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Recent results obtained by the author for the dynamical phase diagrams for vortices in clean �lms,
driven by an uniform force, and interacting with periodic pinning resulting from a columnar defect
lattice are discussed. Using numerical simulations of a simple model and other considerations, the
dynamical phase diagrams are obtained as a function of the driving force magnitude and direction,
the temperature, and the vortex density. The following dynamical phases and dynamical phase
transitions are found. Moving vortex lattices at low temperatures, with spatial order that can be
commensurate or incommensurate with the periodic pinning, moving vortex liquids and moving
smectics. Dynamical melting of moving vortex lattices into moving vortex liquids takes place and
transverse pinning of moving commensurate vortex lattices and smectics occurs. It is found that
the dynamical phase diagrams in the theoretical limit of in�nite driving force magnitudes play a
central role in determining the whole dynamical phase diagram: each dynamical phase originates
from an in�nite-drive limit phase with the same spatial symmetry that evolves continuously into
�nite-drive regions of the dynamical phase diagram. It is argued that this conclusion also applies
for a large class of periodic pinning potentials.

I Introduction

A problem of current interest is the study of mov-
ing vortices interacting with arrays of pinning cen-
ters. Random arrays have received the most atten-
tion. However, periodic pinning arrays are also of in-
terest. One reason is that they provide examples of
dynamical phases and phase transitions, a subject not
yet fully understood, where theoretical predictions can
be tested in superconducting �lms with arti�cial defect
lattices[1], and in Josephson junction arrays (JJA)[2].
Earlier works on this subject are as follows.

Vortex dynamics is simpler when the driving force
magnitude is large, in which case the velocity of the
center of mass (CM) of the vortex array is also large,
because the moving vortices average the pinning poten-
tial. In the case of moving vortices interacting with ran-
dom pinning arrays the large driving force limit was �rst
considered by Schmid and Hauger[3]. They suggested
that fast moving vortices average out the pinning po-
tential and, consequently, order in a triangular lattice
at low temperatures. In experiments [4] and numeri-
cal simulations[5] nearly triangular lattices are indeed
observed at large CM velocity. Koshlev and Vinokur
[6] analyzed the e�ects of random pinning at large CM
velocities on vortex displacement from the lattice equi-
librium positions. They argued that it is equivalent
to a "shaking" temperature, inversely proportional to
the CM velocity, that adds to the thermodynamic tem-

perature, and predicted that dynamical melting of the
moving vortex lattice takes place when the CM veloc-
ity is such that the combined temperature equals the
equilibrium melting temperature. Recently, Giamarchi
and Le Doussal [7] pointed out that this picture for
the large CM velocities behavior breaks down, because
the vortices order in a moving glass, rather than in a
moving triangular lattice. The reason is that averaging
of the pinning potential by the fast moving vortices is
only partial. A static random pinning potential remains
acting on the vortices in the frame of reference moving
with the CM velocity (CM frame), and has non-trivial
consequences on vortex order. These authors predict
that the vortices move along static channels, on aver-
age parallel to the direction of drive, and are pinned on
them with respect to a transverse force at zero temper-
ature. This is referred to as transverse pinning. These
predictions are in agreement with experimental and nu-
merical results [4].

In the case of vortices interacting with periodic pin-
ning, it is also expected that at large CM velocities
average of the pinning potential takes place. However,
its consequences for the dynamical phase diagram have
only been explored recently [8, 9]. Previous theoretical
studies on the subject are mostly numerical. Exten-
sive studies of the zero-temperature vortex dynamics



Gilson Carneiro 769

in systems with columnar-defect(CD) lattices, carried
out by several workers [5], �nd a rather complex be-
havior, with many dynamical phases and phase transi-
tions. A simpler �nite-temperature behavior is found
in JJA and �lms. Marconi and Domimguez [10] car-
ried out numerical simulations of square JJA, with the
driving force along the [1,0] (or [0,1]) direction. They
�nd three dynamical phases: two moving vortex lat-
tices and a moving liquid. In all three, the CM velocity
is along the direction of drive. The lattices have the
same spatial order, but di�er from each other by the
response to a force transverse to the direction of mo-
tion. One lattice, named transversely pinned vortex
lattice, is pinned (transverse pinning), and the other,
named 
oating solid, is unpinned. Dynamical melting
of the 
oating solid into the liquid, and dynamical de-
pinning from the pinned lattice to the 
oating solid are
reported. Further work [11] predicts transverse pinning
only for driving forces along [1,0]( or [0,1]), and verify it
experimentally. Finite-temperature work on �lms was
carried out by Reichhardt and Zim�anyi[12] for vortices
interacting with a square CD-lattice driven along the
[1,0], or [0,1], directions, and for the vortex density for
which there is one vortex per CD. These authors �nd
three dynamical phases: a moving lattice, commensu-
rate with the pinning potential periodicity along the
direction transverse to motion, a moving smectic and
a moving liquid. Dynamical transitions between the
commensurate lattice and the smectic and between the
smectic and the liquid are found, driven either by the
temperature or by vortex motion.

The remaining of this paper describes the approach
proposed by the author [8, 9] to construct the �nite-
temperature dynamical phase diagram for vortices in-
teracting with a CD-lattice as a function of the magni-
tude and direction of the driving force, the temperature,
and the vortex density.

This approach starts by pointing out that in the
limit of very large CM velocities the moving vortices
average the periodic pinning potential only in the direc-
tion of motion, and that the dynamical phases reduce
to the equilibrium ones for vortices interacting with the
averaged pinning potential [8, 9]. Then it considers the
limit of very large CM velocities, referred to here as
the in�nite-drive limit, for a generic model for vortices
in clean �lms interacting with periodic pinning (Sec.
II). It is shown that in this limit the dynamical phases
reduce, in the CM frame, to the equilibrium ones for
vortices interacting with the periodic pinning potential
averaged in the direction of motion. These phases, re-
ferred to here as in�nite-drive phases, stablish the exact
asymptotic behavior of the dynamical phases at large
values of the driving force magnitude, for a given di-
rection of motion and temperature. The in�nite-drive
phases depend also on the details of the pinning po-
tential and on the vortex density. The next step is to
consider a simple model that keeps the most impor-
tant features of the problem ( Sec. III). This model

describes vortices in �lms interacting with square lat-
tice of columnar defects (Fig. 1). First the in�nite-drive
limit for the model is considered. The pinning potential
(Fig. 2.a) averaged in the direction of motion is non-
trivial only for the [0,1] (or [1,0]) and [-1,1] (or [1,-1]),
where it is a washboard periodic in the perpendicular
direction (Fig. 2.b and c). In other directions it is ei-
ther a constant or a very shallow washboard (Fig. 2.d).
The washboards for [0,1] (or [1,0]) and [-1,1] (or [1,-
1]) stabilize moving vortex lattices at low temperature
that can be commensurate or incommensurate with the
washboard's periodicity (Fig. 3). The in�nite-drive
phase diagrams are then obtained as a function of the
direction of motion and temperature for two typical vor-
tex densities by equilibrium Monte Carlo simulations.
Next, numerical simulations of Langevin's stochastic
dynamical equations for the model are carried out in or-
der to determine the dynamical phase diagram at �nite
drives (Sec. IV). The most important result obtained
from these simulations is that, as far as the spatial or-
der is concerned, the in�nite-drive phases exhaust the
whole dynamical phase diagram. In other words, all
dynamical phases originate from in�nite-drive phases
with the same spatial symmetry that evolve continu-
ously into regions of �nite drives. It is argued that,
with a few exceptions, this is also true for a large class
of periodic pinning potentials (Sec. V).

II In�nite-drive limit

Here the in�nite-drive limit is discussed for a generic
model for vortices interacting with a CD-lattice. By
considering Langevin's stochastic dynamical equations
for this model in the limit where the driving force mag-
nitude approaches in�nity, it is shown that these equa-
tions, written in the CM frame, describe vortices inter-
acting between themselves and with a static e�ective
pinning potential, equal to the average of the periodic
pinning potential in the direction of motion. As a conse-
quence, the dynamical phases reduce to the correspond-
ing thermal equilibrium ones, the in�nite-drive phases,
that can be distinguished from each other only by the
spatial symmetry.

The motion of Nv two-dimensional vortices is as-
sumed to be governed by Langevin equations for mass-
less particles, which for the l-th vortex reads[13],

�
drl
dt

= Fv�v
l +Fv�cdl

l +Fd + �l ; (1)

where � is the friction coeÆcient,

Fv�v
l = �

NvX

j 6=l=1

rlU
v�v(rl � rj) ; (2)

is the force of interaction with other vortices, Uv�v(r)
being the vortex-vortex interaction potential in two-
dimensions,

Fv�cdl
l = �rlU

v�cdl(rl) ; (3)
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is the force of interaction with the CD-lattice,
Uv�cdl(r), being the respective potential, given by

Uv�cdl(r) =
X

R

Uv�cd(r�R) ; (4)

where R denotes the CD-lattice positions and Uv�cd(r)
is the interaction potential between a vortex and a sin-
gle CD, Fd is the driving force, and �l is the ran-
dom force appropriate for temperature T . In terms of
Fourier transforms Uv�cdl

l can be written as

Uv�cdl(r) =
X

Q

Uv�cd(Q)eiQ�r ; (5)

where Q denotes the CD-lattice reciprocal lattice
vectors, and Uv�cd(Q) is the Fourier transform of
Uv�cd(r).

It is convenient to consider vortex motion in the
frame moving with the CM. Let r0l(t) = rl(t) � Vcmt
denote the l-th vortex position in the CM frame, Vcm

being the CM velocity, to be de�ned shortly. In the CM
frame the vortex-CD lattice interaction, denoted here
by Fv�cdl

l (t), depends explicitly on time, namely

Fv�cdl
l (t) =

X

Q

(�iQ)Uv�cd(Q)eiQ�r
0

leiQ�Vcmt ; (6)

The equation of motion for the l-th vortex in the CM
frame reads,

�
dr0l
dt

= Fv�v
l +Fv�cdl

l (t) +Fd � �Vcm + �l ; (7)

The CM velocity is de�ned by the conditionPNv

1 hdr0l(t)=dt)it = 0 , where hit denotes average over
the random force distribution and over time. It follows
from Eq. (7) that

�Vcm = Fd +
1

Nv

NvX

j=1

hFv�cdl
l (t)it : (8)

In the limit Fd !1, it follows from Eqs. (6) and (8)
that Vcm = Fd=�, so that Vcm !1 also. In this case,
all Fourier components in Fv�cdl

l (t), Eq. (6), for which
Q � Vcm 6= 0 oscillate fast, having a negligible e�ect
on the vortex trajectory [3], and Fv�cdl

l (t) reduces to
the static force obtained by summing the Fourier com-

ponents in F
(v�cdl)
l (t) with Q � Vcm = 0, or Q ? Fd,

namely

Fv�cdl
l (t)!

X

Q?Fd

(�iQ)Uv�cd(Q)eiQ�r
0

l (9)

This force derives from the static e�ective pinning po-
tential

Ueff
� (r0?) =

X

Q?Fd

U (v�cd)(Q)eiQr
0

? ; (10)

where r0? is the CM frame coordinate perpendicular to
the direction of Fd, and � the orientation of Fd. This
potential is equal to the average of Uv�cdl in the direc-
tion of motion (and drive). By de�nition, Ueff

� (r0?) is
one-dimensional and periodic in the direction perpen-
dicular to Fd, if Fd is oriented along one of the square
CD-lattice directions and a constant otherwise, since
no Q is perpendicular to Fd. The equations of mo-
tion in the CM frame, Eqs. (7), reduce then to those
describing vortices interacting between themselves and
with Ueff

� (r0?) at temperature T . Their long-time solu-
tions are the corresponding equilibrium phases, called
in�nite-drive phases in this paper.

The in�nite-drive limit establishes the exact asymp-
totic behavior Fd !1 of the dynamical phase for given
Fd orientation and T . For �nite Fd, the dynamical
phase is expected to be close to the in�nite-drive one
with the same spatial symmetry for suÆciently large
Fd. The condition for this to happen is that the vortex
displacements in the CM frame caused by the pinning
force oscillations in time, Eq. (7), during a time inter-
val of the order of one-half period, are small compared
with the vortex mean separation av. This means that
for every Q, such that Q � Fd 6= 0,

Q j U (v�cd)(Q) j
�

Q �Fd

� av : (11)

III Model and numerics

Here a simple model that allows explicit results for the
the dynamical phase diagrams to be obtained is consid-
ered [8]. The model considers vortices and CD placed
on a square lattice (space lattice), subjected to peri-
odic boundary conditions with 256� 256 square prim-
itive unit cells of dimensions d � d. The CD-lattice is
square, oriented parallel to space lattice and commen-
surate with it. The CD-lattice, the coordinate system
and the angles de�ning the orientations of Fd (�) and
Vcm (�) are shown in Fig. 1.

x

y

Fd

Vcm

Figure 1. Columnar defect-lattice and de�nitions of coor-
dinate system, CM velocity (Vcm) and driving force ( Fd)
orientations.

vortex has a core of linear dimension dv = 4d (dv �
2�(0)), so that each vortex occupies 16 space-lattice
sites. The vortex-vortex interaction potential is a
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screened Coulomb one [14], periodic in the space
lattice, and characterized by the energy scale J =
(�20dv=32�

3�2), where � is the penetration depth. That
is, Uv�v(r) is the lattice Fourier transform of

Uv�v(k) = 4�2J
e
��

2

�2
c

�2 +��2
;

where �2 = 4 sin2 (kxd=2) + 4 sin2 (kyd=2), kx and ky
being the space lattice reciprocal lattice vectors com-
ponents, �c = 2 sin (�d=2dv) is the vortex core cuto�
in k-space, and � is the screening length (� > �).
The square CD-lattice has Ncd = 8 � 8 sites, lattice
constant acd = 32d. The interaction potential be-
tween a vortex and a single CD is chosen with depth
Uv�cd(r = 0) = �J , range Rcd = 12d and a spatial
dependence that gives square equipotentials and a pin-
ning force of constant modulus Fp = J=Rcd, as shown
in Fig. 2.a. The reciprocal CD-lattice vectors are

Q = Q1(n1x̂+ n2ŷ) ;

where Q1 = 2�=acd, and n1 ; n2 = �4;�3; :::; 3. It is
found that the lattice Fourier transforms Uv�cd(Q) are:
Uv�cd(0) = �0:19J , Uv�cd(�Q1x̂) = Uv�cd(�Q1ŷ) =
0:10J , Uv�cd(�Q1[x̂�ŷ]) = �0:06, and essentially neg-
ligible otherwise.

The model has the square lattice symmetry, so that
the dynamical phase diagrams need only to be studied
for Fd orientations 0o � � � 45o.

The dynamical phases spatial order is obtained by
calculating the time-averaged density-density correla-
tion function, P (r), which is proportional to the prob-
ability that a vortex is found at r, given that there is
one at r = 0, and its Fourier transform, the structure
function, S(k). The motion of vortices is characterized
by calculating the CM velocity, and the time-averaged
velocity of each vortex.

Two types of numerical studies of the model are
carried out. Equilibrium Monte Carlo simulations to
obtain the in�nite-drive phases, described in detail in
Sec. IV A. Numerical integration of Langevin's equa-
tions to obtain the dynamical phase diagram as a func-
tion of Fd, � and T for two typical vortex densities: two
vortices per CD and �ve vortices per four CD. These
corresponds to the magnetic inductions B = 2B� and
B = 1:25B�, respectively, where B� = �0=a

2
cd is the

matching �eld, for which there is one vortex per CD.
The technical details of these simulations are given in
Refs. [8, 9].

IV Results

In this section the simulation results for the dynamical
phase diagrams are reported. First in the in�nite-drive
limit, then for �nite drives. In the �gures presented here
driving force magnitudes are measured relative to the

single CD pinning force Fp, Sec. III; temperatures rel-
ative to the in�nite-drive moving incommensurate lat-
tice melting temperature Tm, Sec. IV A and center of
mass velocity components relative to the components
of Vd � Fd=�.

A. In�nite-Drive Limit

The in�nite-drive phase diagrams are obtained by
equilibrium Monte Carlo simulations of the lattice Lon-
don model with the pinning potential Ueff

� (r?). It
is found that for Fd along [0,1] (� = 0o) and [-1,1]
(� = 45o) the Ueff

� (r?) are the washboards shown in
Figs. 2b) and c). For Fd along other lattice directions,
the Ueff

� (r?) are found to be very shallow washboards,
because the U (v�cd)(Q) (Eq. (10)) are very small (Sec.
III), and are considered as constant potentials in this
paper. For example, the Ueff

� (r?) for Fd along the [-
1,2] direction (� = 26:6o), shown in Fig. 2.d has a well
depth more than one order of magnitude smaller than
that for � = 0o and 45o shown in Figs. 2b) and c).
For Fd oriented in non-lattice directions, Ueff

� (r?) is a
constant.

a) b)

d)c)

Uv-cdl

Ueff o

Ueff o Ueff o

Figure 2. a) Columnar defect-lattice pinning potential. b-d)
E�ective pinning potentials for motion in: b) [0,1] direction
(� = 0o), c) [-1,1] direction (� = 45o), and d) [-1,2] direction
(� = 26:6o). Potentials in units of the single CD potential
well depth (J).

The corresponding low-T in�nite-drive phases are as
follows. For � = 0o and 45o, they are vortex lat-
tices (VL) commensurate or incommensurate with the
one-dimensional periodicity, depending on B. The VL
for � = 0o, are obtained here as a function of B, for
B � B�. Their density-density correlation functions,
P (r), are shown in Fig. 4. The commensurate lattices
consist of identical vortex chains within each washboard
channel, with neighbor chains displaced with respect to
each other by half a chain period. There is a single chain
for B� � B � B1, and two chains for B1 < B � B2.
The values of B1 and B2 are found to be in the ranges
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B1 < 1:125B� and 1:125B� < B2 < 1:375B�. A
commensurate-incommensurate transition takes place
for B = Bc�i (1:25B� < Bc�i < 1:375B�). For
B > Bc�i the VL is incommensurate, and nearly trian-
gular. For B = 2B� and B = 1:25B� the P (r) shown
in Fig. 4 correspond, respectively, to the vortex lat-
tices labeled MIL and MCL0 in Fig. 3. The e�ect of
the one-dimensional periodic potential on the incom-
mensurate lattice is to displace the vortices from the
triangular lattice positions by a distance small com-
pared to the lattice parameter[15]. It is found that, as
expected, this e�ect is greater for B in the vicinity of
Bc�i. This is evidenced by the behavior of P (r) shown
in Fig. 4. For B = 1:375B�, 1:5B�, and 1:75B�, P (r)
has smeared spots centered in a nearly triangular grid,
with smearing increasing with distance. For B > 2B�,
P (r) has sharp spots, indicating that the displacements
are negligible, and the VL is sharply de�ned.

B=2B =45
o

B=2B =0
o

B=1.25B =45
oB=1.25B =0

o

a) MCL0

d) MCLc) MIL

b) MCL45

Figure 3. Vortex positions in low-T in�nite-drive phases.
Dashed gray lines indicate minima of Ueff

� shown in Figs.2.b
and 2.c. Nomenclature: moving commensurate lattices: a)
MCL0, b) MCL45 and d) MCL. Moving incommensurate
lattices: c) MIL

The two B values studied in this paper, B = 2B�

and B = 1:25B�, are typical of parameter regions far
from commensurate-incommensurate transitions, both
for � = 0o and � = 45o, where the VL are sharply de-
�ned. The in�nite-drive phase diagrams in these cases
are as follows. For � = 0o and 45o the VL are shown
in Fig. 3. These are referred to in this paper as mov-
ing incommensurate lattices (MIL) and moving com-
mensurate lattices, with distinct vortex con�gurations
labeled MCL, MCL0 and MCL45, as shown in Fig. 3.
For 0o < � < 45o, the VL are incommensurate and
nearly triangular. It is found that the incommensurate
lattices for the same B, but di�erent �, cannot be dis-

tinguished from each other. Hereafter all incommensu-
rate lattices are referred to as moving incommensurate
lattices (MIL).

Fd

B=1.125 Bf B=1.25 Bf

B=1.375 Bf B=1.5Bf

B=1.75 Bf B=2 Bf

Figure 4. Density-density correlation functions, P (r) (r = 0
is at the panel's center), for low-T in�nite-drive phases for
motion in the [0,1] (� = 0o) direction as a function of B.

The T -dependence of the in�nite-drive phases (at
constant � is found to be as follows: the moving incom-
mensurate lattices (MIL) melts into a moving vortex
liquid (MLQ) at kBTm = 0:09J , for both B. For B =
2B� the moving commensurate lattice (MCL) changes
into a moving smectic (MSM) at Tmcl=Tm = 1:4 and the
moving smectic (MSM) changes into a moving liquid
(MLQ) at Tmsm=Tm = 1:8. For B = 1:25B� the mov-
ing commensurate lattices, MCL0 and MCL45, change
into a moving smectic (MSM) at Tmcl0=Tm = 1:2 and
Tmcl45=Tm = 1:7, respectively.

1. Drive along � = 0o and � = 45o

Dynamical phase diagrams (Fd vs. T ) are shown
in Fig. 5. For B = 2B�, � = 0o, only two dynamical
phases exist: a moving incommensurate lattice (MIL)
and a moving liquid (MLQ), separated by a dynamical
melting line, as shown in Fig. 5. The dynamical phase
diagrams for both B, � = 45o, and for B = 1:25B�, � =
0o, are similar to one another, containing three phases:
a moving commensurate lattice (MCL for B = 2B�,
MCL0 and MCL45 for B = 1:25B�) a moving smectic
(MSM) and a moving liquid. Only the dynamical phase
diagrams for B = 2B�, � = 45o, and B = 1:25B�,
� = 0o are shown in Fig. 5. That for B = 1:25B�,
� = 45o, is similar. In the temperature range covered
by Fig. 4 the transitions between the moving smectics
and moving liquids do not appear. In Fig. 5 typical
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P (r) at large Fd=Fp for the above described phases
are shown. It is found that the dynamical phases at
large Fd=Fp essentially coincide with the correspond-
ing in�nite-drive ones. The dynamical phase diagrams
in Fig. 5 show clearly that each dynamical phase origi-
nates from the in�nite-drive one with the same spatial
symmetry that evolves continuously into �nite drive re-
gions.

As discussed next, the commensurate VL (MCL,
MCL0 and MCL45) show transverse pinning at low
T . This may be expected because for � = 0o and
� = 45o, Vcm remains parallel to Fd. In all these
cases, according to Eq. (6), the e�ective pinning po-
tential (Ueff

� (r?)) acts on the moving vortices for all
Fd, not only in the Fd ! 1 limit. The commensurate
phases are pinned by Ueff

� (r?) with respect to a small
force along the direction de�ned by r?.

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0 2.0 4.0

0.5

1.0

MIL

MLQ

T
/
T

m

MSM

MCL

T
/
T

m

B=2B =45
o

B=2B =0
o

B=1.25B =0
o

F
d

/ F
p

MSM

MCL0

T
/
T

m

Figure 5. Dynamical phase diagrams for drives along [0,1]
(� = 0o) and [-1,1] (� = 45o). Panels: density-density
correlation functions P (r) at high drives (r = 0 is at
the panel's center). Nomenclature: MLQ=moving liquid,
MSM=moving smectic. Others as in Fig.3. Dotted lines
in the pannels for B = 2B� indicate where vortex motion
stops.

2. Drives along 0o < � < 45o The dynamical phases

found in this range of driving-force orientations have
the same spatial symmetries as those described in Secs.
IV A and IV A 1. and are referred to in what follows
by the same nomenclature.

The Fd vs. � dynamical phase diagrams at low-T
are shown in Fig. 6. Both have two dynamical tran-
sition lines. One, referred to here as dynamical melt-
ing line, separating a moving incommensurate lattice
(MIL) and a moving liquid (MLQ). Another separating
a moving commensurate lattice (MCL for B = 2B� and
MCL45 for B = 1:25B�) or a moving smectic (MSM)
for B = 2B� and a moving liquid. Within the mov-
ing commensurate lattice and moving smectic regions
transverse pinning occurs, with the vortices moving
along the [-1,1] direction. The transition line in the
B = 2B� dynamical phase diagram from the moving
commensurate lattice (MCL) and the moving smectic
(MSM) occurs with the vortices moving in the [-1,1] di-
rection , and is essentially identical to that for � = 45o

discussed in Sec. IV A 1.
The evidence leading to the construction of the dy-

namical phase diagrams in Fig. 6 is discussed in detail
in Refs.[8, 9]

1.0 3.0 5.0
0

15

30

45

M
S

M

a) B=2Bφ T/T
m
=0.83

MIL
MLQ

MCL

α
o

F
d
 / F

p
1.0 3.0 5.0

0

15

30

45

MSM

MLQ

MCL0

b) B=1.25Bφ T/T
m
=0.89

MIL

MLQ

MCL45

α
o

F
d
 / F

p

Figure 6. Dynamical phase diagrams for T = constant. Dy-
namical phases named as in Figs. 3 and 4.

The detailed properties of the dynamical phase di-
agrams shown in Fig. 6 are as follows.
i) DynamicalMelting:The dynamical melting lines ex-
tend from � = 0o to � = 45o. For B = 2B� it touches
the � = 0o-axis at the Fd value where the dynamical
melting takes place for � = 0o and T=Tm = 0:83 (Fig.
5). It does not touch the � = 45o axis for both B and
the � = 0o axis for B = 1:25B�, because the dynam-
ical phases in these axes are not moving incommensu-
rate lattices, as discussed in Sec. IV A. These result
of (Fig. 6) show that, for both B, the moving incom-
mensurate and commensurate lattices are separated by
a moving liquid, at least up to the highest Fd stud-
ied here. However, in the in�nite-drive phase diagram
there is no moving liquid at these temperatures. It is
unclear how the disappearance of the moving liquid as
Fd !1 takes place.

The � vs. Fd curves in Figs. 7 and 8 show that
in the moving incommensurate lattice (MIL) the di-
rections of drive and vortex motion are approximately
equal (� ' �), and that the melting transition is re-

ected in this curve by a change in slope. For B = 2B�
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this change is sharp, with � increasing rapidly towards
� = 45o as Fd decreases. For B = 1:25B� the same is
true, as long as � & 20o, while for smaller � the moving
liquid � slowly approaches � = 0o as Fd decreases.

ii) TransverseP inning. The results shown in Figs.
7 and 8 indicate that in the regions where the spatial
order is that of a moving commensurate lattice, or a
moving smectic for B = 2B�, transverse pinning oc-
curs, and vortex motion is restricted to the [-1,1] di-
rection. This is seen in Figs. 7 and 8, where V? = 0
and � = 45o in the Fd range of moving commensurate
lattices or smectics, and the distribution of individual
vortices direction of motion is sharply peaked around
� = 45o (Fig. 7, inset). These results also show that the
moving commensurate and smectic regions evolve con-
tinuously from the corresponding in�nite-drive phases.

The temperature dependence of the dynamical
phase diagrams is as follows. For temperatures lower
than those of Fig. 6 the dynamical phase diagrams are
similar. The dynamical melting lines are shifted to
lower Fd, similarly to what happens for B = 2B� and
� = 0o (Fig. 5). Transverse pinning in the moving com-
mensurate lattices also occurs, as evidenced by the V?
vs. Fd curves shown in Fig. 9. For higher temperatures
several changes are observed. The dynamical melting
lines also exist, shifted to larger Fd, provided T does
not exceed the in�nite-drive melting temperature Tm.
When T > Tm the moving incommensurate lattices do
not exist, only moving liquids.
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Figure 7. Center of mass velocity direction (�) and compo-
nent perpendicular to the [-1,1] direction , V?, vs. driving
force magnitude along lines of constant � in Fig.5.a. Inset:
histogram for the distribution of vortices direction of motion
(�) for � = 35o and Fd=Fp = 1:5.

As well known[7], transverse pinning in the moving

commensurate lattices or smectics only exists, strictly
speaking, at T = 0. At �nite T thermal excitation of
lattice defects lead to 
ux motion away from the [-1,1]
direction, giving rise to a �nite V?. The regions of
transverse pinning found in the present simulations oc-
cur because the thermally excited V? is smaller than the
simulation resolution. In experiments, where the reso-
lution is also �nite, these regions may also be present.
The T dependence of the V? vs Fd curves are shown
in Fig. 9. For B = 2B� transverse pinning is found in
the moving commensurate lattice and moving smectics
at temperatures above Tm, whereas for B = 1:25B� it
disappears at lower temperatures.
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V Discussion

The results described above reveal the important role
played by the in�nite-drive phases. They show that all
dynamical phases originate from in�nite-drive phases
with the same spatial symmetry that evolve continu-
ously into regions of �nite drives.

The results obtained by Reichhardt and Zim�anyi[12]
for vortices in �lms interacting with a square CD-
lattice, driven in the [1,0] direction, at B = B�, show a
similar behavior. The in�nite-drive phase diagram was
not considered in this paper, but can be identi�ed with
the reported dynamical phase diagrams at high drives.
It consists, in the terminology adopted here, of the fol-
lowing phases. A moving commensurate lattice at low
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T , with single-chain structure similar to that shown
in Fig. 4 for B = 1:125B� rotated by 90o, a moving
smectic at intermediate T , and a moving liquid at high
T . The dynamical phase diagram reported in Ref.[12]
shows that these three phases exist in continuous re-
gions of the driving force vs. T phase diagrams that
extend from high to low drives. This phase diagram is
similar to those found here for B = 1:25B�, � = 0o and
45o, and for B = 2B� � = 45o (Sec. IV A 1).
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Figure 9. Component of CM velocity perpendicular to [-
1,1], V?, vs. driving force magnitude along lines of constant
� and at constant temperatures.

For vortices in JJA, driven in the [1,0] direction, the
dynamical phase diagram reported by Marconi and
Dominguez[10] also show dynamical phases existing in
continuous regions of the driving force vs. T plane that
extend from high to low drives. However it is not pos-
sible to identify the in�nite-drive phases from the data
reported in the paper.

Some studies of vortices interacting with CD-
lattices at T = 0 [5] �nd dynamical phases and phase
transitions similar to the ones describes here and in
Ref.[12]. Examples are tranverse pinning, moving com-
mensurate and incommensurate lattices and dynami-
cal transitions between them. However, these stud-
ies probe dynamical behavior di�erent from the �nite-
temperature ones discussed here. At �nite tempera-
tures, the vortices relax after suÆcient long times to

a steady state, identi�ed as the dynamical phase, that
is unique as far as the probability distribution is con-
cerned [16]. Accordingly, dynamical phase changes
caused by varying the driving force, the temperature,
or both, are reversible. This is not necessarily the case
at T = 0. However, in numerical studies, irreversibility
appears due to insuÆcient run times to reach the steady
state, particularly when relaxation times are very large.
This occurs in several circumstances, such as low tem-
peratures, or vicinity of dynamical phase changes. In
the simulations reported in this paper low temperatures
are avoided. Some simulation runs where performed cy-
cling the driving force magnitude from a large value to
a small one and back. Small hysteresis is found near
dynamical phase transitions.

In conclusion, the approach descried here to con-
struct the dynamical phase diagrams, starting from the
in�nite-drive ones, provides a simple method, based on
equilibrium statistical mechanics, to identify dynamical
phases spatial order, and to predict dynamical phase
transitions. It is expected that this method is applica-
ble to a large class of periodic pinning potentials and
vortex densities. The reasons are that the e�ective pin-
ning potentials resulting from averaging physically rea-
sonable periodic pinning potentials in the direction of
motion are, as those discussed in Sec. IV A, essentially
constant for most directions, and one-dimensional and
periodic for a few particular ones. This predicts the ex-
istence, for B � B�, of moving lattices, commensurate
or incommensurate with the e�ective pinning potential
periodicity, moving smectics and moving liquids, simi-
lar to the ones reported here, and of dynamical phase
transitions between then. For B < B� the moving lat-
tices may be di�erent, particularly at low vortex densi-
ties, where the commensurate in�nite-drive phases are
not expected to retain the simple chain structure found
here for the B � B� ones. However, the close rela-
tionship between the dynamical phase diagrams and
the in�nite-drive ones are still valid, as evidenced by
the JJA results of Ref.[10]. The dynamical phases ob-
tained by this method do not, in general, exhaust the
dynamical phase diagram. One known type of dynami-
cal phase that has no corresponding in�nite-drive phase
is that in which some vortices are pinned by the peri-
odic potential and others are moving. These are found
at low drives in some T = 0 simulations for B > B�

[5]. No such phases are found in the present simulations
nor in Refs.[5, 10]. The details of how the dynamical
phases and dynamical phase transitions predicted by
the method proposed here �t into the dynamical phase
diagram for each particular model and vortex density
depends in a complicated way on the model parameters,
and has to be determined in each case.
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