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We study the behavior of a non-relativistic quantum particle interacting with different potentials, in the back-
ground space-time generated by a cosmic string. We find the energy spectra for the quantum systems under
consideration and discuss how they differ from their flat Minkowski space-time values.

The study concerning the influence of potentially observ-
able effects of gravitational fields at the atomic level has been
an exciting research field. Along this line of research the
hydrogen atom, for example, has been studied in different
gravitational fields[1–3]. These studies considered a problem
which suggests potentially observable effects of gravitational
fields at atomic level and showed that an atom placed in a
gravitational field is influenced by its interaction with the lo-
cal curvature as well as with the topology of the space-time,
and as a consequence there is a shift in the energy of each
atomic level which depends on the features of the space-time.
The problem of finding these shifts [4] in the energy levels
under the influence of gravitational fields is of considerable
theoretical as well as observational interest.

The general theory of relativity, predicts that gravitation is
manifested as the curvature of space-time which is character-
ized by the Riemann curvature tensor. Therefore, it seems
interesting to know how the curvature of space-time at the po-
sition of the atom affects its spectrum. On the other hand, we
know that there are connections between topological proper-
ties of the space and its local intrinsic geometry, and therefore
it is not possible to describe completely the physics of a given
system based only on its geometrical features. Thus, it is also
important to investigate the role played by the topology on a
given physical system. Therefore, the problem of finding how
the energy spectrum of an atom is perturbed by a gravitational
field has to take into account the geometrical and topological
features of the considered space-time as well.

As examples of the influence of the topology on an atomic
system, we can mention the studies concerning to quan-
tum mechanics on a cone[5–7], the interaction of a quantum
system with space-times generated by topological defects[8,
9] and the modification of the energy levels of a hydro-
gen atom[3] placed in the gravitational field of a cosmic
string[10].

The space-time of a cosmic string is quite remarkable: its
geometry is flat everywhere apart from the symmetry axis.
The space-time around a cosmic string is locally flat but not
globally. Thus, the external gravitational field due to a cosmic
string[11] may be described by a commonly called conical
geometry. As a consequence of this conical structure, a parti-
cle placed at rest around a straight, infinite, static string will
no be attracted to it. Therefore, there is no local gravity in
the space surrounding a cosmic string. Also there is another

effect produced in this background, namely, the shifts in the
energy levels of a hydrogen atom[3], which corresponds to the
gravitational analogue[12] of the well known electromagnetic
Aharonov-Bohm effect.

We will concerning the effects of the nontrivial topology
of the space-time generated by a cosmic string at the atomic
level. In order to investigate this problem, we consider the
question of how the shifts in the energy spectrum of a parti-
cle are when it experiences different potentials, like the gen-
eralized Kratzer and Morse potentials in the space-time of a
cosmic string.

In what follows we will determine the energy spectrum of
a non-relativistic quantum particle interacting with a Kratzer
potential and in the presence of the gravitational field of a cos-
mic string.

In order to do this, let us assume that a non-relativistic
particle existing in a curved space-time is described by the
Schrödinger equation which reads
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Laplace-Beltrami operator, g = det(gi j ), µ is the mass of the
particle and V is the external potential experienced by it.

The line element corresponding to the cosmic string space-
time is given, in spherical coordinates[10], by

ds2 = −dt2 +dr2 + r2dθ2 +α2r2 sin2 θdϕ2. (2)

The parameter α = 1− 4Gµ̄ runs in the interval (0,1], with
µ̄ being the linear mass density of the cosmic string (In this
paper we will consider c = 1).

The Schrödinger equation in this background can be sepa-
rated as
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where λ is a separation constant and we have used that

Ψ(r,θ,ϕ, t) = R(r)Θ(θ)eimϕe−iEt/�, (5)

where m assumes the values m= 0,±1,±2,±3.....
The solution of the Eq. (4) can be written in the form
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Now, let us turn to the radial equation which can be written
as
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is the effective potential.
Considering the potential in the Eq. (8) as being given by
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which corresponds to the Kratzer potential, where A, and
D are positive constants, substituting Eq. (9) into (7) and
using the fact that λ = −�
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where 1F1 is a confluent hypergeometric function, P =
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This solution diverges, unless
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Then, from this condition we find the energy eigenvalues
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In order to estimate the effect of the presence of the cosmic
string on the energy shifts, we will take α ∼= 0.999999, which
corresponds to a GUT cosmic string. In this case, the shifts
in the energy spectrum of the particle in the presence of the
cosmic string, corresponding to the first two levels, decreases
about 4 × 10−3% , as compared with the values of the flat
Minkowski space-time. This means that the difference in the
energy between the first excited state and the ground state of
a hydrogen atom is very small and corresponds to a decrease
in the wavelength for a transition between these two states of
about 10−3% as compared to the flat Minkowski space-time
value.

Now, we will consider the Morse potential. It can be written
as
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2
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Introducing the variable r − r0 = r ′, it can be written as
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1
2
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This form of the potential is similar to the one which cor-
responds to the isotropic harmonic oscillator plus a constant
term. Thus, the radial part of the Schrödinger equation is
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which is divergent, unless the following condition is fulfilled
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This condition gives us the following result for the energy
spectrum
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An estimation of the shift in the energy levels for this case,
shows that there is a decrease in the energies of about 10−5%
for GUT cosmic strings as compared to the flat space-time
corresponding value.

It is worth commenting that in the two cases considered the
obtained results tell us that the energy spectra are modified as
compared to the flat Minkowski space-time result and these
shifts are connected with the conical structure of the space-
time generated by a cosmic string. In other words, these shifts
in the energies are due completely to the topological features
of this space-time.

To end up, let us comment that the study of a quantum
system in a non-trivial gravitational background, like in the
space-time of a cosmic string may shed some light on the
problems of combining quantum mechanics and general rela-
tivity.
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