behaviour of the
curves in case of the logistic growth laws (see Figs. 7a and
7b). Similar calculations [10] have also been carried out in
the case of logistic growth. However, they have shown that the
correlation strength and the non-zero correlation time have the
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hand figures except τ = 0.2 (left figure) and τ = 0.6 (right figure).
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FIG. 9: Same as Fig. 6.

opposite effect on pst(x) contrary to our findings in the present
calculations. The discrepancy between our results and those
of [10] in this section are reflected in the fact that [10] have
based their model on the original model of [9].

We also studied the effect of nonzero correlation time on
average cell population (Figs. 10a and 10b). We observe that
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FIG. 10: Same as Fig. 7.
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FIG. 11: Same as Fig. 8.

the correlation strength and the correlation time play oppo-
site roles, which is similar to the case of the Gompertz growth
law, in Sec. IV.A. We also find the average cell population
increases with increasing λ and decreases with increasing τ.
These results are also in qualitative disagreement with the cal-
culations of [10] for reasons already outlined above.
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As in the Gompertz model, we study the effect of τ at a fixed
λ = 0.1 on the average cell population 〈x〉 as a functon of ad-
ditive noise intensity α for different values of multiplicative
noise intensity D in the case of logistic growth model and the
results are shown in Fig.11. As one can see these results are
analogous to the results obtained in the case of zero correla-
tion time in the logistic model and show similar resonance-
like characteristics. However, as in the case of Gompertz
growth law here we also observe that there is no effect of τ
on the resonance.

V. CONCLUSIONS

We have considered the steady state properties of tumor cell
growth, average cell populations and the effect of correlated
noise using the Gompertz model. Our results were compared
with existing calculations of the logistic model [9, 19] and
[10]. In each of the Gompertz and logistic models we found
that the both negative and positive correlation between addi-
tive and multiplicative noise were important in predicting the
likely outcome of treatment protocols. From our results it is
also observed that an inappropriate noise intensity can lead to
the malignant growth of tumor cells. Another interesting re-
sult we found, is that multiplicative noise induces a phase tran-
sition and resonance in tumor growth. This behaviour arises
due to the sigmoidal nature of both the Gompertz and logistic
models which both have points of inflection that are always
a fixed proportion of their asymptotic values. It would be in-
teresting to pursue this study further, in order to understand
the underlying mechanism(s) for the negative stochastic res-
onance like characteristic in the Gompertz and logistic non-

bistable models.
We have studied the stationary properties of the Gompertz and
logistic tumor cell growth models in the case of nonzero cor-
relation time between additive and multiplicative noises. We
found that the correlation time and the correlation strength
play opposite roles on the steady state probability distribu-
tion in case of both the Gompertz and logistic model. As we
increased the correlation strength, the steady state probabil-
ity and the average cell population increased. This scenario is
reversed if the correlation time is increased. Similarly to the
case of nonzero correlation time, we observed a phase transi-
tion and resonance like characteristics in each of the Gompertz
and logistic models. These phenomena are unaffected with the
change of correlation time. It is worth mentioning here that
in the logistic model we found our calculations significantly
differed from those of both [9] and [10]. These results can
be reproduced if one considers a negative correlation strength
(λ) between additive and multiplicative noise [19, 20]. Fi-
nally there were no significant differences in the interpreta-
tion of the results between our simulations for the Gompertz
and logistic models. This is probably due to the fact that these
growth models belong to the same class of sigmoid function.
These results thus provide strong evidence of a universal be-
haviour of sigmoid laws which are present in several problems
of biological growth.
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