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In this paper we obtain the Lie symmetries and the Noether symmetries for several physical systems,
all of them involving a charged particle in the presence of some electromagnetic �eld. We also obtain
�rst integrals for these systems and discuss briey their Lie algebra. In some examples we discuss
their integrability.

I Introduction

The idea of symmetry is extremely important in
physics, both classic and modern. It can be said that
the abstract formulation of this idea, that is the group
concept, is one of the great unifying ideas of mathe-
matics. Sophus Lie applied the group concept to di�er-
ential equations trying to integrate them. His success
permitted to unify and extend the existent integration
techniques. In the last two or three decades the appli-
cation of Lie's method growed quickly. Actually, with
the growing importance of non-linear di�erential equa-
tions, Lie's procedure constitues, perhaps, the only ex-
istent method to attack such problems in a systematic
way, in the attempt of its integration. Besides this,
chaotic behavior has became very important in physics
and applied mathematics. So it's important to deter-
mine conditions for the absence of this chaotic behav-
ior looking for parameter values for which the system
can be completely (or, at least, partially) integrated.
It's well known that the concept of integrability, in it's
various formulations, is related to the existence of �rst
integrals. So the search for �rst integrals is one of the
possible ways to decide by the integrability of a system.

The symmetry method (see Olver [1986])1, intro-
duced by Lie, is one of the methods used to accom-
plish this goal (Bueno et al [1986])2. Lie's method
consists in �nding the continuous symmetry transfor-
mations that leave a system of di�erential equations
invariant. These symmetry transformations constitues
a Lie group. Once you have obtained the symmetry
group, there are some ways to �nd �rst integrals.

Another method used in obtaining �rst integrals is
Noether's Theorem (Sarlet and Cantrijn [1981])3.

In this paper we analize a number of situatons in
which a charged particle interacts with an electromag-
netic �eld. We �nd the Lie and Noether symmetries
and �rst integrals associated with these problems. For
some of them we discuss their integrability.

Some of the results obtained are new and some are
already known, although they have been obtained from
an original point of view most of the time. In this sense
the paper is a kind of review for this type of systems.

In next section we put the general problem of a par-
ticle in an electromagnetic �eld and outline the method
of Lie and the Noether theorem. In third section we
analize a number of diferent cases. And, �nally, in last
section we make some comments in conclusion.

II Symmetries for the general

problem of a charged particle

in a general electromagnetic

�eld

A. a) Lie symmetries

In this work we will use point transformations only.
In a certain sense this is a strong limitation but, for
our purposes in this paper the above supposition will
be suÆcient.

The symmetry vector �elds can be obtained from
the invariance of the system of second-order di�erential
equations

�i =
::
xi �fi(t; xj ;

:
xj); (1)

under the in�nitesimal transformations
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t0 = t+ "�(t; xj); (2a)

x0i = xi + "�i(t; xj); (2b)

where i = 1; :::; n to permit a greater generality.
The symmetry evolutionary vector �eld has the

form

U = �@t + �i@xi : (3)

The Lie conditions for the invariance of the system
(1) are

pr(2)U(�i) j�i=0= 0; (4)

where

pr(2)U � �@t + �i@i + �
(1)
i @ :

xi
+ �

(2)
i @::xi ; (5)

is the second prolongation of the vector �eld (3), and

�
(k)
i (t; xj ;

:
xj ; :::;

(k)
xj ) =

d�
(k�1)
i

dt
�

(k)
xi

d�

dt
; (6)

where k = 1; 2; :::m; �
(0)
i = �i; e

(k)
x i=

dkxi
dtk

:

The m-th prolongation of U is the vector �eld

c

pr(m)U = �(t; xj)@t + �i(t; xj)@xi + �
(1)
i (t; xj ;

:
xj)@ :

xi
+ :::+ �

(m)
i (t; xj ;

:
xj ; :::;

(m)
xj )@(m)

xi
: (7)

d

The motion of a charged particle in the presence
of a general electromagnetic �eld can be described by
Lorentz equations:

�i =
::
xi �Fi(t; xj)� ��ijk

:
xj Bk(t; xj) = 0; (8)

where Fi(t; xj) = eEi(t; xj); with e being the electric
charge and Ei the electric �eld, � = e=c; with c be-

ing the speed of light, and Bk(t; xj) being the magnetic
�eld. As usual, the �ijk are the permutation symbols.
We have taken the mass equal to one. By now, we can
also neglect the term coming from the radiation reac-
tion due to acceleration of the electric charge. Applying
the Lie conditions for invariance (4) to equation (8) and
using the equations of motion (8) we obtain

c

��Fi;t � ���ijk
:
xj Bk;t � �mFi;m � ��m�ijk

:
xj Bk;m � ��j;t�ijkBk�

��
:
xm �j;m�ijkBk + �

:
xj �;t�ijkBk + �

:
xj

:
xm �;m�ijkBk + �i;tt+

+2
:
xj �i;tj�

:
xi �;tt+

:
xj

:
xk �i;jk � 2

:
xi

:
xj �;tj�

:
xi

:
xj

:
xk �;jk�

�2Fi
:
xj �;j�

:
xi Fj�;j � 2�

:
xj

:
xl �;l�ijkBk � �

:
xi

:
xk �jklBl�;j+

+Fj�i;j � 2Fi�;t + ��jkl
:
xk Bl�i;j � 2��ijk

:
xj Bk�;t = 0: (9)

When we try to solve the above equation we arrive to the following system of linear partial di�erential equations:

�;jk = 0; (10a)

��ijkBk�;m + �i;jm � 2Æij�;mt � 2��ijkBk�;m � Æij��lmnBn�;l = 0; (10b)

����ijkBk;t � ��m�ijkBk;m � ��m;j�imkBk + ��;t�ijkBk + 2�i;jt � Æij�;tt�

�2Fi�;j � ÆijFm�;m + ��kjmBm�i;k � 2��ijkBk�;t = 0; (10c)

��Fi;t � �mFi;m � ��j;t�ijkBk + �i;tt + Fj�i;j � 2Fi�;t = 0: (10d)
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A general solution of the equations (10a) can be ob-
tained independently of the functional form of Fi and
Bk; it can be written as

�(t; xi) = xifi(t) + h(t); (11)

where fi(t) e h(t) are functions of time and will be de-
termined by equations (10b,c,d). They will depend on
the functional form of Fi(t; xj) and Bk(t; xi): In three-
dimensional space, equations (10b,c,d) give rise to 30
equations. The solution of these equations will, as well,
depend on the form of Fi and Bk.

Once we have solved equations (10) and obtained
the Lie symmetries vector �elds for the problem we can
use some known methods to achieve �rst integrals. In
this work we will make use of two of these methods.
The �rst one makes use of the following theorem ( I.C.
Moreira et al. [1985])4:

"If I is a �rst integral for a given system of di�er-
ential equations, then the quantity I 0 = U (1)I is a �rst
integral for any symmetry vector �eld associated with
this system ".

The other method for �nding invariants that we will
use was introduced by Prince [1979]5 and can be re-

sumed in a few simple steps:

i) Find the invariants for the �rst prolongation of
the vector �eld pr(1)U ;

ii) obtain a system of �rst order di�erential equa-
tions invariant under pr(2)U ;

iii) integrate these equations obtaining integration
constants in terms of invariants;

iv) invert these funtions obtaining the invariants in
terms of the xi's and t.

II.b Noether symmetries
In this work we will apply the Noether Theorem to

the general case of a charged particle in the presence
of an electromagnetic �eld. As in the case of the Lie
method, we will restrict ourselves to point transforma-
tions.

We will assume a Lagrangian system described by
the Lagrangian L(x; xi; t) and consider an in�nitesimal
point transformation in the (t; xi) space, de�ned by (2a-
b). These in�nitesimal transformation are said to leave
the action integral invariant up to gauge terms, if a
function f(t; xi) exists, such that for each di�erentiable
curve t! xi(t), we have

c

Z t02

t01

L(t0; x0i;
:
xi
0

)dt0 =

Z t2

t1

L(t; xi;
:
xi)dt+ "

Z t2

t1

df(t; xi)

dt
dt+O("2): (12)

d

This will be the case if and only if

prU (1)L+ L
:

�=
df

dt
; (13)

where prU (1) is the �rst prolongation of the vector �eld
U:

So an in�nitesimal symmetry like (2a-b) will be a
Noether symmetry for a given Lagrangian system and
a function f , if it satis�es equation (13). If this is so,
to each Noether symmetry (2a-b) there corresponds a
�rst integral I(t; xi;

:
xi) given by

I(t; xi;
:
xi) = f(t; xi)�

�
L� +

@L

@
:
xi

�
�i�

:
xi �

��
: (14)

Let us now apply Noether's theorem for the case
of a charged particle in a general electromagnetic �eld.
The lagrangian for such a system can be written as

L =
1

2

:
xi

:
xi +(e=c)Ai(t; xj)

:
xi �eV (t; xj); (15)

where Ai(t; xj) is the vector potential, V is the electri-
cal potential, and the mass was taken equal to one, as
before. Applying the �rst part of Noether's Theorem,
equation (13) to the above lagrangian, we obtain

c

:
xj Aj;i�i � e�iV;i+

:
xi

:
xj �i;j+

:
xi �i;t + eAi

:
xj �i;j + eAi�i;t �

1

2

:
xi

:
xi

:
xj �;j�

�
1

2

:
xi

:
xi �;t + e�

:
xi Ai;t � e�V;t � eV �;j

:
xj �eV �;t � f;j

:
xj �f;t = 0: (16)

Equation (16) gives rise to a system of linear partial di�erential equations in the functions � and �i:

ÆjkAj;i�i + Æik�i;t + eAi�i;jÆjk + e�ÆikAi;t � eV Æjk�;j � Æjkf;j = 0; (17a)



O. M. Ritter 441

eAi�i;t � e�iV;i � e�V;t � eV �;t � f;t = 0; (17b)

ÆilÆjk�i;j �
1

2
Ælk�;t = 0; (17c)

ÆlkÆmj�;j = 0: (17d)

d

If we know Ai and V , we can solve equations
(17) and �nd the functions �; �i and f , thus obtaining
Noether's symmetries for the system.

III Symmetries for some par-

ticular cases of charged par-

ticle in an electromagnetic

�eld

In this section we present a certain number of cases of
physical interest, all of them concerning the problem of
a charged particle in the presence of some electromag-
netic �eld.

A. I. Basic particular cases
1. (i) Simple harmonic oscillator

Anderson and Davison [1974]6 �rst, and Wulfman
and Wybourne [1976]7 have discussed extensively this
case. Prince and Eliezer [1980]8 generalized this prob-
lem to the time-dependent n-dimensional oscillator.

The one-dimensional di�erential equation for the
harmonic oscillator can be written, with an adequate
choice of units as

::
x +x = 0: (18)

Comparing this equation with (8) we see that
Fi(t; xj) = �xi and Bk(t; xj) = 0: Solving equations
(10) for this case, we �nd the following Lie symmetry
vector �elds

U1 = (1 + x2)(sin t)@x � (x cos t)@t; (19a)

U2 = (1� x2)(sin t)@x + (x cos t)@t; (19b)

U3 = (1 + x2)(cos t)@x + (x sin t)@t; (19c)

U4 = (1� x2)(cos t)@x � (x sin t)@t; (19d)

U5 = @t; (19e)

U6 = x@x; (19f)

U7 = (x cos 2t)@x + (sin 2t)@t; (19g)

U8 = �(x sin 2t)@x + (cos 2t)@t: (19h)

These vectors constitues the base of an eight-
parameter Lie group, with an associated Lie algebra
of dimension eight. This is a semi-simple algebra as
can be seen by constructing the metric tensor

gij = Cm
ikC

k
jm;

and by showing that the determinant

k gij k6= 0;

according to the Cartan criterion. As the metric is un-
de�ned, we can conclude that the Lie algebra is that of
a non-compact Lie Group. The three vectors U1; U3; U5

form an associated compact Lie algebra with a negative
de�ned metric gij = �2Æij (i; j = 1; 3; 5). These three
vectors generate a compact subgroup: SO(3). The full
global eight parameter group is SL(3,R).

The �rst integrals for this system are easily ob-
tained by any of the methods outlined above, or using
Noether's theorem.

2. (ii) Kepler's problem

The classic Kepler problem (see Prince and
Eliezer[1981])9, with potential energy V = �k=r , has
fundamental importance in classical mechanics. Asso-
ciated with this problem there are three �rst integrals:
energy, angular momentum and the Runge-Lenz vector.
The equation of motion and corresponding Lagrangian
for the problem are

::
xi +

�xi
r3

= 0; L =
1

2

:

!

r
2

+
�

r
; (20)

where � is constant and r = (x2 + y2 + z2)
1
2 : Let's

consider the motion restrict to the (x; y)-plane. This is
guarantee by the constancy of the angular momentum
L.
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Comparing equation (20) with (8) we verify that
Fi(t; xj) = �xi=r

3 and Bk = 0; with i = 1; 2:
If we now compare the lagrangian (20) with the gen-

eral one (15), we obtain that Ai = 0; and eV = ��=r.
Solving general equations (10a-d) we obtain the Lie
point symmetries for the problem. Solving general
equations (17a-d) we get the Noether symmetries for
the system.

In the Noether case we obtain two independent vec-
tor �elds of symmetry

U1 = @t; andU2 = x@y � y@x: (21)

In the Lie case we get the two vector �elds (21) and
an extra vector �eld given by

U3 = t@t +
2

3
x@x +

2

3
y@y; (22)

corresponding to a scale symmetry admitted by the
equation of motion.

The Noetherian vector �elds form a two-parameter
abelian subgroup of the three-parameter Lie group.
The only non-vanishing structure constants are

C1
13 = 1 = �C1

31:

The metric tensor of the algebra is given by

gij =

�
1; i = j = 3;
0; i; j 6= 3:

�

This is a non-semi-simple algebra and is a semi-
direct sum of the of the solvable subalgebra fU1; U3g
and the simple subalgebra fU2g.

If we use equation (14) of the Noether theorem, we
can obtain the �rst integrals associated with each of the
two symmetry vector �elds

I1 =
1

2

:

!

r
2

+
�

r
; (23a)

I2 = x
:
y �y

:
x : (23b)

To obtain the x and y components of the Runge-
Lenz vector we use the Lie symmetry vector �eld given

by (22) and the method developed by Prince [1979] and
briey discussed at the end of section 2a:

x
:
y
2
�y

:
x
:
y �

�x

r
= const:; (24a)

y
:
x
2
�x

:
x
:
y �

�y

r
= const: (24b)

3. (iii) Constant magnetic �eld

Let's consider now the classic case of a charged par-
ticle in an uniform magnetic �eld. This problem has
been studied under several points of view ( Sivardi�ere
[1988]10, Moreira [1983]11). The motion is a combina-
tion of a circular one with that of a free particle. A very
simple and interesting approach given to this problem
makes use of a vector constant of motion named Lan-
dau vector which is used also in the quantum case. The
conservation of the Landau vector is associated with the
conservation of the motion of the center of mass of the
system. The Landau vector is related to the center of
the orbit. It has dimension of linear momentum and is
composed of two terms: the �rst is the kinetic linear
momentum and the second comes from the interaction
between the charged particle and magnetic �eld. Ob-
viously the Landau vector is not the only constant of
motion associated to this problem.

Let's compute the Lie symmetries for this prob-
lem starting from the general equation (8) and making
Fi(t; xj) = 0; B k(t; xj) = B0 = const:, when k = 3
and Bk = 0 when k = 1; 2. With this choice the mag-
netic �el is along the z-axes. The equations of motion
for the system are

::
x �

e

c
B0

:
y= 0; (25a)

::
y +

e

c
B0

:
x= 0; (25b)

::
z= 0: (25c)

Solving equations (10a-d) we obtain a twelve-
parameter group from which we get the following Lie
symmetry vector �elds

c

U1 = @t; U2 = @x; U 3 = x@x + y@y; U4 = �y@x + x@y ;

U5 = sin(!t)@x + cos(!t)@y; U6 = cos(!t)@x � sin(!t)@y;

U7 = [x sin(!t) + y cos(!t)] @x + [x cos(!t)� y sin(!t)] @y;

U8 = [x cos(!t)� y sin(!t)] @x � [x sin(!t) + y cos(!t)] @y;

U9 = @y; U10 = @z; U11 = t@z; U12 = z@z: (26)

d
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The �rst integrals for this system are easily obtained
by any of the methods described above. If we use the
Prince [1979] method and take, for instance, the vector
�eld U1 we arrive after a little algebra to the compo-
nents of the Landau vector

I1 = k1 =
:
x �

eB0

c
y; (27a)

I2 = k2 =
:
y +

eB0

c
x; (27b)

I3 = k3 =
:
z : (27c)

In vectorial form

!

k=
:

!

r �
e

c

!

r �
!

B : (27d)

We can use this same procedure to obtain a number
of �rst integrals, some of which we list in correspon-
dence with the vector �eld used in its construction

c

U1 ) I4 = E =

:
x
2

2
+

:
y
2

2
+

:
z
2

2
;

U4 ) I8 = (
:
x
2
+

:
y
2
)(x

:
y �y

:
x) +

e

2
B0

h
(x

:
y �y

:
x)2 + (x

:
x +y

:
y)2

i
;

U7 ) I6 =
:
x sin(!t)+

:
y cos(!t);

U8 ) I7 =
:
x cos(!t)�

:
y sin(!t);

U11 ) I5 = z�
:
z t: (28)

d

Using the method with the rotation vector �eld U4

we arrive also to the following �rst integral

U4 =) I9 = Lz = (x
:
y �y

:
x) +

eB0

2c
(x2 + y2) = const:;

(29)
where I9 is the z-component of the canonical angular
momentum in the direction of the magnetic �eld. It
must be remembered that the canonical angular mo-
mentum is not conserved, only its z-component. As
in the case of the Landau vector, the conservation of
Lz is associated to an aditional degenerecency of the
problem. With the same initial velocity but with dif-
ferent initial positions, the charged particle describes a
di�erent orbit with the same energy.

If we now apply the Noether theorem to this prob-
lem w'll get an eight-parameter Lie group. The vec-
tor �elds forming this group constitues a subgroup of
the previous one (26) obtained directly from the equa-
tions of motion. The symmetry vector �elds obtained
via Noether theorem are among those found in (26):
U1;U2; U4; U5; U6; U9; U10; U11. Using the second part
of Noether theorem we reobtain almost all of the �rst
integrals (27a-d, 28, 29).

B.II. Generalisations

Let's now discuss some more general cases. W'll
begin by considering systems with no magnetic �eld.

a) Vanishing magnetic �eld:
!

B= 0:

(i) The anisotropic Kepler problem The so called
anisotropic Kepler (see for instance Gutzwiller [1989]12)
problem has been studied in the last years as an in-
teresting example of a two-dimensional system with
chaotic behavior. This potential has been studied in
the context of the physics of semiconductors. It can ap-
pear also in certain models with three di�erent masses
interacting in a plane.

The anisotropic Kepler potential, in the two-
dimensional case, has the form

V =
�k

(x2 + �y2)
1
2

; (30)

with � 6= 1: In obtaining the Lie group of symmetries
for the system we get two vector �elds

U1 =
@

@t
;U2 = t

@

@t
+

2

3
x
@

@x
+

2

3
y
@

@y
; (31)

together with the comutation relation between them
[U1; U2] = U1:

As we can see, the kind of anisotropy introduced in
the Kepler potential has destroyed the rotation symme-
try, but preserved the group of scalings. The angular
momentum is no longer a conserved quantity as it was
in the usual Kepler problem, when � = 1:

We can 't �nd a second conserved quantity, be-
sides the energy, by any method we use. If this was
so, we could guarantee the integrability of the system
in the sense of Liouville (see Arnold, [1976]13). The
non-integrability of this potential was established by
Yoshida [1987]14.
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(ii) The Kepler problem with a linear force A
possible generalisation of the above cases could be given
by an equation of motion joining two cases: the Kepler
problem with the harmonic oscillator. The equations
of motion for this case are

::
xi �

kxi
r3

+ !2xi = 0 ; i = 1; 2; 3: (32)

Comparing this equation with the general equation
(8) we see that Fi =

kxi
r3 � !2xi , B = 0: Solving equa-

tions (10) we obtain the vector �elds

c

Ui = @t;

U2 = x@y � y@x ; U3 = z@x � x@z ; U4 = y@z � z@y ; (33)

d

which form a four-parameter Lie group. The three last
vector �elds form the group of rotations SO(3). From
this we have the conservation of angular momentum.
From the �rst vector �eld we �nd the conservation of
energy. These are the conserved quantities for this sys-
tem.

(iii) The Hidrogen atom in an electric �eld An-
other interesting physical situation comes from the clas-
sic theory of the excitation of a hidrogen atom under
a monocromatic linearly polarized electric �eld . Con-
sider the hamiltonian

H =
p2

2
�

1

r
+E0z cos(wt);

where E0 and w are, respectively, the electric �eld and
its frequency. The z-coordinate points in the direction
of the external �eld. The only symmetry admitted by
the equation of motion is the axial symmetry, relative
to z-axis, and the only conserved quantity for the sys-
tem is the component of the angular momentum in the
z-direction.

The one-dimensional aproximation in a model stud-
ied by Casati [1987]15, has the hamiltonian

H =
p2

2
�

1

z
+E0z cos(wt):

The corresponding equation of motion does have no Lie
symmetries.

b) Non-vanishing magnetic �eld:
!

B6= 0:

(i) Charge submitted to a Coulombian potential
and to an external magnetic �eld This is a phys-
ically important problem. It's the classical analogue of
the case of a hidrogen atom under a magnetic �eld. An
atom submitted to a strong, static uniform magnetic
�eld can present chaotic behavior, both in classical as
in quantum cases. This case can be described if we take

in the general equation (8) Fi(t;
!

x) = �(t)xi
r3 , where

r = (Æijxixj)
1
2 ; B1 = B2 = 0; B3 = B: Solving equa-

tions (10) we can get the Lie symmetries. Let's analyze
some particular cases.

1.) B = B0(const:);
:
�= 0: This is the classical

problem of a non-relativistic hidrogen atom under the
action of an external constant, uniform, magnetic �eld.
For this case we get

U1 = @t ; U2 = �y@x + x@y: (34)

These vector �elds also represent Noether symme-
tries and so we have the conservation of energy and
of the z-component of the angular momentum. This
doesn't guarantee the integrability of the system. Sev-
eral studies led to the non-integrability of the sys-
tem (Hasegawa, Robnik and Wunner, [1989]16; Delande
[1986]17).

2.) B = 0;
:
�= 0 �! � = const: This is

the usual Kepler problem. We have already discussed
the two-dimensional case. The extension to three-
dimensional case is obvious. For this case we obtain
the vector �elds

U1 = @t; U2 = t@t +
2

3
(x@x + y@y + z@z) ; (35a)

Uij = xi
@

@xj
� xj

@

@xi
; i; j = 1; 2; 3 and i 6= j: (35b)

3.) B = B0 = const:; � = �(t). Solving
equations (10) for this system we arrive to a partic-
ular case with a non-trivial symmetry structure: if
� = C0 expfktg; where C0 and k are constants, we have

U1 = @t; U2 = xi
@

@xi
; U3 = �y@x + x@y: (36)
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4.) B = B(t); � = �(t). In this case we disre-
gard the electric �elds arising from the variation of the
magnetic �eld. We can think of slowly varying mag-
netic �elds. If B(t) and �(t) are arbitrary functions,
we �nd only one vector �eld : U = �y@x + x@y:

An interesting particular case appear when solving
equations (10):

B =
C1

C2t+ C3
; � = C4(C2t+ C3)

(3C5�2C2)=C2 ;

(37)
where the Ci's are arbitrary constants. In this case we
�nd the following group of vector �elds

c

U1 = @t ; U2 = t@t ; U3 = �y@x + x@y ; U4 = xi
@

@xi
; i = 1; 2; 3: (38)

d

(ii) Harmonic oscillator in the presence of a mag-
netic �eld - In what follows we will be looking for the
symmetries for some cases of oscillators in the presence
of magnetic �elds. We will show the existence of an
"inverse Zeeman efect" for situations where the mag-
netic �eld, when assuming certain values, reinstall the
symmetries of an anisotropic oscillator.

(1.) General case - Let's consider the gen-
eral case (in which all the frequencies are di�erent and
there's no relation between then and the magnetic �eld)
of an anisotropic oscillator in the presence of a constant
magnetic �eld. The equations of motion take the form

::
xii +!

2
ijxj +
ij

:
xj= 0 ; (39)

where !2ij is a frequency tensor. The eigenvalues

!21 ; !
2
2 ; !

2
3 of the matrix !2ij are the proper frequen-

cies of the oscillator. It will be isotropic whenever
!21 = !22 = !23 : On the other side


ij = (e=c)�ikjBk ; (40)

represents the external �eld. If we compare equa-
tion (39) with the general equation (8), we verify that
Fi(t; xj) = �!2ijxj and � = e=c . We choose a coordi-

nate system in which !2ij is diagonal and the external
magnetic �eld points in the z-direction. We will be con-
sidering the three-dimensional case. The extension to
the n-dimensional case is straightforward.

Solving equations (10) we obtain the following group
of vector �elds

c

U1 = @t ; U2 = x@x + y@y ; U3 = z@z;

U4 = sin(!3t)@z ; U5 = cos(!3t)@z ;

U6 = sin(1t)@x �
��
!21 � 21

�
=!1

�
cos(1t)@y;

U7 = cos(1t)@x +
��
!21 � 21

�
=!1

�
sin(1t)@y; (41)

U8 = sin(2t)@x �
��
!21 � 22

�
=!2

�
cos(2t)@y;

U9 = cos(2t)@x +
��
!21 � 22

�
=!2

�
sin(2t)@y;

where ! = eB=c and

i =
n
(1=2)

�
!21 + !22 + !2

�
� (1=2)

��
!21 + !22 + !2

�
� 4!21!

2
2

� 1
2

o 1
2

; with i = 1; 2: One stands for the + signal

and two for the - signal. The vector �elds above form a Lie algebra with dimension nine, associated to a nine-
parameter Lie group.
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(2.) Isotropic oscillator with external mag-
netic �eld - Let's consider now the case of an
isotropic, three-dimensional oscillator in the presence of
an external, constant magnetic �eld directed along the
z-direction. We must note that if we want to �nd the
symmetries of an isotropic or an anisotropic oscillator
all we have to do is to make the magnetic �eld equal to
zero in the general equations (10). These cases are well
known (Prince and Eliezer, [1980]). The n-dimensional

oscillator with frequencies depending on time is well
studied (Prince and Eliezer, [1980]) and could be eas-
ily obtained from equations (10) taking ! = !(t) and
B = 0:

The problem of an isotropic oscillator with magnetic
�eld is a particular case of the general one discussed
above. All we have to do is to solve the system of equa-
tions (10) with !1 = !2 = !3 = !0: Doing this we
arrive to the following group of vector �elds:

c

U1 = @t ; U2 = x@x + y@y ; U3 = �y@x + x@y ; X4 = z@z ;

U5 = cos(!0t)@z ; U6 = sin(!0t)@z ;

U7 = [x sin(!t) + y cos(!t)] @x + [x cos(!t)� y sin(!t)] @y ;

U8 = [�x cos(!t) + y sin(!t)] @x + [x sin(!t) + y cos(!t)] @y ;

U9 = cos(1t)@x +
��
!20 � 21

�
=!1

�
sin(1t)@y ; (42)

U10 = sin(1t)@x �
��
!20 � 21

�
=!1

�
cos(1t)@y ;

U11 = cos(2t)@x +
��
!20 � 22

�
=!2

�
sin(2t)@y ;

U12 = sin(2t)@x �
��
!20 � 22

�
=!2

�
cos(2t)@y ;

d

where ! = eB=c; and i =
h�
!20 +

1
2!

2
�
� !

�
!20 +

1
4!

2
� 1
2

i 1
2

;

with i = 1; 2. We have taken the signal + when i = 1
and - when i = 2: So we have a twelve-parameter Lie
group.

From the point of view of the algebra of the group,
the system is equivalent to an oscillator with only two
equal frequencies. This can be seen from the fact that
the magnetic �eld is perpendicular to the plane (x,y)
and so must a�ect equally both frequencies x and y.

This implies that the system acts as if it has two equal
frequencies in the (x,y) plane and a di�erent frequency
in the z-direction.

(3.) Semi-isotropic oscillator with an external
magnetic �eld: an inverse "Zeeman e�ect "

Let's return to the general case (1.) especi�ed by
equations (39). If we solve equations (10) for that case
without the imposition that the frequencies and the
magnetic �eld can assume any value, then naturally
appears a very interesting solution

c

!1 = !2 = !0 < !3; (43a)

!23 = !21 +
1

4
!2; (43b)

with the following group of vector �elds

U1 = @t ; U2 = z@z ; U3 = x@x + y@y ; U4 = �y@x + x@y ;

U5 = sin(!3t)@z ; U6 = cos(!3t)@z ;
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U7 =

�
y cos(

1

2
!t) + x sin(

1

2
!t)

�
@z ; U8 =

�
y sin(

1

2
!t)� x cos(

1

2
!t)@z

�
;

U9 = z sin(
1

2
!t)@x + z cos(

1

2
!t)@y ; U10 = z sin(

1

2
!t)@y � z cos(

1

2
!t)@x ;

U11 = sin(2t)@x � cos(2t)@y ; U12 = cos(2t)@x + sin(2t)@y ;

U13 = sin(1t)@x + cos(1t)@y ; U14 = cos(1t)@x � sin(1t)@y ;

U15 = [y cos(!t) + x sin(!t)] @x � [y sin(!t)� x cos(!t)] @y ;

U16 = [y sin(!t)� x cos(!t)] @x + [y cos(!t) + x sin(!t)] @y ;

U17 = z sin(!3t)@t +

�
1

2
!yz sin(!3t) + !3xz cos(!3t)

�
@x +

+

�
!3yz cos(!3t)�

1

2
!xz sin(!3t)

�
@y + !3z

2 cos(!3t)@z ;

U18 = z cos(!3t)@t +

�
1

2
!yz cos(!3t)� !3xz sin(!3t)

�
@x �

�

�
!3yz sin(!3t) +

1

2
!xz cos(!3t)

�
@y � !3z

2 sin(!3t)@z ;

U19 = sin(2!3t)@t +

�
1

2
!y sin(2!3t) + !3x cos(2!3t)

�
@x +

+

�
!3y cos(2!3t)�

1

2
!x sin(2!3t)

�
@y + !3z cos(2!3t)@z ; (44)

U20 = cos(2!3t)@t +

�
1

2
!y cos(2!3t)� !3x sin(2!3t)

�
@x �

�

�
!3y sin(2!3t)�

1

2
!x cos(2!3t)

�
@y � !3z sin(2!3t)@z ;

U21 = [x sin(2t)� y cos(2t)] @t + [!3yz sin(2t) + !3xz cos(2t)] @z +

+

�
�
1

2
!y2 cos(2t) + !3x

2 cos(2t) + 1xy sin(2t)

�
@x +

+

�
!3y

2 sin(2t) + 1xy cos(2t)�
1

2
!x2 sin(2t)

�
@y ;

U22 = [x cos(2t) + y sin(2t)] @t + [!3yz cos(2t)� !3xz sin(2t)] @z +

+

�
1

2
!y2 sin(2t) + 1xy cos(2t)� !3x

2 sin(2t)

�
@x +

+

�
!3y

2 cos(2t)� 1xy sin(2t)�
1

2
!x2 cos(2t)

�
@y ;

U23 = [x sin(1t) + y cos(1t)] @t + [�!3yz sin(1t) + !3xz cos(1t)] @z +

+

�
1

2
!y2 cos(1t) + !3x

2 cos(1t)� 2xy sin(1t)

�
@x +

+

�
�!3y

2 sin(1t) + 2xy cos(1t)�
1

2
!x2 sin(1t)

�
@y ;



448 Brazilian Journal of Physics, vol. 30, no. 2, June, 2000

U24 = [x cos(1t)� y sin(1t)] @t � [!3yz cos(1t) + !3xz sin(1t)] @z +

+

�
�
1

2
!y2 sin(1t)� !3x

2 sin(1t)� 2xy cos(1t)

�
@x �

�

�
!3y

2 cos(1t) + 2xy sin(1t) +
1

2
!x2 cos(1t)

�
@y ;

d

where ! = eB=c as before and i = !3�
!
2 with i = 1; 2;

the signal being + when i = 1 and � when i = 2:
Analizing the above vector �elds and the associated

algebra, we can see that this is the same symmetry
group as that of the isotropic oscillator. So if we have
a semi-isotropic oscillator with two equal frequencies
!1 = !2 < !3; then we can reobtain the symmetries of
the isotropic oscillator applying to the system an exter-
nal magnetic �eld

B = (2c=e)
�
!23 � !21

� 1
2 ; (45)

in the z-direction. This is a kind of inverse Zeeman
efect. In the quantum analog of this system we ver-
ify that the application of an external magnetic �eld
like (45) implies the return of the degenerescence of the
system.

If we consider the time-dependent case, where both
the frequencies and the magnetic �eld are varying with
time, then we �nd that the same condition for isotropi-
sation still holds:

!2ij �
1

4

ik
kj =W 2Æij ;

where W is a number with frequency dimension. In
fact, if we choose, as before, a coordinate system where
!2ij is diagonal and the magnetic �eld in the z-direction,
we obtain the condition (43a-b) again. Obviously we
are considering slow varying magnetic �eld, so that, in
a �rst aproximation, we can discard the corrections in
the equations of motion of the system to make them
compatibles with Maxwell equations.

(iii) The charge - monopole problem - Let's con-
sider the equation of motion for this problem

::

!

r=
a
!

v �
!

r

r3
; (46)

where a = eg=e. This equation describes the motion of
an electric charge e in the �eld of a magnetic monopole
g, �xed at the origin. Poincar�e [1896]18 has shown that
the trajectory of the charge is over a cone with the apex
at the origin. The direction of the symmetry axis of the
cone is given by the generalised angular momentum:

!

l =
!

r �
!

p �
eg

c

!

r

r
: (47)

It should be remembered that this problem doesn't
admit a conventional Lagrangian description. This de-
scription, necessary to the quantisation of the system,
can be done through generalisations of several kinds.
Jackiw [1980]19 applied the Noether theorem to a La-
grangian with a singular potential to get the dynamical
symmetry group [SO(3)�SO(2,1)]. He was able to get
the quantisation of the system.

To obtain the Lie symmetries (Moreira et al.
[1985a]20) for this problem we must return to the gen-
eral equation (8). Comparing (46) with (8) we verify

that Fi = 0; � = a and
!

B=
!

r =r3: Solving equations
(10) we obtain the following group of vector �elds

c

U1 = @t ; U2 = 2t@t + xi@i ; U3 = t2@t + txi@i ; (48a)

U4 = �y@x + x@y ; U5 = �x@z + z@x ; U6 = �z@y + y@z : (48b)

d

This is a group containing two subgroups: SO(3)
and SO(2,1).

Conserved quantities - W'll begin by using the
Prince method [1979] to �nd �rst integrals. Let's take,
for instance, the vector �eld U4 and the corresponding

�rst prolongation pr(1)U4 = x@y � y@x�
:
y @ :

x+
:
x @ :

y .

The invariant functions generated by U
(1)
4 can be ob-

tained solving the system

dx

y
= �

dy

x
=

d
:
x
:
y

= �
d

:
y
:
x

:
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Some of the invariants we obtain are u1 = x2 +

y2 ; v1 =
:
x
2
+

:
y
2
; v2 =

:
z
2
: So the system of equa-

tions

c

dv1
du1

=
a

:
z (x

:
y �

:
x y)=r3

x
:
x +y

:
y

;
dv2
du1

=
a

:
z (

:
x y � x

:
y)=r3

x
:
x +y

:
y

;

d

is invariant under U
(2)
4 : Comparing these equations we

arrive at

�
dv1
du1

=
dv2
du1

;

which, when integrated, give the kinetic energy as a
�rst integral:

I1 =
1

2
(v1 + v2) =

1

2
(
:
x
2
+

:
y
2
+

:
z
2
) =

1

2

:

!

r
2

: (49a)

To obtain some other �rst integrals we will use
the method described in section 2 (I.C. Moreira et al.
[1985]). To do so we must use the �rst prolongation of
the vector �elds (48a-b) and apply them to I1: Repeat-
ing systematically such procedure we arrive to

c

I2 = pr(1)U3I1 = [t2@t + txi@i + (xi � t
:
xi)@ :

xi
]I1 =

:

!

r �(
!

r �t
:

!

r ) ; (49b)

I3 = pr(1)U3I2 = t2
:

!

r
2

�2t
!

r �
:

!

r +
!

r
2
= (

!

r �
:

!

r t)2 : (49c)

d

By applying these two methods, we can arrive, in a
similar manner, to the conservation of the generalized
angular momentum

!

J=
!

r �
:

!

r �
a
!

r

r
: (49d)

We must observe that I1 is conserved for any kind

of force perpendicular to
:

!

r and I2 and I3 are conserved

for any force perpendicular to
:

!

r and
!

r :

The �rst integrals (49) permit us to determine the
trajectory of the charge in the �eld of the monopole
and to �nd the temporal dependence of the separation
distance between the particles.

The orbital part of
!

J :
!

L=
!

r �
:

!

r has constant

magnitude and precess around
!

J . If we take the in-
stant of closest aproximation as being t = 0, I3 will be
the square of that distance: I3 = r20 :

The rotation rate of the vector position can be eas-
ily obtained using spherical coordinates. From the con-
stancy of L2 it follows the validity of a relation simi-
lar to Kepler's second law for the charge on the cone:
its vector position describe equal areas in equal times.
Besides this, as the force is normal to the surface, the
motion of the charge will be a geodesic on the cone (the
conservation of I1 and L guarantee this).

Symmetries of Sokolov's Lagrangian Sokolov
[1976]21 builds a lagrangian formalism, rotationaly in-
variant, trying to avoid the diÆculties arising from the
Dirac theory of magnetic monopole, namely, the singu-
larity of the potential and the need to apply the Dirac's
condition in order to obtain the quantisation of the sys-
tem. He wrote a lagrangian in a four-dimensional space
where the coordinates are the three Euler angles and
the separation distance r between the charges. In these
coordinates the lagrangian has the form

c

L =

:

!

r
2

2
+
r2

2

�
:

�
2
+

:
�
2
sin2 �

�
�
eg

c

�
:
� cos�+

:

�
: (50)

Applying the Noether condition (13) to the above lagrangian we arrive to the Noether vector �elds

U1 = @t ; U2 = t@t + (r=2) @r ; U3 = t2@t + tr@r +
�
r2=2a

�
@ ;
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U4 = @� ; U5 = � cos� cot�@� � sin�@� + (cos�= sin�) @ ; (51)

U6 = � sin� cot�@� + cos�@� + (sin�= sin�) @ ; U7 = �
h(r; t)

a
@ :

The vector �elds above form, in spherical coordinates, the same group structure already obtained with the Lie
symmetries. The seventh vector �eld U7 appears due to the introduction of the  coordinate. The second part of
Noether's theorem allow us to obtain the �rst integrals associated with these vector �elds:

I1 =

:
r
2

2
+
r2

2

�
:

�
2
+

:
�
2
sin2 �

�
; I2 = tI1 �

r
:
r

2
;

I3 = 2t2I1 � 2tr
:
r +r2 ; I4 =

:
� r2 sin2 � � a cos� ;

I5 = I4 cos� cot� + r2
:

� sin�+ a
cos�

sin�
;

I6 = I4 sin� cot� � r2
:

� cos�� a
sin�

sin�
; I7 = 0 ;

d

where these �rst integrals correspond to the ones in
equations (65a-d) in spherical coordinates.

As a �nal remark we mention that if we repeat the
above calculations considering that the magnetic charge
of the monopole can change in time, the only vector
�elds we obtain are those corresponding to rotation:
Uij = xi@j � xj@i; with i; j = 1; 2; 3 (i 6= j).

(iv) Electric charge in the �eld of a mag-
netic monopole with electric charge - Schwinger
[1969]22 has used the idea of dyon, that is, a magnetic

monopole with electric charge. Let's consider then the
case of a charged particle in the �eld of a dyon. The
equations of motion are

::
xi +

bxi
r3

�
a

:

!

r �
!

r

r3
= 0 ; (52)

where b = ke and a = eg=c as before. Comparing this
equation with (8) we verify that Fi = � bxi

r3 , � = e=c,
Bk = gxk=r

3: Solving equations (10) we obtain the vec-
tor �elds

c

U1 = @t ; U2 = x@y � y@x ; U3 = z@x � x@z ; U4 = y@z � z@y :

d

This is a four-parameter group containing, as a sub-
group, the group of rotations SO(3). The symmetry
group for this case is a sub group of that obtained for
the monopole, as should be.

The same kind of analisis made by Sokolov for the
monopole problem can be repeated for this case. We

can introduce an aditional variable, using as coordi-
nates the separation r between the charges and the
Euler angles �; � and . In this case, � and � cor-
respond to the spherical coordinates � and �, and  is
the aditional angular variable. In these coordinates the
lagrangian for this system has the form

c

L =

:

!

r
2

2
+

!

r
2

2

�
:

�
2
+

:
�
2
sin2 �

�
�
�eg
c

��
:
� cos�+

:

�
�
�2

r
�

(eg=c)
2

2r2
;

where p = �eg=c , is the canonical momentum corresponding to : Applying the Noether theorem to this lagrangian
we obtain both the vector �elds:
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U1 = @t ; U2 = cos� @� � cot� sin�@� �
sin�

sin�
@ ;

U3 = sin� @� + cot� cos� @� �
cos�

sin�
@ ; U4 = @� ; U5 = @ ;

and the corresponding �rst integrals:

I1 = E =

:

!

r
2

2
+

!

r
2

2

�
:

�
2
+

:
�
2
sin2 �

�
�
e2

r
+

(eg=c)
2

2r2
;

I2 = �Jy = �p� cos�+ cot� sin� p� �

�
sin�

sin�

�
p ;

I3 = Jx = �p� sin�� cot� cos� p� +

�
sin�

sin�

�
p ;

I4 = �Jz = �p� ; I5 = �p =
eg

c
;

d

where p� = r2
:

� and p� = r2
:
� sin2 � � (eg=c) cos�:

So we have obtained the conservation of energy and

of the generalized angular momentum vector
!

J=
!

L

� (eg=c)
!

r
r .

(v) Electric charge interacting with magnetic
dipole.

This is an important physical problem. It has been
discussed as a chaotic scattering problem by Jung and
Scholz [1988]23. Almeida et al. [1991]24 had shown the
non-integrability of this system. The equation of mo-

tion for this case reads

::

!

R +�R�5
� :

!

R �
h
R2ê3 � 3

�
ê3�

!

R
�
!

R
i�

= 0 ; (53)

where � = eA0=c , and
!

M= A0ê3 is the mag-

netic momentum taked along the z-axis and
!

B=

R�5
h
3
�
!

M �
!

R
�
!

R �R2
!

M
i
. Comparing equation (53)

with (8) and solving (10) we obtain

c

U1 = @t ; U2 = x@y � y@x ; U3 = t@t + (1=3) (x@x + y@y + z@z) :

d

The algebra of the group stands from [U1; U2] =
0 ; [U1; U3] = U1 ; [U2; U3] = 0; corresponding to a1�a2
.

(c) Time-dependent generalizations

Leach and Gorringe [1990]25 analysed the Lie sym-
metries for the equation

::

!

R +h(R)
!

L +q(R)
!

R= 0 ; (54)

where
!

L=
!

R �

:

!

R. In this section, analysing a particu-
lar case of this equation, we will discuss a method for

generating integrable systems with a given symmetry
structure. W'll try to �nd, in each particular case, a
speci�c transformation that transform the original sys-
tem into another one with a known solution. We can
take the inverse point of view, that is, that of looking
for all di�erential equations which are equivalent to a
given one with known solution (Duarte [1991]26). If we
use an invertible point transformation the structure of
the Lie symmetries is preserved.

W'll �nd the general expression (Moreira and Ritter
[1991]27) for the system of di�erential equations equiv-
alent to the equation
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::

!

R +C1R
n
!

L +C2R
m
!

R= 0 : (55)

This equation is a particular case of equation (54) but
it has a suÆcient degree of generality for our purpose
here. It contains, as particular cases, the equation of

the Kepler problem and that of the charge-monopole
problem. The Lie algebra associated with equation (54)
is a1�SO(3), with a1 representing the symmetry under
time translation and SO(3) the rotational invariance.
The vector �elds associated with (55) are

c

U1 = @T ; U2 = Z@Y � Y @Z ; U3 = X@Z � Z@X ; U4 = Y @X �X@Y : (56)

If we make the invertible point transformation

!

R= f(t)
!

r ; T = g(t) ; (57)

equation (55) will be transformed to the equation

::

!

r +f1(t)
:

!

r +f2(t)
!

r +C1f3(t)r
n
!

l +C2f4(t)r
m !

r= 0 ; (58)

where
!

l=
!

r �
:

!

r and

2
:

f =f�
::
g =

:
g = f1 ; fn+1

:
g= f3 ;

::

f =f �
�::
g =

:
g
�� :

f =f
�

= f2 ; fm
:
g
2
= f4 : (59)

d

We will �nd �rstly the most general equation (55)
with a scale symmetry. If we impose this symmetry

U5 = T@T + aX i@Xi
(60)

and use the Lie conditions for the equation (55), we �nd

::

!

R +C1R
n
!

L +C2R
2(n+1)

!

R= 0 : (61)

Equation (61) has the symmetry vector �elds
U1; U2; U3; U4 and the additional symmetry vector �eld

U5 = T@T � (n+ 1)�1X i@Xi
: (62)

The Lie algebra associated with these vector �elds is
a2 � SO(3):

The time-dependent equation, with the same Lie
symmetry structure but with transformed symmetry
vector �elds, obtained from (61) and (57), is

::

!

r +f1

:

!

r +f2
!

r +C1f3r
n
!

l +C2f4r
2(n+1) !r= 0 :

(63)
If we search for a particular case of equation (55)

with the additional symmetry

U6 = T 2@T + TX i@Xi
(64)

the Lie conditions lead to the equation

::

!

R +C1R
�3

!

L +C2R
�4

!

R= 0 : (65)

The Lie algebra associated with the symmetry vec-
tor �elds U1; :::; U6 is, in this case, sl(2; R)�SO(3): The
transformed equation is

::

!

r +f1

:

!

r +f2
!

r +C1f3r
�3

!

l +C2f4r
�4 !r= 0 ; (66)

where the fi are given by (59).
Time-dependent case of the Kepler problem

- This case was analysed by Katzin and Levine [1983]28

and will be recovered here using the method outlined
above. Let m = �3; C1 = 0 in (55). Solving (59), with
f1 = 0; we get

f3 = C0 ; f = f4 ;

f2 =
::

f4 =f4 � 2
:

f
2

4 =f
2
4 (67)

Making f4 = W�1(t) equation (55) is reduced to the
equation

::

!

r �
� ::
W =W

�
!

r +kW�1r�3
!

r= 0 (68)

under the point transformation

!

R=W�1 !r ; T =

Z
W�2dt : (69)

Equation (68) is the equation analysed by Katzin
and Levine [1983]. The symmetry vector �elds for the
Kepler problem are U1; U2; U3 and U4 in (56), and
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U5 = T@T +
2

3
X i@Xi

: (70)

The symmetry vector �elds for (68), obtained by
Katzin and Levine, can be determined directly from
(56), (69) and (70). By using the transformation(69)
the conserved Laplace-Runge-Lenz vector can be gen-
eralized for equation (68). It takes the form

!

I 1=
!

l �

�
W

:

!

r �
:

W
!

r

�
+ kr�1

!

r :

Other possible generalizations - We can apply
the above results to other interesting cases. For in-
stance, the equation describing the charge- monopole
problem is a particular case of (55): choosing C2 = 0;
n = �3 we are lead to

::

!

R +C1R
�3

!

L= 0 : (71)

Solving (59) for this case and choosing f3 = 1; f =
W�1(t) we obtain

::

!

r �
� ::

W =W
�
!

r +C1r
�3

!

l= 0 ; (72)

which describes a charge-monopole interaction plus a
time-dependent linear force. We can make a further

generalization by including the force C2R
�4

!

R : Equa-
tion (72) then becomes

::

!

r �
� ::

W =W
�
!

r +C1r
�3

!

l +C2r
�4 !r= 0 ; (73)

with the same Lie symmetry group as the charge-
monopole equation: sl(2; R) � SO(3) (Moreira et al
[1985]).

Another possible generalization is the problem of
the interaction between an electric charge and a mag-
netic dipole discussed above. The Lie algebra for this
problem is a1 � a2: Applying the point transformation
(57) to equation (53) that describes this problem we
arrive to

c

::

!

r �
� ::

W =W
�
!

r +�Wr�5
:

!

r �
�
r2ê3 � 3z

!

r
�
� �

:

W r�3
!

r �ê3 = 0 ; (74)

d

where we have used f = W�1(t): This equation has
the same Lie structure as that of the charge-magnetic
dipole equation.

IV Conclusions

We have applyed the Lie and Noether methods to a
number of systems, all of them involving charged par-
ticles in presence of electromagnetic �elds. Even using
only point symmetry transformations we can conclude
that these methods are very e�ective. Nowadays the
knowledge of invariants is a powerful tool in the inves-
tigation of non-linear dynamical systems in view of the
connection between them and the integrability of such
systems. We have analysed some of these systems in
the context of electromagnetic phenomena. Obviously,
these methods can be used in other �elds of theoretical
physics and constitue, themselves, an active research
�eld. The theory of the continuous Lie groups has a
much broader scope them it can be thought reading this
paper. The applications of the Lie groups include such
areas as, for instance, algebric topology, di�erential ge-
ometry, bifurcation theory, special functions, numerical
analysis, control theory, classical and quantum physics,
dynamical systems, etc...
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