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Three non inductive current drive methods that can be applied to compact toroids are studied. The
use of neutral beams to drive current in �eld reversed con�gurations and spheromaks is studied
using a Monte Carlo code that includes a complete ionization package and follows the exact particle
orbits in a self-consistent equilibrium calculated including the beam and plasma currents. Rotating
magnetic �elds are investigated as a current drive method for spherical tokamaks by employing
a two dimensional model with �xed ions and massless electrons. The time evolution of the axial
components of the magnetic �eld and vector potential is obtained by combining an Ohm's law that
includes the Hall term with Maxwell's equations. The use of helicity injection to sustain a 
ux core
spheromak is studied using the principle of minimum rate of energy dissipation. The Euler-Lagrange
equations obtained using helicity balance as a constraint are solved to determine the current and
magnetic �eld pro�les of the relaxed states.

I Neutral beam current drive

The use of neutral beams to sustain the current in

a �eld reversed con�guration (FRC) reactor was pro-

posed many years ago [1]. More recently, laboratory

experiments where a neutral beam is injected into an

existing FRC have been performed [2]. Unfortunately,

the lifetime of these experiments is much shorter than

the slowing down and thermalization times and there-

fore our results, which apply to a steady-state situation,

can not yet be compared with the experimental observa-

tions. Spheromaks are formed and sustained by helicity

injection and the use of alternative methods is generally

not considered. However, using neutral beams to pro-

duce part of the current could reduce the amplitude of

the 
uctuations required for helicity injection current

drive thus improving the con�nement. This behavior

has been observed in recent RFP experiments [3]. In

addition, the use of neutral beams will result in addi-

tional heating and better control of the current pro�le.

I.1 Monte Carlo code and equilibrium

The Monte Carlo code employed in this study fol-

lows the trajectories of an ensemble of beam particles

moving in a self-consistent MHD equilibrium. The ex-

act orbits are needed because the large radial excur-

sions of the energetic beam particles prevent the use

of gyro-averaging. Neutral particles are injected and

the code calculates their ionization, stopping and ther-

malization. This information is used to reconstruct the

spatial distribution of the beam density, current and

transferred power and force in steady state.

The ionization processes included are ionization by

Coulomb collisions with ions and electrons, ionization

by charge exchange and multistep processes: i.e., ex-

citation followed by ionization. The e�ect of Coulomb

collisions is described using a Fokker-Plank collision op-

erator and the momentum and energy transferred to

electrons and ions are evaluated separately. The injec-

tion geometry is shown in Fig. 1. The beam is injected

at the midplane (z = 0) and perpendicular to the mag-
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netic axis. It is assumed to be cold and non divergent

and is considered to be a point source (negligible cross

section). Setting the values of the neutral injection cur-

rent (IN ), the energy of the beam particles (EN ) and

the impact parameter (b), the beam is completely de-

termined.
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Figure 1. Injection geometry.

The plasma equilibria are solutions of the Grad-

Shafranov equation with an extra term representing

the beam current density. We assume that the beam

pressure is small compared to the plasma pressure and

therefore neglect the beam contribution to the pressure.

The temperature is considered uniform and equal to 500

eV for both electrons and ions. With these approxima-

tions, the Grad-Shafranov equation can be written as:
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where  is the poloidal 
ux function, I is the poloidal

current (set to zero for FRCs), jb is the beam current

density and P is the plasma pressure. We assume that

the pressure and poloidal current are related to the

poloidal 
ux though:
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where G0 and I0 are constants,  0 is the magnetic 
ux

at the magnetic axis andD is the hollowness parameter.

The equation is �rst solved with jb = 0 and G0 is de-

termined by requesting that Bz(rs; 0) = B0. This equi-

librium is employed to calculate the number of plasma

particles. Then, we run the Monte Carlo code with

this equilibrium and calculate jb. Introducing jb into

eq.(1) a new equilibrium is calculated. This procedure

is repeated until the solutions converge.

I.2 Ionization and trapping

In the code, a particle is considered lost when it

reaches the ends of the plasma or when its radius be-

comes larger than the wall radius. For the FRC param-

eters considered in this study, the fraction of neutral

particles that is not ionized is negligible small. For in-

jection energies below 40 keV, the losses are signi�cant

only for b & 27cm. As EN increases, the maximum

impact parameter which results in complete ionization

becomes smaller. The particles reach the high density

region even when ionization occurs far from there; all

the particles injected with b between 15 and 25 cm cross

the null. This is seen in Fig. 2 which shows the spatial

distribution of beam ions after completing their �rst or-

bit. It is clear that there are signi�cant di�erences with

respect to devices with a large toroidal �eld, where the

beam energy and the injection geometry are selected in

order to trap the beam close to the plasma core.

b=26 cm

b=16 cm

b=21 cm

a)

b)

c)

Figure 2. FRC, spatial distribution of beam ions after �rst
orbit.
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The situation in spheromaks is di�erent due to the
presence of a toroidal �eld and a close �tting 
ux con-
server. Particles ionized inside the separattrix can nev-
ertheless hit the wall due to their large Larmor radius.
In addition, the toroidal �eld produces a fundamental
change in the behavior of the particles. This can be
seen comparing Fig. 3, with Fig. 2. For b smaller
than the radius of the magnetic axis (32 cm) ioniza-
tion can occur over a wide region and this results in
a broad initial particle distribution. When b = 32 cm,
most particles are ionized and trapped close to the mag-
netic axis. Finally, when b > 32 cm the particles are
trapped in orbits that oscillate around a given 
ux sur-
face. The amplitude of this oscillation depends on the
injection energy. Another consequence of the presence
of a toroidal �eld is that a fraction of the particles,
which depends on the injection energy and b, becomes
trapped in banana type orbits. This is shown in Fig. 4,
which presents a plot of lost and trapped particles as
a function of the injection energy for three values of b.
At low injection energy, a large fraction of the particles
become trapped in banana orbits while at high energy
the dominant e�ect is particle losses due to collisions
with the wall.

b=20 cm

b=32 cm

b=40 cm

a)

b)

c)

Figure 3. Spheromak, spatial distribution of beam ions after
�rst orbit.
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Figure 4. Spheromak, lost and trapped particles as a func-
tion of the injection energy.

I.3 Current drive

Fig. 5 shows the beam plasma current as a function
of the injection current (Fig. 5a) and energy (Fig. 5b)
for FRCs with hollow (D = 0:5) and peaked (D = �10)
pro�les. At low injection current the beam current in-
creases linearly. At higher currents, the deviation from
a linear dependence is due to the increase in the local
�eld and density produced by the beam current in the
high � plasma. This e�ect is more noticeable for peaked
equilibria. The dependence of the beam plasma current
on the injection energy is complicated due to the varia-
tion of the ionization cross section and stopping power
with energy. At high energy, the beam plasma current
is signi�cantly smaller for peaked equilibria due to the
higher density produced by the e�ect discussed above.

In spheromaks, the beam plasma current shows a
stronger dependence upon the impact parameter than
in FRCs. This is seen in Fig. 6a which presents a plot
of Ib as a function of b for EN = 20 keV and IN = 100
A. The maximum current is obtained when b is approx-
imately equal to the radius of the magnetic axis (b0).
This is the result of a competition between two e�ects.
When b is larger or smaller than b0, the fraction of lost
plus trapped particles increases as shown in Fig. 4. On
the other hand, the density and stopping are larger at
the magnetic axis. Fig. 6b shows that at low injection
current (IN < 100A) Ib increases almost linearly with
IN and that ,again, the maximum current is obtained
when b = b0. The dependence of Ib with the injection
energy is shown in Fig. 6c for three values of the im-
pact parameter. The case with b = b0 shows again the
highest beam plasma current.
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Figure 5. FRC, beam plasma current as a function on the
injection current and energy.

Fig. 7 shows the spatial distributions of plasma and
beam densities, beam current and transferred power
for a peaked FRC equilibrium with EN = 20 keV ,
b = 21cm and IN = 100 A. The peak in the plasma
density is due to the e�ect of the beam current upon the
equilibrium discussed above. The beam density shows
two radial peaks which are due to fact that in their
radial oscillations the particles spend more time at the
turning points thus increasing the density in this region.
A similar e�ect can be observed in the beam current
distribution. The power transferred to the plasma does
not show two peaks because it depends upon the val-
ues of the beam and plasma densities. In this case the
peak in the plasma density is large enough to overcame
the double peaked structure of the beam density. Fig.
8 shows similar plots for a spheromak with the same
values of IN and EN and b = 32 cm. It can be seen
that the plasma density does not change appreciably
due to the beam and that the beam current, density
and power remain well localized around the magnetic
axis.
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Figure 6. Spheromak, beam plasma current as a function
of the impact parameter, injection current and injection en-
ergy.
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Figure 7. FRC, spatial distribution of plasma and beam
densities, beam current and transferred power for EN = 20
keV , b = 21 cm and IN = 100A.
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Figure 8. Spheromak, spatial distribution of plasma and
beam densities, beam current and transferred power for
EN = 20 keV , b = 32 cm and IN = 100A.

II Rotating magnetic �eld cur-

rent drive in spherical toka-

maks

Rotating magnetic �elds (RMF) have been used to
drive current in Rotamaks [4] and FRC [5]. Although
these devices generally operate without a stationary az-
imuthal (toroidal) magnetic �eld, some rotamak experi-
ments included a conductor at the axis of the discharge
vessel, producing con�gurations which are similar to
spherical tokamaks (ST) [6]. Due to the current in-
terest in STs, which has prompted the construction of
several new devices, the development of RMF current
drive as an eÆcient method for this concept would be
of great importance.

II.1 Physical model and equations

The con�guration considered is shown in Fig. 9. It
consist of an in�nitely long annular plasma column with
inner radius ra and outer radius rb. Inside the column
r < ra there is a uniform, stationary, axial current den-
sity that produces the vacuum toroidal �eld. The coils
that produce the transverse, rotating magnetic �eld are
assumed to be far from the plasma and their e�ect is

introduced via the boundary conditions imposed at rc
(rc >> rb ). The ions are considered to be �xed and
the electrons are described using an Ohm's law that
contains the Hall term:

r a

r b

r c

Figure 9. Cross section of the con�guration employed.

E = �j+
1

en
(j�B) (3)

where � is the resistivity, which we assume to be uni-
form. Using Ohm's law and Maxwell's equations a set
of coupled equations for Bz and Az can be obtained.
Since the contribution of the uniform axial current to
Az can be calculated analytically, we separateAz in two
parts: Az= Az;vac + Az;pl, where Az;vac contains the
contribution of the stationary axial current and Az;pl

the contribution of the plasma and the external coils.
Assuming that the rotating magnetic �eld produced by
the coils can be written as:

Brot
r = �B! cos(!t� �)

Brot
� = �B! sin(!t� �)

and normalizing the time with !, the radius with rb and
the amplitude of the magnetic �eld with B! we obtain
the following set of dimensionless equations:
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where:

r̂ =
r

rb
; � = !t; B =

Bz

B!
; A =

Az;pl

B! rb
(6)
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d

and Btor is the vacuum toroidal �eld at r̂ = 1, normal-
ized to B!. The two dimensionless parameters, 
 and
�, are de�ned as:
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where Æ is the classical skin depth, 
!;e is the electron
cyclotron frequency calculated with the amplitude of
the RMF and �e;i is the electron-ion collision frequency
(�e;i = �ne2=me). When 
 >> 1, the electrons can be
considered magnetized by the RMF. Knowing A and
B, the other magnetic �eld components and the cur-
rent density can be easily calculated.

II.2 Numerical method and boundary
conditions

The computational domain is divided in three re-
gions. In 0 � r̂ < r̂a, region I, there is a uniform
axial current and no plasma. Since A contains only
the contribution of the plasma and the RMF we have:
r2A = 0. Since there are no azimuthal or radial cur-
rents in this region, B must be uniform (but can be

time-dependent). Inside the plasma, r̂a < r̂ < 1, re-
gion II, we solve Eqs. 4 and 5. In 1 < r̂ < r̂c, region
III, there is vacuum and therefore B is uniform and
r2A = 0.

At r̂ = r̂c we set:

A(r̂c) = r̂c sin(� � �)
�
1� e��=�0

�
; (7)

where the exponential is introduced to allow for a slow
"turn on" of the rotating �eld and r̂c is taken large
enough for the results to be independent of its speci�c
value. At r̂ = 1 and r̂ = r̂a, the radial derivative of A
must be continuous (B� = �@Az=@r). To obtain the
results presented below, the value of B in region III was
kept constant throughout the computation but it is also
possible to introduce a 
ux conserver and adjust B af-
ter each time step to satisfy axial 
ux conservation. In
region I, B is uniform but not constant (in time) and we
calculate its value using Stoke's theorem. Considering
a circumference of radius r̂a + h, where h is the radial
grid spacing in region II, we can write:
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The equation for the evolution of A� in region II is
obtained from the �-component of Ohm's law, using
E=-@A=@t.

II.3 Results

Normalized quantities are employed in the plots pre-
sented below and the eÆciency is de�ned as the ratio
between the azimuthal plasma current and the cur-
rent that would be produced if all the electrons ro-
tate rigidly with frequency !. Fig. 10 is a plot of the
steady-state eÆciency vs. Btor for 
 = 16:6; � = 11:07
and ra = 0:15: The eÆciency is 1, as in FRCs, when
Btor = 0 and decreases to 0.15 for Btor = 10. It should
be noted, however, that due to the larger radius of the
plasma in a tokamak, as compared with an FRC, an ef-
�ciency of 0.15 could still result in a signi�cant plasma
current. Fig. 11 presents a similar plot for 
 = 14:9
and the same values of � and ra as Fig. 10. In an FRC,
the same values of � and 
 result in incomplete �eld
penetration and an eÆciency of 0.42 [7]. It can be seen

in Fig. 11 that for small values of Btor (Btor . 1:26)
there are two steady-state solutions. The initial condi-
tions determine the branch towards which the system
evolves. If we set Btor < Bcrit

tor and start with a plasma
column that has no azimuthal current, the steady-state
solution follows the low eÆciency branch (dashed line)
in Fig. 11. When Btor becomes larger than the critical
value, and the same initial conditions are employed, the
eÆciency of the steady-state solution jumps to the full
line in Fig. 11. To access the high eÆciency solution
for Btor less than the critical value (dotted line) it is
necessary to start with a steady-state solution having
Btor > Bcrit

tor and slowly decrease Btor. The eÆcien-
cies obtained in the high eÆciency branch of Fig. 11
(
 = 14:9), are very similar to the eÆciencies obtained
with 
 = 16:6 (Fig. 10). This indicates that, in the
presence of a steady toroidal �eld, plasmas having dif-
ferent values of 
 can display a very similar behavior. In
fact, the similarity between the high eÆciency regime of
Fig. 11 and the regime of Fig. 10 extends to the other
features analyzed below (diamagnetism, current pro�le,
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etc.). In what follows we will consider two regimes: the
regime of Fig. 10, with 
 = 16:6, and the low eÆciency
regime of Fig. 11, with 
 = 14:9
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Figure 10. EÆciency vs. steady toroidal �eld for 
 = 16:6;
� = 11:07 and r̂a = 0:15.
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Figure 11. EÆciency vs. steady toroidal �eld for 
 = 14:9;
� = 11:07 and r̂a = 0:15.

The e�ect of the steady toroidal �eld on the az-
imuthal current density pro�le is shown in Fig. 12,
which presents a plot of the averaged (over �) j� vs. r
for the same parameters as Fig. 11 and three values of
Btor. When Btor = 0 (full line) there is a large region,
up to r �= 0:5, inside the plasma with negligible cur-
rent density and a narrow region, r � 0:9, on the out-
side where the electrons rotate rigidly with frequency
!. When Btor = 0:5 (dashed line) the current density
increases on the inside, in the region 0:3 � r � 0:5,
and decreases for r � 0:6, giving an overall increase
in the total plasma current. Finally, when Btor = 1:15,
the current density is comparable to that obtained with
Btor =0 for r � 0:6 and signi�cantly smaller at larger
radius. The case with 
 = 16:6 is shown in Fig. 13,
which also presents a plot of <j�> vs. r for 3 values of
Btor. When Btor = 0 the electrons rotate rigidly and
the eÆciency is 1. As the steady toroidal �eld increases,

a region with negligible, even reversed, current density
appears resulting in a reduction in the total current. As
Btor increases further the width of this region increases.
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Figure 12. Averaged (over �) azimuthal current density as
a function of normalized radius for 
 = 14:9; � = 11:07,
r̂a = 0:15 (low eÆciency branch).
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Figure 13. Averaged (over �) azimuthal current density as
a function of normalized radius for 
 = 16:6; � = 11:07,
r̂a = 0:15 (high eÆciency branch).

Experimental measurements and theoretical calcu-
lations in con�gurations with a steady toroidal �eld
have shown the existence of poloidal currents, which
are generally diamagnetic. We studied this issue for
the two conditions indicated above. For the low eÆ-
ciency regime of Fig. 11 there is a signi�cant diamag-
netic e�ect, which is shown in Fig. 14. This �gure
presents a plot of the ratio between the averaged (over
�) azimuthal �eld and the vacuum �eld as a function
of r. For Btor = 0:5 the diamagnetic well extends from
r �= 0:3 to the outer plasma boundary, with a maximum
reduction in the total �eld of over 20% (compared with
the vacuum value). For Btor = 1:15 the width and
depth of the well decrease but the diamagnetism con-
tinues to be signi�cant. For the conditions of Fig. 10,

 = 16:6, the diamagnetism is negligible.
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Figure 14. Ratio between the averaged, total, azimuthal
�eld and the vacuum �eld for 
 = 14:9; � = 11:07 and
r̂a = 0:15 (low eÆciency branch).

II.4 Discussion

As a �rst step towards assessing the possibility of

using RMF current drive in STs, we studied the ef-

fect of a steady toroidal �eld on this method. Our

work presents two main improvements when compared

to previous studies. The �rst is the use of a con�gura-

tion which, albeit 2D, includes a hole at the center of

the plasma thus providing a better representation of a

tokamak. The second is the use of a fully 2D numer-

ical code which solves the time dependent equations

obtained from the basic physical model without further

assumptions.

Although we did not attempt to make a detailed

comparison with the experimental results of Ref. [6], it

is clear that many of the qualitative features observed

in these experiments are reproduced by the low eÆ-

ciency branch of Fig. 2. Our results show that for

some values of the external toroidal �eld, there are two

steady-state solutions with di�erent eÆciencies. When

the steady toroidal �eld is large compared to the rotat-

ing �eld, case of interest for STs, the eÆciency is small

but the total current could still be signi�cant if oper-

ation at frequencies of the order of 106 Hz is possible.

Further studies should be done to �nd the best operat-

ing regime for STs and the corresponding eÆciency and

required power. In addition, improved physical models

should be developed to remove some of the most criti-

cal assumptions employed in this study. A step in this

direction has been recently done by Milroy [8] who em-

ployed an MHD model to study RMF current drive in

FRCs.

III Minimum dissipation states

for 
ux core spheromaks sus-

tained by helicity injection

The use of helicity injection to sustain a spheromak is

very attractive because of its simplicity and high eÆ-

ciency. In general, helicity injection current drive is ex-

plained by assuming that the plasma undergoes some

form of relaxation that allows for a redistribution of the

magnetic 
ux. In this context, relaxation principles

provide a relatively simple method to predict the �-

nal state of plasmas driven by helicity injection. Taylor

and Turner [9] applied the well known minimum energy

principle to a 
ux core spheromak sustained by helicity

injection through the polar caps. Although this prin-

ciple has been successful at explaining the reversal of

the magnetic �eld in the RFP, its use in driven systems

remains questionable. In such systems, other principles

that allow for the introduction of balance constraints

(injection rate=dissipation rate) could be more appro-

priate. One such principle, the principle of minimum

rate of energy dissipation, has been already used to

calculate the relaxed states of tokamaks sustained by

helicity injection [10] [11].

In this paper we employ the principle of minimum

rate of energy dissipation to calculate relaxed states

of a 
ux core spheromak sustained by helicity injec-

tion. Although the geometry considered is very simple,

the result could be of interest for the recently proposed

PROTO-SPHERA experiment [12].

III.1 Minimization, Euler-Lagrange
equations

We assume that the plasma is stationary (v =

0) and minimize the Ohmic dissipation rate sub-

ject to the constraints of helicity balance (injection

rate=dissipation rate) and r � B = 0. This is done

by introducing the following functional:

c
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Z
�j2 dV �
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Z
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where � is the plasma resistivity, ' is the applied elec-

trostatic potential and � and 
 are Lagrange multipli-

ers. In eq.(9), the �rst three terms in the RHS are,

respectively, the Ohmic dissipation rate, the helicity

dissipation rate and the helicity injection rate. Setting

the �rst variation of W equal to zero the cancellation

of the volume term gives the following Euler-Lagrange

equation:

r� j� � j+
�0
2�
r
 = 0 (10)

the boundary conditions needed to solve this equa-

tion are obtained from the physical situation consid-

ered (
ux core spheromak sustained by helicity injec-

tion through the polar caps) and from the cancellation

of the surface term in ÆW .

III.2 Results

Equation (10) is solved numerically using cylindri-

cal coordinates (@=@� � 0) for the con�guration shown

in Fig. 15, which consists in a cylindrical 
ux con-

server with radius equal to its height (0.4 m) and two

electrodes. The radius of the electrodes is one �fth of

the radius of the 
ux conserver and it is assumed, for

simplicity, that the magnetic �eld on the electrodes is

uniform and is an externally controlable parameter. In

reality, the 
ux passing through the electrodes depends

on the current 
owing in the external coils (not shown)

and the plasma current. Our assumption is that the

current in the external coils is adjusted until the de-

sired �eld on the electrodes is obtained.

The method of solution consists in guessing a value

for � and solving the Euler-Lagrange equations. Us-

ing the calculated current and magnetic �eld pro�les,

the helicity injection and dissipation rates are calcu-

lated and compared. If they agree the value of � is

accepted, if not a new value is chosen and the proce-

dure repeated. Fig. 16 shows 
ux contours obtained

for Ve=Bz = 103 V=T . The solution in Fig. 16 a has

� = 12:2157m�1 and an energy dissipation rate (Wdis)

of 1:56 1012 W while the solution in Fig. 16 b has

� = 12:2223 m�1 and Wdis=1:60 1012 W . It is clear

that altough both are solutions of the Euler-Lagrange

equations (both are extrema of the functional), the so-

lution that minimizes the dissipation rate is the one in

Fig. 16 a. For 12:2157 m�1 < � < 12:2223 m�1 solu-

tions with almost no open 
ux are obtained but they

do not satisfy the helicity balance constraint.

Figure 15. Con�guration employed for the 
ux core sphero-
mak.

Fig. 17 shows a sequence of solutions obtained for

decreasing values of Ve=Bz. It is clear that decreasing

Ve=Bz reduces the size of the closed 
ux region. The

behavior of the Lagrange multipliers corresponding to

the solutions with high and low dissipation is shown in

Fig. 18, which presents a plot of � as a function of

log(Ve=Bz). It is seen that both values are very close

and that the di�erence between them decreases when

Ve=Bz decreases. In fact, both values of � are close to

the eigenvalue of the equation r� j = �j with j:n̂ = 0

at the boundary for elongation equal to 1 [13]. Fig.

19 presents a plot of the total plasma current (on open

and closed surfaces) as a function of the applied voltage

for Bz = 0:1T . This �gure shows that signi�cant cur-

rents can be obtained for reasonable values of applied

voltage and magnetic �eld. Of course, this will depend

on the value of the resistivity, which was assumed to

be 2:7� 10�6 
m in this calculation. To conclude, we

present in Fig. 20 2D plots of the toroidal magnetic

�eld and the toroidal current density for the minimum

dissipation solution with Ve = 1000V and Bz = 1T

(see Fig. 16). This shows that if a large enough mag-

netic �eld can be produced large currents could result

at relatively low voltages.
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Figure 16. Flux surfaces for the two solutions with Ve=Bz = 103 V=T .
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Figure 17. Flux surfaces of the solutions obtained for various values of Ve=Bz .
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Figure 18. Value of the Lagrange multiplier as a function of
log(Ve=Bz).

Figure 19. Plasma current as a function of applied voltage
for Bz = 0:1T .

III.3 Discussion

We have shown that the relaxed states of a 
ux
core spheromak calculated using the minimum dissi-
pation principle have closed 
ux surfaces and signi�-
cant plasma current. Although there are solutions of
the Euler-Lagrange equations which satisfy the helic-
ity balance constraint and have the open 
ux region
on the outside, they have higher dissipation rates than
those with the open 
ux on the inside and therefore can
not be considered as true solutions of the minimization
problem. The Lagrange multipliers of both solutions
are very close and their value is approximately equal
to the inverse of the electrode radius. Future work on
this problem should include the use of anisotropic/non-
uniform resistivity.
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