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Some Effects on Relativistic Quantum Systems Due to a Weak Gravitational Field
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We study the behaviour of relativistic quantum particles in the space-time generated by a moving mass current,
in the weak field approximation. We solve the Dirac equation in this gravitational field and calculate the current
associated with the particles.

The study of the behaviour of quantum systems under théo the fact that in the weak field approximation, the Riemann
influence of curved space-times goes back to the end of theurvature tensor outside the cylindrical source is completely
1920s and to the beginning of the 1930s[1], when the gendetermined by the Newtonian potential.
eralization of the Scliidinger and Dirac equations to curved  For this space-time, the curvature outside the distribution of
spaces has been discussed, motivated by the idea of construgiatter does not depend on its velocity, in the weak field ap-
ing a theory combining quantum physics and general relativproximation. This means that for the weak gravitational field
ity. Along this line of research the hydrogen atom has beemssociated with slowly moving mass currents, the local effects
studied in particular curved space-times[2, 3]. These investiof the curvature associated with the velocity of the source are
gations showed that the energy levels of an atom placed in gbsent outside it.
atom with the space-time curvature[3]-[5]. This shift in the nassive spinor fiel& is given by
energy of each atomic level would depend on the features of
the space-time.

The general theory of relativity, as a metric theory, predicts . .
that gravitation is manifested as the curvature of space-time. [IY(X) 9 = I () T (x) = ml ¥ (x)
Therefore, it is of interest to know how the curvature of space-
time at the position of the atom affects its spectrum. On theV

=0, )

herey" (x) are the generalized Dirac matrices and are given

other hand, we know that there are situations in which partiin terms of the standard flat space Dirac matriggsas
cles are constrained to move in a region where the Riemann
curvature tensor vanishes and even in this case they exhibit W(x) = et‘a) (x)y(a), 3)
gravitational effects arising from a region of non-zero curva-
ture from which thgy are exclud_ed[6]. Inamore general SensEyhere ¢ (x) are the tetrads components defined by
we have the case in which particles are constrained to move i @ b o
a region where the Riemann curvature tensor does not vanis%a) ()€ (x)n®@® = g, where the Greek indices are con-
but does depend on certain parameter of the metric such &gcted with the tensor world indices(coordinate basis system)
the velocity or the angular momentum of the source. In thigand the Latin indices denote Lorentz indices which are con-
case we have effects on the system associated with parameté&gcted with the local Minkowski coordinate system(tetrads).
which do not influence the curvature of the space-time as we The probability current can be written using the Gordon de-
will see. composition

In what follows we present the study concerning the behav-
iour of a relativistic particle placed in the gravitational field

generated by a cylindrical distribution of matter with uniform w1 rHan N TA W (AT
density along the-axis moving slowly, whose metric reads[7] N Zma“(qch qJ)Jr4mg [Wahw (aAlP)lP]
i
d¢ = —(1-0(p))de + (L+®(p) e (V] + [P o))
2 | 2ddh2 i
x (dp?+ p?dp? + dZ) — Avd(p)dzdt (1) +§nw [me“]w @)

where®(p) represents the Newtonian potential produced by

this source and satisfies the conditi®(p)? ~ 0, in the weak Now, we will consider a massive spinor particle in the weak

field approximation and is the velocity of the distribution of ~gravitational field due to the distribution of matter we are con-

matter. This quantity also satisfies the conditidm= 0. This  sidering. Thus, in order to solve the Dirac equation for a mas-
metric is characterized by two parameters, namely, the massve particle, given by Eq. (2), in this space-time, let us choose
of the source and its velocity. It is interesting to call attentionthe following set of tetrads
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In order to do the calculations, let us consider that the par
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whereA= 1+ % ,B=1-— % andv = 2vd,

Note that these solutions depend on the velocity of the
source, as well as on the Newtonian potential. In this case the
Riemann tensor does not depend on the velocity of the source,

®)  and therefore, the obtained result means that the dependence
of the solution with the velocity is of purely global origin.

The current can be computed using Eq.(4), which is this
case results in the following expressions for the components

ticle is restricted to move in a narrow region such #gp) is

approximately constant and equake. Thus, we will get the
following Dirac equation in the space-time of a moving mass

current

(i1 g)yo-2eo] 5
H(-%) Wi+ g (1-%)v g

+(1-9)WIg+ 5 (1+ %)y -mbw=o

. - = 2V
jg=0.P — EMcb + Pconv, (10)

Jp:—atpp+(|:| X M)p—gatMpﬁ-Jp,conw (11)

(6)
j¢ =—0 Py + (E) X m)q) + j¢.C0nVa (12)

Due to the fact that the space-time is static and symmetric

under translations along theaxis and rotations around this

axis, the solution of Eq. (1) can be written as

L'JJ _ efiEtei(|¢+kZ) RJ (p) ,

i=1234

where
u T
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jz=—0iP,+ (D X M)z_ EDtMp‘f‘ Jz,conw (13)

With regard to an external electromagnetic fiel, and

7 —
™ M are the polarization and magnetization current densities,
respectively. The components of the polarization vector are
given byRs = 5%V ¥+ Po = YooY Pr=
21 P Vg W
where
@® Yo =VY1€0sh +yosing and yy = yising +yzcosp. (14)

The magnetization density vector has components given
by the expressionsMy = z=W[ye),Yp]¥Y » My =
an® Vo, Yo | Y Mz= 7% [¥p), Vo)) ¥ - _

From the obtained results, we conclude that the solution of
the Dirac equation, as well as the current associated with the
particle depend on the velocity of the source. This is an exam-
ple of a global phenomenon associated with this gravitational

(9) field.

It is worth calling attention to the fact that in the region of
motion of the particle, the Riemann curvature, in the weak
field approximation, does not depend on the velocity of the
source. This result means that, even in the situation in which
the particle is constrained to move in a region where the Rie-
mann curvature does not depend on the velocity of the source,
it exhibits a gravitational effect associated with this quantity.
This dependence on a parameter which does not have any in-
fluence on the Riemann curvature tensor, in the weak field
approximation, is a manifestation of a global phenomenon
associated with these gravitational fields, called gravitational
Aharonov-Bohm effect[7, 8].
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