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In this work we investigate the high density QCD system through the dilepton production. First, the dilepton
production in the color dipole approach is investigated, studing perturbative unitarity corrections to the dipole
cross section and its consequence in the transverse momentum distribution of the dileptons at RHIC and LHC
energies. Second, the dilepton production in the context of the Color Glass Condensate is investigated. The
transverse momentum distribution and the rapidity distribution are investigated to dilepton production at RHIC
and LHC energies in this framework.
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I. INTRODUCTION

The high energies hadronic reactions performed at RHIC
(BNL Relativistic Heavy Ion Collider) and to be reached at
LHC (CERN Large Hadron Collider) provide a suitable envi-
roment to investigate the dynamic of the high density system.
In such a regime, the lepton pair production should be use-
ful to investigate the high parton density at the initial state
of the collision, once its carry indisturbed information about
this stage of the reaction since does not interact strongly with
the high density hadronic system, formed after the collision
process.

This work intends to investigate the dilepton production in
order to investigate the high density effects and is performed
in two parts; in the first part an overview concerning the in-
fluence of perturbative unitarity corrections on the dilepton
transverse momentum pT distribution is investigated, treat-
ing the dilepton production in the dipole approach, describing
these unitarity corrections by the multiple scattering Glauber-
Mueller approach [1]. A striking advantage of the color dipole
picture is a finite cross section for the lepton pair pT distrib-
ution at small pT → 0, even in the leading order calculation,
feature associated with the saturation encoded in the dipole
cross section. The second part of this work, performs an in-
vestigation of the dilepton considering the Color Glass Con-
densate (CGC) approach and looking for the satuation signa-
tures in dileptons produced at small transverse momentum in
the forward rapidity region, or proton fragmentagion region.

The unitarity corrections, considering the dipole approach,
are investigated in the proton-proton collisions, since the ef-
fect of perturbative corrections should be more evident in
this reaction (the nuclear effects present in nuclear collisions
should mask the unitiarty corrections), however, the dilepton
production was shown to be a sensitive probe of the perturba-
tive shadowing and saturation dynamics in all possibilities of
reactions [2–12].

Considering the Color Glass Condensate kinematical

regime, the saturation effects are investigated comparing the
proton-nucleus and proton-proton collisions, since the satu-
rated regime could be reached at RHIC only with nuclear col-
lisions. Moreover, the proton-nucleus scattering was proposed
as an ideal experiment to give evidences of the saturation ef-
fects described by the CGC in the proton fragmentation region
[12]. In order to investigate the quantitative features of the
dilepton production in the forward region of proton-nucleus
collisions the transverse momentum (pT ) distribution is stud-
ied focusing attention to the small pT region, where the satu-
ration effects are expected to be more significant. Their pres-
ence at small pT should be considered as a possible signature
of the saturation effects when contrasted with proton-proton
results. This comparison is performed evaluating the ratio be-
tween proton-nucleus and proton-proton cross sections. This
ratio, concerning hadron production, was measured at RHIC
and at mid-rapitidy the ratio present a peak, called Cronin
effect; at forward rapidities the ratio is suppressed, and is
claimed to be due to the saturation effects. Concerning dilep-
tons, this ratio shows two diferent behaviors at forward rapidi-
ties, it presents Cronin type peak or a suppression of the peak,
depending of the dynamics considered for the Color Glass
Condensate approach [13]. It implies that dilepton should be
a most suitable probe to identify the saturation effects at high
energy nuclear collisions.

This work is organized as follows. In the next section one
presents a brief discussion on the dilepton production in the
dipole picture. In Sec. III the results concerning the unitarity
corrections are discussed. In Sec. IV the dilepton production
within the CGC formalism is presented. The Sec. V presents
the numerical results concerning the CGC.

II. DILEPTON IN THE DIPOLE APPROACH

The dipole approach is applicable only at high energies, and
it is formulated in the target rest frame, where the dilepton
production looks like a bremsstrahlung of a virtual photon de-
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caying into a lepton pair with a mass M (see Fig. 1).

FIG. 1: Dilepton production in the dipole approach.

The advantage of this formalism is that the dilepton cross
section can be written in terms of the same color dipole cross
section as small-x Deep Inelastic Scattering (DIS). Although
diagrammatically no dipole is present in bremsstrahlung, the
dipole cross section arises when one takes the complex conju-
gate of the amplitude (photon emited before or after the inter-
action with the target), see Ref. [14] for a detailed derivation.

The cross section of the dilepton production considering a
proton-proton collision can be written as [3, 4]

dσDY

dM2dxF d2 pT
=

α2
em

6π3M2
1

(x1 + x2)

∫ ∞

0
dρW (ρ, pT )σdip(ρ,x2),(1)

where xF is the Feynman x defined by xF = x1− x2, x1 and x2
are the Bjorken x defined in the standard way. pT is the trans-
verse momentum of the dilepton and ρ is the displacement of
the projectile quark in impact parameter space due to the ra-
diation of the virtual photon. The function W (ρ, pT ) is given
by
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where α is the light-cone momentum fraction of the intial
quark taken away by the photon, η2 = (1−α)M2 +α2m2

q, with
mq being the quark mass. The functions Ti read,

T1(ρ) = ρJ0(pT ρ/α)K0(ηρ/α)/α , (3)

T2(ρ) = ρ2J0(pT ρ/α)K1(ηρ/α)/α2 , (4)
T3(ρ) = ρJ1(pT ρ/α)K1(ηρ/α)/α . (5)

The functions J0 and J1 are the first class Bessel functions of
order 0 and 1, whereas K0 and K1 are the second class modi-
fied Bessel functions of order 0 and 1 (MacDonald functions).
The function W (ρ, pT ) is originated from the wave function
for radiation of a transversely or longitudinally polarized pho-
ton from the quark of the projectile. The structure function F p

2
presented in the equation 2 take into account the quark con-
tent from the projectile. The function σdip(ρ,x2) is the dipole

cross section and take into accout the interaction of the dipole
with the target. This dipole cross section is the same obtained
in the Deep Inelastic Scattering

As can be seen from Eq. (2), the oscillating Bessel func-
tions Ji drive the behavior of the W (ρ, pT ) as a function of
ρ. The following general picture can be drawn: for large pT
the large dipole size configurations get suppressed, because
W (ρ, pT ) is rapidly oscillating. On the other hand, as pT de-
creases, large ρ configurations become more important. The
case pT = 0 is of particular interest, since the weight function
W (ρ, pT ) selects very large dipole configurations and such a
region is enhanced by increasing the energy. Therefore, the
non-perturbative sector of the process should drive the small
pT regime. On the other hand, the large pT behavior is almost
completely dominated by small dipole configurations [4] (per-
turbative contributions). The unitarity perturbative corrections
are included in the dipole cross section and investigated in
the transverse momentum distribution of the dileptons. It im-
plies that only at large pT the perturbative correction should
be more evident. These features are exploited in the next sec-
tion, where are also discussed the different models that were
employed for the dipole cross section.

A. The dipole cross section

In this section we consider the cross section of a color di-
pole interacting with a nucleon. The cross section for a small
color dipole scattering on a nucleon can be obtained from per-
turbative QCD [15]. However, there are large uncertainties
stemming from non-perturbative effects (infrared region) as
well as from higher order and higher twist corrections. In the
leading ln(1/x) approximation, the dipole interacts with the
target through the exchange of a perturbative Balitsky-Fadin-
Kuraev-Lipatov (BFKL) Pomeron, described in terms of the
ladder diagrams [16]. In the double logarithmic approxima-
tion, the BFKL equation [16] agrees with the evolution equa-
tion of Dokshitzer et al. [17] (hereafter DGLAP equation). In
this limit, the dipole cross section reads,

σdip(x,r⊥) =
π2 αs

3
r2
⊥ xGDGLAP(x, Q̃2) , (6)

where xGDGLAP(x, Q̃2) is the usual DGLAP gluon distribution
at momentum fraction x and virtuality scale Q̃2 = λ/r2

⊥. In
this work one considers the factor λ = 4, although same mag-
nitude values are equivalent at leading logarithmic level [18].
The main feature of the dipole cross section above is the color
transparency property, i.e., σdip ∼ r2

⊥ as r⊥ → 0. At large
dipole size, the dipole cross section should match the con-
finement property σdip ∼ σ0. Concerning the large transverse
separation (non-perturbative sector), our procedure is to freeze
the r2

⊥ in Eq. (6) at a suitable scale larger than r2
cut, which cor-

responds to the initial scale on the gluon density perturbative
evolution, Q2

0 = 4/r2
cut.

At high energies, an additional requirement should be met:
the growth of the parton density (mostly gluons) has to be
tamed, since an uncontrolled increasing would violate the
Froissart-Martin bound, requiring the black disc limit of the
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target has to be reached at quite small Bjorken x. This feature
can be implemented by using the multiple scattering Glauber-
Mueller approach (GM), which reduces the growth of the
gluon distribution by eikonalization in impact parameter space
[1]. Therefore, one substitutes xGDGLAP in Eq. (6) by the
corrected distribution including unitarity effects, xGGM . A
more extensive derivation of the GM dipole cross section and
the expression of xGGM can be found in the Sec. III of the
Ref. [2]. Our main goal in this part of the work is to investi-
gate the dilepton pT distribution, using the GM dipole cross
section. However, for sake of comparison, this analysis is con-
trasted with the phenomenological saturation model of Bartels
et al. (BGBK dipole cross section hereafter), Ref. [19], which
also includes the features of the dipole cross section discussed
above. The model of Ref. [19] is a QCD improved version of
the saturation model of Ref. [20]. The new model explicitly
includes QCD evolution, and the dipole cross section is given
by,

σdip(x,r⊥) = σ0

{
1− exp

(
−π2r2

⊥αs(µ2)xg(x,µ2)
3σ0

)}
, (7)

where the scale µ2 is assumed to have the form µ2 = C
r2
⊥

+µ2
0.

The authors of Ref. [19] propose the following gluon distrib-
ution at initial scale Q2

0 = 1 GeV2,

xg(x,Q2
0) = Agx−λg(1− x)5.6. (8)

Altogether, there are five free parameters (σ0, C, µ2
0, Ag and

λg), which have been determined in Ref. [19] by fitting ZEUS,
H1 and E665 data with x < 0.01. In this fit the parameter
σ0 is fixed at 23 mb during the fits as in the original model,
Ref. [20]. Here, we employ fit 1 of Ref. [19].

In Ref. [14], where the old saturation model of Ref. [20]
was used, the dipole approach was extrapolated to larger x2
by introducing a threshold factor into the saturation scale, i.e.
Q2

s → Q2
s (1− x2)5. The factor (1− x2)5 is motivated from

QCD counting rules and suppresses the large x2 contribution
in the DY cross section. In our case, employing the GM or the
BGBK dipole cross section, the large x2 threshold factor is
already included in the collinear gluon distribution function.

B. The dilepton transverse momentum distribution

In this section, the dilepton transverse momentum distri-
bution is calculated, using the Glauber-Mueller dipole cross
section, Eq. (6), and compared with the results obtained with
the improved saturation model, Eq. (7). We will consider typ-
ical values for mass and xF . The projectile structure function
employed was the LO GRV98 parametrization [21] to the GM
predictions and CTEQ5L [22] for the saturation model ones.

In Fig. 2 results for the energies from RHIC (
√

s = 500
GeV) and LHC (

√
s = 14 TeV) are shown with M = 6.5 GeV

and xF = 0.625. We emphasize that the xF value consid-
ered above, is an extreme case, where the rapidity variable
acquires large values for RHIC (y ∼ 3) and LHC (y ∼ 7) en-
ergies. In order to investigate the unitarity effects for this
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FIG. 2: The dilepton transverse momentum pT distribution at largest
RHIC (

√
s = 500 GeV) and LHC (

√
s = 14 TeV) energies.

observable, the following comparisons are performed: The
long-dashed curves are calculated with the dipole cross sec-
tion, Eq. (6), without unitarity effects (denoted GRV94) using
the GRV94 LO parameterization [23] in calculating the dipole
cross section. The solid curves are the result including unitar-
ity effects with the same GRV94 parameterization as initial
input. The use of this parameterization is justified properly in
Refs. [2, 24]. The dot-dashed curves are calculated with the
dipole cross section, Eq. (6), using as input the GRV98 para-
meterization for the gluon structure function. The aim of this
comparison is to verify to what extent an updated parameteri-
zation can absorb unitarity effects. It is verified that at RHIC
energy, the unitarity effects could be absorbed in the parame-
terization. However, at LHC energy the situation is quite dif-
ferent, and the results are completely distinct. The deviation
is important mostly at large pT , once perturbative correction
are under investigation. The unitariy corrections are enhanced
as the energy increases.

III. DILEPTON PRODUCTION IN THE COLOR GLASS
CONDENSATE

The Color Glass Condensate (CGC) picture holds in a
frame in which the hadron propagates at the speed of light and,
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by Lorentz contraction, appears as a thin two-dimensional
sheet located at the light cone. The formalism supporting this
picture is in terms of a classical effective theory valid at small
x region (large gluon density), and was originally proposed to
describe the gluons in large nuclei [25].

In this theory, the small x gluons are radiated from fast mov-
ing color sources, which are partons with larger values of x,
being described by a color source density ρa with internal
dynamics frozen by Lorentz time dilatation, thus forming a
color glass. The observables are obtained by means of an av-
erage over all configurations of the color sources, performed
through a weight functional WΛ+ [ρ], which depends upon the
dynamics of the fast modes, and upon the intermediate scale
Λ+, which defines fast (p+ > Λ+) and soft (p+ < Λ+) modes.
The effective theory is valid for soft momenta of order Λ+.
Indeed, reaching much softer scale, there are large radiative
corrections which invalidate the classical approximation. The
modifications to the effective classical theory are governed by
a functional, nonlinear, evolution equation JIMWLK [26, 27]
for the statistical weight functional WΛ+ [ρ] associated with the
random variable ρa(x).

In this approach, the diagrams that contributes to the dilep-
ton production are the same considered in the dipole approach.
In this way, the hadronic cross section for the dilepton produc-
tion is obtained using the collinear factorization and consider-
ing the forward rapidity region [9, 13],

dσpA→ql+l−X

d p2
T dM dy

=
4π2

M
R2

A
α2

em

3π

×
∫ dlT

(2π)3 lT W (pT , lT ,x1)C(lT ,x2,A), (9)

with y being the rapidity, s the squared center of mass energy,
lT the total transverse momentum transfer between the nu-
cleus and the quark and RA the nuclear radius. The expression
(9) is restricted to the forward region only, which means pos-
itive rapidities y (or positive xF ). The function W (pT , lT ,x1)
can be written as [9],

W (pT , lT ,x1) =
∫ 1

x1

dzzF2(x1/z,M2)

×
{

(1+(1− z)2)z2l2
T

[p2
T +M2(1− z)][(pT − zlT )2 +M2(1− z)]

− z(1− z)M2
[

1
[p2

T +M2(1− z)]

− 1
[(pT − zlT )2 +M2(1− z)]

]2
}

, (10)

which selects the values of lT larger than pT [13] Here,
F2(x1/z,Q2) is the partonic structure function, which takes
into account the quark distribution of the proton projectile and
z≡ p−/k− (light-cone variables) is the energy fraction of the
proton carried by the virtual photon. In the Eq. 9 the function
C(lT ,x2,A) is the field correlator function which, disregarding
the energy and nuclear dependence, can be defined by [28],

C(lT )≡
∫

d2x⊥eilT ·x⊥〈U(0)U†(x⊥)〉ρ, (11)

with the averaged factor representing the average over all con-
figurations of the color fields sources in the nucleus, U(x⊥) is
a matrix in the SU(N) fundamental representation which rep-
resents the interactions of the quark with the classical color
field of the nucleus. All the information about the nature of
the medium crossed by the quark is included in the function
C(lT ,x2,A). In particular, it determines the dependence on the
saturation scale Qs (and on energy), implying that all satura-
tion effects are encoded in this function. In the Ref. [13] we
have shown that the saturation effects appear in the function
C(lT ,x2,A) only at small lT , and as discussed here, the func-
tion W (pT , lT ,x1) selects values of lT larger than pT , imply-
ing that only dileptons with pT smaller than QS should carry
information about the CGC. Regarding the structure function
F2(x1/z,M2), the CTEQ6L parametrization [29] was used and
the lepton pair mass gives the scale for the projectile quark
distribution. Here some comments are in order; the cross sec-
tion obtained in this approach is very similar to that obtained
in the dipole picture. Indeed, the dilepton production in the
CGC approach is a dipole approach, in the momentum space,
with a particular configuration to the nuclear (cilindrical one).

The energy dependence introduced in the Eq. (9) in the
correlator function C(lT ,x2,A) is performed by means of the
saturation scale Qs(x2,A). We employed the GBW parame-
trization [20] to obtain the x dependence of the saturation scale
(Q2

s = (x)(x0/x)λ), and the parameters have been taken from
the dipole cross section extracted from the fit procedure by
CGCfit [30] parametrization. The nuclear radius, which ap-
pears in the Eq. (9), is taken from the parametrization which
has the form, RA = 1.2A1/3 f m, while the proton radius (for
pp calculations) is taken from the fit [30] (Rp = 0.6055 f m).

In order to obtain numerically the dilepton differential cross
section, the function C(lT ,x,A) need to be specified. The sim-
plest model to this function should be a local Gaussian, how-
ever, it was verified that this consideration implies in a non-
realistic description of the RHIC experimental results con-
cerning the hadron transverse momentum distribution [31]. In
this work we have evaluated the cross section using the func-
tion C(lT ,x,A) from the mean-field asymptotic solution for
the JIMWLK evolution equation [32], introducing an x de-
pendence through the nuclear saturation scale [13], which is
parametrized in the form Q2

s (x,A)= A1/3Q2
s (x). These consid-

erations imply for the correlator the following form [31, 33]

C(lT ,x,A)≡
∫

d2x⊥eilT ·x⊥eχ(x,x⊥,A), (12)

with

χ(x,x⊥,A) ≡ − 2
γc

∫ d p
p

(1− J0(x⊥p))

× ln

(
1+

(
Q2

2(x,A)
p2

)γ)
, (13)

where, γ is the anomalous dimension (γ≈ 0.64 for BFKL) and
c≈ 4.84 [31, 33].
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A. Saturation effects in dilepton production

As discussed in the introduction of this work, the Cronin
effect is present in the measurement of the hadron transverse
momentum spectra. Here, the onset of the same effects in
the dilepton pT and rapidity spectra is investigated for a lep-
ton pair mass M = 6 GeV. In a previous work [13], the in-
vestigation was performed for the pT distribution of dileptons
with mass M = 3 GeV. Now, one evaluates the pT and rapidity
spectra for the dilepton at RHIC and LHC energies,

√
s = 200

GeV and
√

s = 8800 GeV, respectively.
We have defined the nuclear modification ratio for the dilep-

ton production in the following form,

RpA =

dσ(pA)
πR2

AdMdyd p2
T

A1/3 dσ(pp)
πR2

pdMdyd p2
T

. (14)

Some attention should be given to the uncertainty in the de-
termination of the nuclear radius, then each cross section is
divided by the nuclear or proton radius. The factor A1/3 was
used in the denominator to guarantee a ratio RpA about 1 at
large pT .

The comparison between the results for the ratio RpA con-
sidering two distinct lepton pair masses can be performed and
the effect of the suppression of the ratio is reduced if the dilep-
ton mass is increased at a fixed rapidity [34]. Such result can
be verified in the Ref. [6], where an analysis was performed
for the dilepton production at RHIC and LHC energies in the
color-dipole formalism, however, there the ratio was defined
with a different normalization.

This analysis regards forward rapidities, which maximum
value depends on the value of the mass and the transverse mo-
mentum. The region of large mass and large pT implies small-
est values for the rapidity limit. At RHIC energies the maxi-
mum rapidity value reaches 4 and at LHC energies it goes up
to 7.

In the Fig. 3 the nuclear modification ratio for RHIC ener-
gies is shown for dilepton mass M = 6 GeV. A weak depen-
dence of the ratio RpA with the rapidity range is verified, since
for a fixed pT value, the ratio does not vary significantly with
rapidity. This occurs due to the fact that one evaluates the ratio
RpA only at forward rapidities, in a short limited range. For the
hadron spectra, the suppression of the ratio with the increase
of the rapidity is verified for a large range of rapidities, from
y = 0 to forward ones (y = 3.2) [35]. In the case of the dilep-
tons, the same suppression should be verified, however the
calculation is restricted to the forward rapidities, providing a
small suppression in the rapidity range investigated here. The
suppression of the ratio (absence of a Cronin type peak) in the
pT distribution is verified, although independent of the rapid-
ity. Our results are similar to the obtained in the Ref. [8] for
RHIC energies with dilepton mass M = 2 and 4 GeV. There,
the ratio RpA presents smaller values in the pT spectra at large
rapidities.

In the Fig. 4 the nuclear modification ratio for LHC ener-
gies is shown for dilepton mass M = 6 GeV. Due to the large
range of forward rapidities at LHC energies, one verifies the
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FIG. 3: Ratio RpA as a function of rapidity and pT for dileptons at
RHIC energies.
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FIG. 4: Ratio RpA as a function of rapidity and pT for dileptons at
LHC energies.

large suppression of the nuclear modification ratio with the in-
crease of the rapidity. This suppression is intensified at large
pT . The suppression of the same ratio with the transverse mo-
mentum is also verified and is intensified at large rapidities.

At LHC kinematical region, there are significant effects of
saturation predicted by the Color Glass Condensate: the large
suppression of the nuclear modification ratio comparing with
the expected Cronin peak shows the existence of these effects,
in both, rapidity and transverse momentum distributions.

The predicted ratio for RHIC and LHC energies is evaluated
considering the same description for both, nucleus and nucle-
ons. This implies that the nucleon is not well described, since
at intermediated pT the nucleon is in the linear regime, and we
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are using a non-linear approach to the proton. This simplifica-
tion provides some uncertainty in the ratio at large pT , mainly
at RHIC energies, where the proton saturation scale reaches
small values. At LHC energies, the uncertainty in the ratio
at large pT is reduced, since the saturation scale of the pro-
ton reaches larger values. The effect of considering a realistic
proton appears as a small reduction of the ratio RpA at large
pT , since there is no large suppression in proton gluon density
in the linear regime. However, a realistic description of the
proton requires the determination of a new parametrization,
which is out of the scope of this work.

IV. CONCLUSIONS

In this work the dilepton production was shown to probe
perturbative unitarity corrections at large pT and at the same

time, provides information about the dense saturated regime
(Color Glass Condensate) at the small pT . The unitarity per-
turbative corrections were investigated in the dipole approach,
while the saturation effects were investigated considering the
CGC approach. The pT distribution was shown to be a power-
ful distribution to seeking unitarity and saturation effects. The
rapidity spectra provides another distribution useful to inves-
tigate saturation effects, mainly at forward ones. These fea-
tures qualify dileptons as a cleanest probe to the Color Glass
Condensate dynamics at forward rapidities and of the unitarity
corrections.
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[20] K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017
(1999); Phys. Rev. D 60, 114023 (1999).

[21] M. Glück, E. Reya, and A. Vogt, Eur. Phys. J. C 5, 461 (1998).
[22] H. L. Lai et al. [CTEQ Collaboration] Eur. Phys. J. C 12, 375

(2000).
[23] M. Glück, E. Reya, and A. Vogt, Z. Phys. C 67, 433 (1995).
[24] M.B. Gay Ducati, M.V.T. Machado, Phys. Rev. D 65, 114019

(2002).
[25] L. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994);

ibid. 49, 3352 (1994).
[26] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert,

Nucl. Phys. B 504, 415 (1997); Phys. Rev. D 59, 014014
(1999).

[27] E. Iancu, A. Leonidov, and L. D. McLerran, Nucl. Phys. A 692,
583 (2001); Phys. Lett. B 510, 133 (2001);

[28] F. Gelis, A. Peshier, Nucl. Phys. A 697, 879 (2002).
[29] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, and

W.K. Tung, JHEP 0207, 012 (2002).
[30] E. Iancu, K. Itakura, and S. Munier, Phys. Lett. B 590, 199

(2004).
[31] J. P. Blaizot, F. Gelis, and R. Venugopalan, Nucl. Phys. A 743,

13 (2004)
[32] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B 510,

133 (2001).
[33] E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A 724, 181

(2003).
[34] M.A. Betemps, M.B. Gay Ducati, Phys. Lett. B 636, 46 (2006).
[35] I. Arsene et al. [BRAHMS Collaboration], Phys. Rev. Lett. 93,

242303 (2004).


