
Brazilian Journal of Physics, vol. 32, no. 2B, June, 2002 609

Dynamics and Causality Constraints

Manoelito M. de Souza

Departamento de F��sica, Universidade Federal do Esp��rito Santo

29065-900, Vit�oria, ES, Brazil

Received on 8 October, 2001

The physical meaning and the geometrical interpretation of causality implementation in classical
�eld theories are discussed. Causality in �eld theory are kinematical constraints dynamically im-
plemented via solutions of the �eld equations, but in a limit of zero-distance from the �eld sources
part of these constraints carries a dynamical content that explains old problems of classical electro-
dynamics with deep implications to the nature of physical interactions.

I Introduction

Causality implementation in �eld theory is naturally
connected to the very concept of �eld propagation. Old
and well known problems appear with a �eld in a close
neighbourhood to its sources. Then a careful analysis is
required as the kinematical constraint of a causal prop-
agation is mixed with the dynamics of the �eld-source
interaction. In particular, for a point-like source, there
are problems with in�nities and other signs of incon-
sistency. Thus there is a generalized belief that these
in�nities are consequences of the source point-size di-
mension and, consequently, that a point-particle cannot
be regarded as a viable model for a charged elementary
physical object. This, as shown in the reference [1],
does not correspond to reality. The in�nities associ-
ated to a point-charge self-�eld are consequences of the
way causality has being implemented with the use of
lightcones, whose vertex is a singular point; the �eld
in�nity just re
ects this singularity. This work returns
to the ideas raised in the reference [1] further discussing
its physical and geometrical meanings. Although it is
being based on the case of a point electric charge, its
conclusions are of a wider generality, being valid for
any theoretic framework with causality implementation
(Classical and Quantum Field Theory, Quantum Me-
chanics, General Relativity, Statistical Mechanics, etc).
It shows that the plain Maxwell's theory, in a short-
distance limit, reveals unequivocal and previously un-
suspected signs of its quantum nature (the existence of
photons) through the indication of a discreteness on the
electromagnetic interaction, hidden behind the classical
continuous formalism. It hints a proposal of a new ap-
proach, developed elsewhere [2] where �elds and sources
are symmetrically treated as discrete pointlike objects
from which the standard continuous �elds are retrieved
as spacetime e�ective averages.

This paper is organized in the following way. The
geometric vision of causality is discussed in Section II
with the introduction of the new concept of extended
causality in contraposition to the usual local causal-
ity and of their connection to wave-particle duality. A
generalization of the standard view of causality must be
noticed: the use of hypercone for describing the propa-
gation of massive �elds, characterized by non-constant
proper-times. This includes the lightcone as a limiting
hypercone for massless �elds (constant proper-times)
as in the usual approach. Section III reviews point-
charge electrodynamics in the standard (local causality)
approach, pointing its inherent con
icts with a subja-
cent idea of extended causality. The implications of
extended causality to �eld-source dynamics is exposed
in Sections IV and V. The paper closes in Section VI
with some generic comments about the characteristics
and consequencess of a formulation of �eld theory in
terms of discrete interactions.

II Causality and spacetime

geometry

The notation used is of omitting the spacetime indices
when this causes no ambiguity. For example, @ for @�,
and A(x; �) for a vector �eld A�(x; �); x stands for
both, the event parameterized by x� = (t; ~x) and for
the coordinate x� itself.

Any given pair of events on Minkowski spacetime
de�nes a four-vector �x: In our notation, therefore,
�x is not meant to be necessarily an in�nitesimal,
for which we make use of dx. The propagation of a
free massless �eld on a 
at spacetime of metric ��� =
diag(�1; 1; 1; 1); is restricted by

�x2 = 0; (1)
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which de�nes a local double (past and future) light-
cone containing this four-vector �x: �t = �j�~xj: This
is also a mathematical expression of local causality in
the sense that it is a restriction for the massless �eld to
remain on this lightcone. It is a particular case of the
more generic expression

��2 = ��x2; (2)

which is, besides, the de�nition of the proper time �
associated to the propagation of a free physical object
across �x. As � is a real valued parameter, the Eq. (2)
just expresses that �x cannot be spacelike. Geomet-
rically it is also the de�nition of a three-dimensional
double hypercone, of which the lightcone and the time
axis are just the two extreme limiting cases. �x is the
four-vector separation between a generic event x and
the hypercone vertex. This conic hypersurface is the
support for the de�nition of a propagating �eld. The
hypercone aperture-angle �; 0 � � � �=4; is given by

tan � = j�~xj
j�tj ; c = 1; or ��2 = (�t)2(1 � tan2 �): A

change of the supporting hypercone corresponds to a
change of speed of propagation and is an indication of
interaction.
Let us consider a �eld on a point x of a hypercone de-
�ned by the Eq. (2). Therefore we know �x, the four-
vector determined by x and by its past-hypercone ver-
tex on its source's wordline. Continuity requirements of
the �eld propagation lead us to apply the constraint (2)
on a neighbourhood of x: (�� + d�)2 = �(�x + dx)2

or, after using Eq. (2), ��d� +�x:dx = 0, which may
be written as

d� + f:dx = 0; (3)

where f is a constant four-vector tangent to the hyper-
cone (2), entirely de�ned by �x (free propagation). For
�� 6= 0 it is just

f� :=
�x�

��

���
��2+�x2=0

(4)

For �� = 0 the hypercone (2) reduces to the lightcone
(1) and f to its tangent four-vector along �x; f and
�x are both lightlike. It is important to observe that f
is well de�ned for any �� , including �� = 0, as long as
�x 6= 0: A tangent is not de�ned at a hypercone vertex.
This is a crux point, neglected in the existing literature
[3, 4, 5, 6, 7, 8] which leads to the old and well known
vexing problems of consistency in classical electrody-
namics [1]. Geometrically Eq. (3) de�nes a hyperplane
tangent to the hypercone (2). The simultaneous im-
position of Eqs. (2) and (3) on the propagation of a
free point object produces a much more stringent con-
straint than local causality as the object is restricted
to remain on the intersection of the hypercone (2) with
its tangent hyperplane (3), that is, on the hypercone
generator tangent to f , or the f -generator, for short.
It assures that dx of Eq. (3) is always collinear to �x.

Or, in other words, that a free pointlike object propa-
gates on a straightline (which is tangent to f), exactly
as required by Newton's �rst law. This corresponds to
an ampli�ed concept of causality which will be referred
to as extended causality.

Local and extended causality correspond to two dis-
tinct and complementary (like geometric and wave op-
tics) description of a same physical system. They corre-
spond to di�erent perceptions of the spacetime available
to the free evolution of a physical system from a given
initial condition, respectively as foliations of hypercones
and as congruences of straight lines, the hypercone gen-
erators. So, whereas the �rst one is appropriated for a
description in terms of continuous and extended objects
like a 
uid, a �eld, a wave, the second one implies on a
perception of them as discrete sets of points, describing
individually each point.

III Point-charge electrodynam-

ics

It is worthwhile to review the standard approach for
the point-charge electrodynamics vis-�a-vis the extended
causality concept. Consider, for example, z(�), the
worldline of a classical point electron parameterized by
its proper time � ; each event on this worldline belongs
to the (instantaneous) hypercone

��2 +�z2 = 0; (5)

where, again, the four-vector �z is de�ned by the event
z and the vertex of a hypercone (not a lightcone, for
a massive electron) that passes by z; the four-vector
u = dz

d�
is tangent to the worldline (and to the local

hypercone). It satis�es

d� + u:dz = 0; (6)

which corresponds to Eq. (3). A free electron remains
on the u-generator of its hypercone; an accelerated elec-
tron is on a u-generator of its instantaneous hypercone.
So, in a way, classical electrodynamics already uses ex-
tended causality for specifying the state of the classical
electron, and this is consistent with an electron mod-
eled as a point particle. Let us discuss how extended
causality enters in the de�nition of the electromagnetic
�eld in a con
ictive way. It hints to a new consistent
formulation for �eld theory.

Consider now the electromagnetic �eld at x, emit-
ted by this electron. �x = x � z(�) de�nes a family
of four-vectors connecting the event x to events on the
electron worldline z(�): Then, accounting for the mass-
lessness of the electromagnetic �eld, �x2 = 0, the dou-
ble lightcone with vertex at x; intercepts z(�) at two
points: z(�ret) and z(�adv): See the Fig. 1.
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Figure 1. The advanced and the retarded Li�enard-Wiechert
�elds at an event x. �adv and �ret are the two intersections
of the double hypercone �x

2 = 0, for �x = x� z(�), with
the electron worldline z(�).

The retarded �eld emitted by the electron at z(�ret)
must remain in the z(�ret)-future-lightcone, which con-
tains x; and according to the standard interpretation
[3, 4, 5], the advanced �eld produced by the electron
at z(�adv) must remain in the z(�adv)-past-lightcone,
which also contains x. So, the electromagnetic poten-
tial �eld is de�ned just with local causality. There is
then a clear dichotomy with respect to causality imple-
mentation in the treatment done to the electron and to
its self-�eld [9], caused by the perception of the electron
as a point particle, a discrete object, and of its �eld as
a continuous and distributed one. Extended causality
requires and implies discrete objects.

The (retarded and advanced) Li�enard-Wiechert so-
lutions of classical electrodynamics [3, 4, 5] are

A�(x) =
eu�(�)

�

����
�=�s

; for � 6= 0; (7)

where �s stands for either �ret or �adv , which are, re-

spectively, the retarded and the advanced solution to
the constraint

(x� z(�))2 = 0; (8)

imposed to A(x); and

� := �u:�x; (9)

with �x = x� z(�), represents j�~xj in the charge rest-
frame. Although A(x) is restricted just by Eq. (1),
having thereby support on the lightcone, for the calcu-
lation of its Maxwell �eld

F�� := @�A� � @�A� (10)

on a point x it is necessary to consider A(x) on a neigh-
bourhood of x, and so a constraint equivalent to the Eq.
(3) must be also considered to assure the consistency of
Eq. (1) in this neighbourhood. From Eq. (8) one has

�x:d(x � z) = �x:(dx � ud�) = 0;

which leads to
d� +K:dx = 0; (11)

where K de�ned by

K� =
�x�

�u:�x

���
�s
=

�x�

�

���
�s
; (12)

is a null (K2 = 0) four-vector, tangent to the lightcone
�x2 = 0. K� shows the local direction of propagation
of the electromagnetic �eld emitted by the electron at
�s: In this context, Eq. (11) is a consistency relation of
Eq. (8), assuring its validity for all successive pair of
events (x; z(�)): It implies on

K� = �
@�s
@x�

; (13)

where �s, a solution of Eq. (8), is seen as a function of
x. Then,

c

�
1

e
@�A

�

����
�s

=

�
K�a

�

�
+

u�

�2
@��

�����
�s

=
1

�2

�
K�W

� + u�u
�

�����
�s

; (14)

d

where a := du
d�
;

@��

����
�s

=

�
K�

�
1 + �a:K

�
� u�

�����
�s

(15)

and the ancillary four-vector function W ,

W � = f�a� + u�
�
1 + �a:K

�
g

����
�s

; (16)

has been introduced just for notation simplicity. So,

F�� =
1

�2

�
K�W � �K�W�

�����
�s

(17)

Geometrically the Eq. (11), like the Eq. (3), de�nes
a family of hyperplanes that, for d� = 0, are tan-
gent to the lightcone (8), and are parameterized by
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K� = ���K
� : The use of both constraints (8) and (11)

singles out the light-cone generator tangent to K� and
inserts extended causality in the F de�nition, which
is exhibited on its explicit dependence on K�. But
rigourously this is an inconsistent procedure as an un-
due mixing of local and extended causality on a same
physical object. The inconsistency is on F being de-
�ned as the curl of A(x) which is a continuous �eld with
support on the lightcone. If its support is reduced to
the K-generator of its lightcone, F has to be regarded
as a discrete object, similar, in this aspect, to its very
source, the point electron. The problem, of course, is
not with the de�nition (10) of F but with A(x) being
a propagating extended �eld and, therefore, restricted
by a causality constraint that necessarily requires the
constraint (11) on any �eld derivative. In other words,
there would be no problem with the de�nition (10) if
A(x) where not constrained by (8) because the con-
straint (11) would not be called up then. Since the con-
straint (11) cannot be avoided a completely consistent
formulation requires A(x) being de�ned with extended
causality too. This leads to the consideration of �elds
de�ned with support on (1+1) submanifolds imbedded
in the (3+1) spacetime, \discrete �elds", with a com-
plete symmetry between �elds and sources; both being
discrete objects. This is done in the reference [2]. The
goal of the present paper is just of pointing the exis-
tence of two modes for causality implementation (local
and extended) in �eld theory and their implications to
the meaning and nature of the �elds and of their inter-
actions.

In the standard literature, without knowledge of ex-
tended causality, F is seen as a �eld with support on the
lightcone, i.e. as a continuously extended object and,
then, with the old and well-known problems with in-
�nities and other inconsistencies. These problems just
vanish after due consideration of extended causality [1].

The origin of this imbroglio is that the Equation
(11), as it can be formally obtained from a derivation
of Eq. (8), has been historically considered [3, 4, 5]
as if all its e�ects were already described by Eq. (8),
included in it and not, as it is the case, a new and inde-
pendent restriction to be considered at a same footing
and in addition to it. An evidence of this is that Eqs.
(8) and (11) carry distinct physical informations as we
discuss now.

IV Dynamics and causality

Eq. (11) connects the restriction on the propagation of
the charge to the restriction on the propagation of its
emitted or absorbed �elds. Like its parent Eq. (8) it is
just a kinematical restriction. But in the short-distance
limit, when x tends to z(�), Eq. (11), in contradistinc-
tion to Eq. (8), is directly related to the changes in
the charge's state of movement due to the emission or

to the absorption of electromagnetic �eld, that is, to
the charge-�eld interaction process. Therefore, in this
short distance limit Eq. (11) also carries dynamical in-
formation, not only kinematical, as is the case of Eqs.
(5) and (8).

It is instructive to have a close look on the physical
meaning of Eqs. (8) and (11) for the case of an emit-
ted �eld. Eq. (8) is a restriction on the propagation
of a single object, the �eld emitted by the charge at
z(�), whereas the Equation (11) connects restrictions
on the propagation of two distinct physical objects, the
electron and its �eld: d� describes a displacement of
the electron on its worldline while dx is the four-vector
separation between two other points where the electron
self-�eld is being considered. If d� = 0 then dx is light-
like and collinear to K, asK:dx = 0: Thus, dx is related
to a same electromagnetic signal at two distinct times.
The electromagnetic �eld at x + dx can be seen as the
same �eld at x that has propagated to there with the
speed of light. On the other hand, if d� 6= 0 then dx is
not collinear to K and it is related to two distinct elec-
tromagnetic signals, emitted at distinct times. See the
Fig. 2. In this case, the �eld at x+ dx cannot be seen
as the same �eld at x that has propagated to there. It
is another �eld emitted by the charge at another time.
This apparently obvious interpretation of the constraint
(11) reveals, however, deep physical implications as it
perceives as being distinct objects the �elds F in two
events that are not along a same four-vector K. This
comes from extended causality requiring a F de�ned
with support on a K-light-cone generator and con
ict-
ing with local causality in the de�nition of A(x).

Figure 2. The �eld at the point Q may be considered as the
same �eld at x that has propagated to Q, because dxQ is
collinear to K. The �elds at events x and S are two distinct
signals emitted by the charge at two distinct times �ret and
�ret + d� as dxS is not collinear to K.

But a F de�ned with support on a lightcone gen-
erator produces strong and experimentally observable
consequences. The Eq. (11) implies on

1 +K:u = 0: (18)



Brazilian Journal of Physics, vol. 32, no. 2B, June, 2002 613

During the free propagation of an electromagnetic ra-
diation, the four-vector K of its light-cone-generator
support must be constant. This is in contradistinction
to the standard (local causality) approach where K,
de�ned by Eq. (12), is a continuous function of the
spacetime point. With extended causality Eq. (11) is
replaced by Eq. (3) as K is replaced by f which by
construction is a constant four-vector de�ned by �x,
according to Eq. (4). Then, from a derivation of Eq.
(18), (with f replacing k)

f:a = 0: (19)

1 + f:u = 0 may be seen as a covariant normalization
of f , that in the charge instantaneous rest frame must
satisfy

f0
���
~u=0

= j~f j
���
~u=0

= 1:

The Eq. (19) is a dynamical constraint between the di-
rection f along which the signal is emitted (absorbed)
and the instantaneous change in the charge state of mo-
tion at the retarded (advanced) time. It implies on

a0 =
~a:~f

f0
; (20)

whereas a:u � 0 leads to

a0 =
~a:~u

u0
;

and so, in the charge instantaneous rest frame at the
limiting emission (absorption) time ~a and ~f are orthog-
onal vectors,

~a:~f
���
~u=0

= 0: (21)

This is an observable consequence of extended
causality. For the electromagnetic �eld this is an

old well known and experimentally con�rmed fact
[10, 11, 13]. The demonstration, in the standard for-
malism of continuous �elds, that \radiation is emitted
only in a direction orthogonal to a non-vanishing com-
ponent of acceleration" takes [11] the whole apparatus
of Maxwell's theory. With extended causality it can
be demonstrated on very generic grounds of causality
without reference to any speci�c interaction. Its exper-
imental con�rmation validates extended causality and
makes of it a universal relation, supposedly valid for
all kinds of �elds and sources. This same behaviour,
expressed in Eq. (21), is then expected to hold for all
fundamental (strong, weak, electromagnetic and grav-
itational) interactions. The standard formalism deals
with �elds as continuous and extended objects, like a
wave, and so their direction of propagation K is, nec-
essarily a local function, even for free �elds on a 
at
background spacetime. In contradistinction, extended
causality deals with discrete �eld for which there is a
single constant direction of free propagation. The con-
cept of a discrete radiation as a photon is natural and
inherent, right after its emission (or right before its ab-
sorption) and does not require taking the �eld large-
distance limit as in the usual approach.

A. The hypothesis of f being constant

The relevance of Eq. (19) is on its focus on the
charge-�eld interaction process. It is strongly depen-
dent on f being taken as a constant during the �eld
propagation which implies free propagation between
consecutive discrete interaction events. A non-constant
f , and so here it is being replaced back to K, would im-
ply on a continuing interaction and this would change
the above results. From Eqs. (12) and (15),

c

@�K� =
1

�
(��� +K�u� +K�u� �K�K�)�K�K�a:K = @�K� := K�� : (22)

Then the hypothesis of a non-constant K would not a�ect Eq. (18) because

K���x� = �K��K
� = K�(1 +K:u) � 0; (23)

but Eq. (19) would be replaced by just an identity as

r�(1 +K�u
�) = K��u

� �K�K�a
� = K�(1 +K:u) � 0: (24)

d

So, it is clear that the validity of Eq. (19) rests on
a free propagation of the �eld right after its emission
(or, symmetrically, right before its absorption) which
indicates no self-interaction, a de�nitive detachment of

the �eld from its source. Self interaction for the emitted
�eld would also imply, by symmetry, causality violation
for the absorbed �eld as it would be interacting with
the charge even before reaching it.
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V The double simultaneous limit

The above conclusions can be made more evident con-
sidering the fate of both Eqs. (2) and (11) in the limit
when the event x approaches the event z(�s) and its
implications to the �eld energy-tensor1. Nothing obvi-
ously happens to the �rst one; �x just goes to zero. To
the second one the restriction connecting d� to dx be-
comes indeterminated because K is not de�ned in this
limit:

lim
x!z(�s)

K = lim
x!z(�s)

�x

�u:�x
=

0

0
? (25)

For a lightlike signal, Eqs. (2) and (11) together re-
quire that the pair of events x and z(�) belongs to a
same lightcone generator, so that Eq. (25) can be writ-
ten as

lim
x!z(�s)

K

����
�x2=0

d�+K:dx=0

= lim
x!z(�s)

�x

�u:�x

����
�x2=0

d�+K:dx=0

(26)

This notation intends to denote that x approaches z(�s)
through a K-light-cone generator, i.e. by the straight
line intersection of the hypercone (�x2 = 0) and its
tangent hyperplane (d� + K:dx = 0), eliminating any
ambiguity in the de�nition of the limit in Eq. (25).
Now one can apply the L'Hôpital's rule for evaluating
K on the neighbouring events of z(�s) along the electron
worldline, i.e., at either �s + d� or �s � d�: This corre-
sponds to replacing the above simple limit of x! z(�s)

by a double and simultaneous limit of x ! z(�) along
the K-lightcone generator while z(�)! z(�s) along the
electron worldline. This simultaneous double limit is
pictorially best described by the sequence of points S,
Q,...,P in the Fig. 3; each point in this sequence be-
longs to a K-generator of a lightcone with vertex at the
electron worldline z(�):

Figure 3. The double limit x ! z(�ret) along the SQ...P
line consists of x ! z(� ) along the light-cone generator K
while � ! �ret on the electron worldline.

Then, from Eq. (25),

c

lim
x!z(�)
�!�s

K
���

�x2=0
d�+K:dx=0

= lim
x!z(�)
�!�s

� _x

�(a:�x+ u:� _x)

����
�x2=0

d�+K:dx=0

=

= lim
x!z(�)
�!�s

�u

u:u

����
�x2=0

d�+K:dx=0

= u; (27)

as � _x := d�x
d�

= � dz
d�

= �u and u2 = �1: So K
��
x=z(�s)

is inde�nite but K
��
x=z(�s�d�)

= u:

The lightlike four-vector K is replaced by the timelike four-vector u in the above de�ned (double) limit of
�x ! 0: The limit (27) is straightforward and has very transparent geometrical and physical interpretations. Its
validity cannot be discussed. This remark must be made because Eq. (27) radically changes the usual vision of
�eld theory in the short-distance limit.

The electron self-�eld energy tensor, 4�� = F:F � �
4F

2, after Eq. (14) becomes

�4��4� = (KW +WK) +KKW 2 +WWK2 +
�

2
(1�K2W 2); (28)

as K:u = �1 from Eq. (12) and K:W = �1. The Eq. (28), like Eqs. (7) and (17), are all constrained by Eq. (2),
i.e. by � = �s; and they are valid only for � 6= 0, region where K2 = 0: So, instead of Eq. (28) one may write

�4��4�

����
K2=0

= (KW +WK) +KKW 2 +
�

2
; for � > 0; � = �s; (29)

1This is discussed in reference [1] but for completeness, considering its relevance here, its main steps and some further considerations
are aligned.
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which corresponds to the usual expressions found in the
literature [3, 4, 5, 6, 7, 8]. They are equivalent, as long
as � > 0. The four-vector momentum associated to the
electron self-�eld is de�ned by the 
ux of its � through
a hypersurface � of normal n:

P = �

Z
d3�n:�

����
K2=0

; (30)

but � contains a factor 1
(�)4 and this makes P highly

singular at � = 0, that is at x = z(�s): This is the old
well-known self-energy problem of classical electrody-
namics which heralds [12] similar problems in its quan-
tum version. This divergence at � = 0 is also the origin
of nagging problems on �nding a classical equation of
motion for the electron [3, 4, 5, 6, 7]. But it is clear
now, after Equation (27), that the standard practice

of replacing everywhere � by �

����
K2=0

is not justi�ed

and, more than that, it is the cause of the above diver-
gence problem and the related misconceptions in classi-
cal electrodynamics. One must use Eq. (28), the com-
plete expression of �, in Eq. (30) and repeat for it the
same double limit done in Eq. (27). The long but com-
plete and explicit calculation is done in reference [1]; its
results and conclusions are summarised here:

P

����
x=z(�s)

is unde�ned but

P

����
x=z(�s�)

= P

����
x=z(�s+)

= 0: (31)

There is no in�nity at � = 0! This in�nity disappears
only when the double limiting process is taken because
the lightcone generator K must then be recognized as
the actual support of the Maxwell �eld F: The message
here is that the in�nities and other inconsistencies of
classical electrodynamics are not to be blamed on the
point electron but on the lightcone support of the �eld
in the Eq. (7). Extended causality cannot be ignored
in a �nite and consistent �eld theory.

VI Conclusions

We can summarize it all with the following implications
to the charge-�eld dynamics:

1. No self interaction. After its emittion the �eld no
longer interacts with its source.

2. The emission/absorption process is discrete.

3. The emission/absorption event is an isolated sin-
gularity on the charge worldline; singular in the
sense of discontinuity on its �rst derivative. See
the Fig. 4.

Figure 4. The sudden change in the electron state of move-
ment and either its cause (the absorption of a photon, for ex-
ample) or its consequence (the emission of a photon). There
is no electron self-�eld immediately before or after �ret. It is
an isolated singularity. �ret is a singular point on the elec-
tron wordline only because its tangent is not de�ned there;
there is no in�nity.

Equation (31) con�rms that z(�s) is an isolated sin-
gularity. This is in direct contradiction to the standard
view of a classical continuous �eld, emitted or absorbed
by the charge in a continuous way. According to Eq.
(31) there is no charge self �eld at z(�s � d�), but only
sharply at z(�s). It is saying that the Gauss' law, in
the zero-distance limit,

lim
S!0

Z
S

d� ~E:~n = 4�e;

is meaningful (in terms of an e�ective continuous �eld)

only at z(�s) and not at z(�ret�d� ) because ~E(�s) 6= 0

but ~E(�ret�d� ) = 0:
It implies, in other words, that the electromagnetic
interactions are discrete and localized in time and in
space. In terms of a discrete �eld interaction along
a lightcone generator, as the one represented in the
Fig. 4, one can understand the physical meaning of
Eqs. (26), (27) and (31). The continuous Maxwell
�elds are just e�ective average descriptions of an ac-
tually discrete interaction �eld. The �eld discreteness
(or the existence of photons) is masqueraded by this
averaged �eld and it takes the zero-distance limit to
be revealed from the Maxwell �eld. It is remarkable
that these conclusions have been derived exclusively
from the supposedly exhaustively known classical elec-
trodynamics but nothing has been added to or modi�ed
in the old Maxwell's theory, except a new interpreta-
tion of old well known results. They come from the
recognition of the existence of two mutually excluding
causality-implementation modes in the Maxwell's for-
malism. This could have been taken, at the beginning
of the last century, as a �rst indication of the quan-
tum, or of the discrete nature of the electromagnetic
interaction. They are all consequences of the dynami-
cal constraints hidden on the restrictions (2) and (11).

The initial goal of discussing the implicit existence
of two distinct modes of implementing causality in �eld
theory has been ful�lled. A completely consistent �eld
formalism must be expressed in term of �elds de�ned
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ab initio with extended causality. How this can be ac-
complished, its consequences and how it is related to
the standard formalism based on local causality is dis-
cussed in reference [2].

The Fig. represents the sudden change in the elec-
tron state of movement and either its cause (the ab-
sorption of a photon, for example) or its consequence
(the emission of a photon).
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