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HBT Shape Analysis with q-Cumulants
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Taking up and extending earlier suggestions, we show how two- and three-dimensional shapes of second-
order HBT correlations can be described in a multivariate Edgeworth expansion around Gaussian ellipsoids, with
expansion coefficients, identified as the cumulants of pair momentum difference q, acting as shape parameters.
Off-diagonal terms dominate both the character and magnitude of shapes. Cumulants can be measured directly
and so the shape analysis has no need for fitting.
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I. INTRODUCTION

Early measurements of the Hanbury-Brown Twiss (HBT)
effect made use of momentum differences in one dimension,
for example the four-momentum difference qinv [1]. The
huge experimental statistics now available permits measure-
ment of the effect in the three-dimensional space of vector
momentum differences q = p1 −p2 and, in many cases, also
its dependence on the average pair momentum K = (p1 +
p2)/2. Increasing attention has therefore been paid in the last
decade to the second-order correlation function in its full six-
dimensional form,

C2(q,K) = 1 + R2(q,K) (1)

=
∫

dp1 dp2 ρ(p1,p2)δ(p1 −p2 −q)δ( 1
2 (p1 +p2)−K)∫

dp1 dp2 ρref(p1,p2)δ(p1 −p2 −q)δ( 1
2 (p1 +p2)−K)

,

with ρ the density of like-sign pairs in sibling events and ρref

the event-mixing reference. While C2 data can be visual-
ized and quantified reasonably well in two dimensions [2, 3],
it is harder to quantify three- or higher-dimensional correla-
tions. Projections onto marginal distributions are inadequate
[4], while sets of conditional distributions (“slices”) require
many plots and miss cross-slice features.

Under these circumstances, efforts to quantify the shape of
the multidimensional correlation function with Edgeworth ex-
pansions [5, 6] or spherical harmonics [4] represent welcome
progress. More ambitious programmes seek to extend con-
nections between Gaussian source functions and the “radius
parameters” of the correlation function to sets of higher-order
coefficients using imaging techniques [7–9] and cartesian har-
monics [10].

In this contribution, we extend the Edgeworth expansion
solution proposed in [5, 6] to a fully multivariate form, in-
cluding cross terms. Generically, the intention is to expand a
measured normalized probability density f (q) in terms of a
reference density f0(q) and its derivatives,

f (q) = f0(q){ Edgeworth expansion in q } , (2)

so as to characterize f (q) by its expansion coefficients. While
we have previously made use of a discrete multivariate Edge-

worth form with Poissonian reference f0 to describe multi-
plicity distributions [11], the shape analysis of R2 requires the
more traditional continuous version [12] with a Gaussian ref-
erence f0. For the purpose of analysing the shape of the ex-
perimental correlation function in HBT, we hence define the
measured non-Gaussian probability density as

f (q,K) =
R2(q,K)∫
dqR2(q,K)

, (3)

where R2(q) is itself a normalized cumulant of pair counts
[13]. For the reference distribution (null case), we take the
multivariate Gaussian, which in its most general form is

f0(q,K) =
exp

[− 1
2 (qi −λi)(λ−1)i j(q j −λ j)

]
(2π)D/2(detλ)1/2 , (4)

where D is the dimensionality of q, Einstein summation con-
vention is used (here and throughout this paper), the λi are the
first “q-cumulants” of f0 [14, 15],

λi(K) =
∫

dq f0(q,K)qi, (5)

λi j(K) is the covariance matrix (the set of second-order q-
cumulants) in the components of q,

λi j(K) = (
∫

dq f0 qi q j)− (
∫

dq f0 qi)(
∫

dq f0 q j) , (6)

and λ−1
i j the inverse matrix. While we suppress K in our no-

tation from now on, all results are valid for K-dependent first
moments λi and covariance matrix elements λi j.

II. REFERENCE DISTRIBUTION

The vector difference is normally decomposed into com-
ponents q = (q1,q2,q3) = (qo,qs,ql) in the usual (out, side,
long) coordinate system; for illustrative purposes we will also
make use of a two-dimensional vector q = (q1,q2). (This
is not the two-dimensional decomposition into (qt ,ql) used
in some experimental HBT analyses [2, 3], because qt =
(q2

o + q2
s )1/2 is always positive, while (q1,q2) in our two-

dimensional example can be positive or negative.) For the
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two-dimensional decomposition, the covariance matrix

λ =
(

λ11 λ12
λ12 λ22

)
(7)

has the inverse

λ−1 =


 1

χσ2
1

−ρ
χσ1σ2

−ρ
χσ1σ2

1
χσ2

2


 , (8)

where we have introduced standard deviations σi =
√

λii as
well as the Pearson correlation coefficient ρ = σ2

12/(σ1σ2) =

λ12/
√

λ11λ22 and χ = 1−ρ2 [12, 16]. Similarly, in three di-
mensions the covariance matrix

λ =




λoo λos λol

λos λss λsl

λol λsl λll


 (9)

has the general inverse

λ−1 =
1

detλ




λllλss−λ2
sl λolλsl−λllλos λosλsl−λolλss

λolλsl−λllλos λllλoo−λ2
ol λolλos−λooλsl

λosλsl−λolλss λolλos−λooλsl λooλss−λ2
os


 (10)

=
1

detλ




σ2
s σ2

l

(
1−ρ2

sl

) −σoσsσ2
l (ρos −ρolρsl) −σoσ2

s σl (ρol −ρosρsl)

−σoσsσ2
l (ρos −ρolρsl) σ2

oσ2
l

(
1−ρ2

ol

) −σ2
oσsσl (ρsl −ρosρol)

−σoσ2
s σl (ρol −ρosρsl) −σ2

oσsσl (ρsl −ρosρol) σ2
oσ2

s
(
1−ρ2

os
)


 , (11)

where ρi j = σ2
i j/(σiσ j) and the determinant is given by

detλ = λooλssλll −λooλ2
sl −λssλ2

ol −λllλ2
os +2λosλolλsl = σ2

oσ2
s σ2

l
(
1−ρ2

sl −ρ2
ol −ρ2

os +2ρosρolρsl
)
. (12)

For azimuthally symmetric sources [17], ρos = ρsl = 0, so that
the inverse simplifies to

λ−1 =




1
χσ2

o
0 −ρol

χσoσl

0 1
σ2

s
0

−ρol
χσoσl

0 1
χσ2

l


 ≡




2R2
oo 0 2R2

ol

0 2R2
ss 0

2R2
ol 0 2R2

ll


 .(13)

Identifying in the second part of Eq. (13) the inverse cu-
mulant matrix with the usual radii R2

i j of the parametrization
f0 ∼ exp[−∑i j R2

i jqiq j], we note that the notation R2
ol is mis-

leading in that a positive covariance between the out and long
directions, ρol > 0, results in a negative R2

ol .

III. MULTIVARIATE EDGEWORTH EXPANSION

A. Derivation

In order to derive the Edgeworth expansion, we need to dis-
tinguish between the moments and cumulants of f0(q) and
f (q) respectively. The cumulants of the reference f0 have
been fully specified already: the order-1 and 2 cumulants are

the set of (initially free) parameters λi and λi j respectively,
while all cumulants of order 3 or higher vanish identically
[12] for the Gaussian reference (4). For the measured non-
Gaussian f (q), we denote the first- and second-order mo-
ments as µi =

∫
dq f (q)qi, and µi j =

∫
dq f (q)qiq j, and in

general

µi jk... =
∫

dq f (q)qiq jqk . . . . (14)

Cumulants κi jk... of f (q) are found from these moments by
inverting the generic moment-cumulant relations [12]

µi = κi, (15)
µi j = κi j +κiκ j, (16)

µi jk = κi jk +κiκ jk +κ jκki +κkκi j +κkκ jκk,

= κi jk +κiκ jk[3]+κkκ jκk, (17)

where we have introduced the notation [3] to indicate the num-
ber of index partitions, and therefore terms, of a given combi-
nation of κ’s. The relations of order 4, 5 and 6, which we will
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need in a moment, are

µi jkl = κi jkl +κiκ jkl [4]+κi jκkl [3] (18)
+ κiκ jκkl [6]+κiκ jκkκl ,

µi jklm = κi jklm +κiκ jklm[5]+κi jκklm[10] (19)
+ κiκ jκklm[10]+κiκ jkκlm[15]
+ κiκ jκkκlm[10]+κiκ jκkκlκm ,

µi jklmn = κi jklmn +κiκ jklmn[6]+κi jκklmn[15] (20)
+ κiκ jκklmn[15]+κi jkκlmn[10],+κiκ jkκlmn[60]
+ κiκ jκkκlmn[20]+κi jκklκmn[15]+κiκ jκklκmn[45]
+ κiκ jκkκlκmn[15]+κiκ jκkκlκmκn .

For identical particles, all moments and cumulants are fully
symmetric under index permutation.

The derivation of the Edgeworth expansion starts with the
generic Gram-Charlier series [12, 18, 19], which is expressed
in terms of differences between the measured and reference
cumulants

ηi = κi −λi, (21)
ηi j = κi j −λi j, (22)

ηi jk = κi jk −λi jk, etc., (23)

and moment-like entities ζi jk... which are related to the ηi jk...
by the same moment-cumulant relations (15)–(20), i.e.,

ζi = ηi = κi −λi, (24)
ζi j = ηi j +ηiη j = (κi j −λi j)+(κi −λi)(κ j −λ j), (25)

and so on. The Gram-Charlier series

f (q)
f0(q)

= 1+ζihi(q)+ 1
2! ζi jhi j(q)+ 1

3! ζi jkhi jk(q)+ . . . (26)

is an expansion in terms of the ζs and partial derivatives

hi(q) = − 1
f0

∂ f0

∂qi
, (27)

hi j(q) = +
1
f0

∂2 f0

∂qi ∂q j
, (28)

hi jk(q) = − 1
f0

∂3 f0

∂qi ∂q j ∂qk
, etc., (29)

which for Gaussian f0 are called Hermite tensors; they will be
discussed below.

The generic Gram-Charlier series is reduced to a simpler
HBT Edgeworth series in three steps. First, the freedom of
choice for the parameters λi and λi j of the reference distri-
bution (4) allows us to set these to the values obtained from
the measured distribution, i.e., we are free to set λi ≡ κi and
λi j ≡ κi j, so that ηi = ηi j = 0 and hence ζi = ζi j = 0.

Second, we make use of the fact that all cumulants of order
3 or higher are identically zero for the Gaussian distribution,
λi jk = λi jkl = · · · = 0, so that ζi jk = κi jk, ζi jkl = κi jkl , ζi jklm =
κi jklm and in sixth order ζi jklmn = κi jklmn +κi jkκlmn[10].

Finally, the contribution to the correlation function C2(q) of
the momentum difference qαβ = pα=1 −pβ=2 of a given pair

of identical particles (α,β) is always balanced by an identical
but opposite contribution qβα = pβ=1 −pα=2 = −qαβ by the
same pair, so that C2(q) must be exactly symmetric under “q-
parity”,

C2(−q) = C2(q). (30)

This implies that all moments and cumulants of odd order of
the measured f (q) must be identically zero, κi jk = κi jklm ≡ 0,
so that terms of third and fifth order and the κi jkκlmn contribu-
tion to sixth order are also eliminated.

The end result of these simplifications is a multivariate
Edgeworth series in which only terms of fourth and sixth order
survive,

f (q)
f0(q)

= 1+ 1
4! κi jkl hi jkl(q)+ 1

6! κi jklmn hi jklmn(q)+ . . . . (31)

For three-dimensional q, there are 81 terms in the fourth-order
sum and 729 in sixth order, but due to the symmetry of both
the κ and h, many of these are the same. Defining n = n1 +
n2 +n3, we introduce the “occupation number” notation

Hn1n2n3 =
1
f0

(−1)n ∂n f0

(∂q1)n1(∂q2)n2(∂q3)n3
, (32)

and correspondingly define cumulants Cn1n2n3 as κi1i2···in with
n1 occurrences of the index 1, n2 occurrences of 2, and n3 oc-
currences of 3 in (i1 · · · in), e.g. C121 = κ1223 = κ3122 = . . ..
Similar definitions hold for Hn1n2 and Cn1n2 for the two-
dimensional case. Combining terms in (31), we obtain for
the two- and three-dimensional cases respectively,

f (q)
f0(q)

= 1+ 1
4!

{
C40H40[2]+4C31H31[2]+6C22H22

}

+ 1
6!

{
C60H60[2]+6C51H51[2]

+15C42H42[2]+20C33H33
}

+ . . . , (33)

f (q)
f0(q)

= 1+ 1
4!

{
C400H400[3]+4C310H310[6]

+6C220H220[3]+12C211H211[3]
}

+ 1
6!

{
C600H600[3]+6C510H510[6]
+15C420H420[6]+30C411H411[3]
+20C330H330[3]+60C321H321[6]
+90C222H222

}
+ . . . , (34)

where the square brackets here indicate the number of dis-
tinct cumulants related by index permutation to those shown.
In two dimensions, we therefore have 5 distinct cumulants of
fourth order and 7 of sixth order, while in three dimensions
there are 15 distinct fourth-order and 28 sixth-order cumulants
respectively. We note that these cumulants can be nonzero
even when the reference Gaussian is uncorrelated, i.e., even if
the Pearson coefficients are zero.



880 H. C. Eggers and P. Lipa

f0 H40

f0 H31

f0 H22

FIG. 1: (Color online) Surface plots of Gaussians times individual
Hermite tensors, f0 Hn1n2 in two dimensions. Tensors H04 and H13
are images of H40 and H31 mirrored through the z1 = z2 diagonal.
Axis labels are in units of

√
2σi.

B. Hermite tensors

In the Edgeworth series (33) and (34), the cumulants C are
coefficients fixed by direct measurement, while the Hermite
tensors H are, through eqs. (27)–(29) and explicit derivatives
of (4), known functions of q. Defining dimensionless vari-
ables

zi =
qi

σi
, (35)

which can also be written in terms of the usual radii as
zi =

√
2qi Rii, the lowest-order Hermite tensors are, for the

azimuthally symmetric out-side-long system,

h1 = H100 =
z1 −ρz3

χσ1
, (36)

h2 = H010 =
z2

σ2
, (37)

h3 = H001 =
z3 −ρz1

χσ3
. (38)

Fourth-order derivatives (32) of the Gaussian (4) yield,

H400 = h4
1 −6h2

1λ−1
11 +3λ−1

11 λ−1
11 , (39)

H040 = h4
2 −6h2

2λ−1
22 +3λ−1

22 λ−1
22 , (40)

H004 = h4
3 −6h2

3λ−1
33 +3λ−1

33 λ−1
33 , (41)

H310 = h3
1h2 −3h1h2λ−1

11 , (42)

H130 = h3
2h1 −3h1h2λ−1

22 , (43)

H013 = h3
3h2 −3h2h3λ−1

33 , (44)

H031 = h3
2h3 −3h2h3λ−1

22 , (45)

H301 = h3
1h3 −3h1h3λ−1

11 −3h2
1λ−1

13 +3λ−1
11 λ−1

13 , (46)

H103 = h3
3h1 −3h1h3λ−1

33 −3h2
3λ−1

13 +3λ−1
33 λ−1

13 , (47)

H220 = h2
1h2

2 −h2
1λ−1

22 −h2
2λ−1

11 +λ−1
11 λ−1

22 , (48)

H022 = h2
3h2

2 −h2
3λ−1

22 −h2
2λ−1

33 +λ−1
22 λ−1

33 , (49)

H202 = h2
1h2

3 −h2
1λ−1

33 −h2
3λ−1

11 −4h1h3λ−1
13

+λ−1
11 λ−1

33 +2λ−1
13 λ−1

13 , (50)

H211 = h2
1h2h3 −2h1h2λ−1

13 −h2h3λ−1
11 , (51)

H112 = h1h2h2
3 −2h2h3λ−1

13 −h1h2λ−1
33 , (52)

H121 = h1h2
2h3 −h2

2λ−1
13 −h1h3λ−1

22 +λ−1
22 λ−1

13 , (53)

where the inverse cumulant elements λ−1
i j are functions of the

parameters λi and λi j that can be read off from Eq. (13). The
differences between various permutations of (n1n2n3) above
arise from the fact that λ−1

12 = λ−1
23 = 0 for azimuthal symme-

try.
Note that only one of the above Hermite tensors can be writ-

ten in terms of Hermite polynomials at this level of general-
ity, namely H040 = H4(z2)/σ4

2. Generally, the Hermite tensors
factorize into products of Hermite polynomials Hn(zi) only if
all Pearson coefficients ρi j in the Gaussian reference are zero,

Hn1n2n3(ρi j=0) =
D

∏
i=1

Hni(zi)
σni

i
. (54)

In sixth order, the tensors are generically

hi jklmn = hih jhkhlhmhn −hih jhkhlλ−1
mn [15]

+ hih jλ−1
kl λ−1

mn [45]−λ−1
i j λ−1

kl λ−1
mn [15], (55)

where again the square brackets indicate the number of dis-
tinct index partitions. Sixth-order tensors Hn1n2n3 can then be
constructed from these as usual, for example

H600 = h6
1 −15h4

1λ−1
11 +45h2

1(λ
−1
11 )2 −15(λ−1

11 )3, (56)

which closely resembles the Hermite polynomial H6(z) = z6−
15z4 + 45z2 − 15 but reduces to the latter only when ρol = 0
and hence λ−1

11 = 1/σ2
1.

C. A gallery of shapes

In Fig. 1, we show surface plots for individual fourth-
order Hermite tensors times the two-dimensional reference
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f0 H60 f0 H51

f0 H42 f0 H33

FIG. 2: (Color online) Contour plots of Gaussians times individual
sixth-order Hermite tensors, f0 Hn1n2 in two dimensions. Red-green
(light grey) areas represent hills while blue-red (dark grey) areas are
valleys. Note how regions of phase space at a distance of several σi
from the peak are probed.

Gaussian, f0Hn1n2 , with ρ set to zero. As these are plotted
in terms of

√
2zi =

√
2qi/σi [? ], the axes are scaled by the

standard deviations, meaning that all Gaussians with ρ = 0
will be circular in (z1,z2) plots. The individual Hermite ten-
sors clearly reflect the symmetry of their respective occupa-
tion number indices ni and probe different parts of the (z1,z2)
phase space as shown. Comparing the fourth-order terms of
Fig. 1 with the sixth-order ones of Fig. 2, we note that the
latter probe regions up to several

√
2σi.

In order to exhibit the influence of combinatoric factors, we
show in Fig. 3 individual terms of the two-dimensional Edge-
worth series (33) in the form f0(q)(1 + Fn1n2Cn1n2Hn1n2(q)),
where the combinatoric factors Fn1n2 are fixed in (33). All
fourth- and sixth-order cumulants Cn1n2 have been set to 1.0
and 2.0 respectively. (This is obviously for illustrative pur-
poses only; in real data, smaller values are expected and
shapes will be more Gaussian than those shown here.) The
plots for H31 and H13 illustrate the correspondence between
index permutation and symmetry about the z1 = z2 axis. We
note that the diagonal terms Hn0 have little influence on the
overall shape, while the off-diagonal ones have a larger effect,
not least because of the combinatoric pre-factors.

Testing the influence of fourth- versus sixth-order terms, we
show in Fig. 4 some “partial” two-dimensional Edgeworth se-
ries including only fourth-order terms, only sixth-order terms,
and both orders; again, cumulants were set to the arbitrary
values of 1 and 2 respectively.

In Fig. 5, a selection of shapes for individual terms
f0(q)(1 + Fn1n2n3Cn1n2n3Hn1n2n3) of the three-dimensional

H40 H22

H31 H13

H60 H51

H42 H33

FIG. 3: (Color online) Contour plots of some individual terms in
the Edgeworth expansion (33) of the form f0(1 + Fn1n2Cn1n2 Hn1n2).
Arbitrary and unrealistically large values of Cn1n2 = 1 for fourth order
and Cn1n2 = 2 for sixth order were chosen, while the combinatoric
pre-factors Fn1n2 are fixed in (33). Both H31 and H13 are shown to
exhibit their symmetry about the z1 = z2 diagonal.

Edgeworth expansion (34) is shown. While in the two-
dimensional case full contour plots could be shown, the sur-
faces shown here in each case represent only a single con-
tour. In Fig. 6, we show two examples with two selections of
fourth-order cumulants nonzero; the shape obviously depends
strongly on their selection and magnitude. Clearly, effects of
the different cumulants on the overall shape often cancel out.
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(a) (d)

(b) (e)

(c) (f)

FIG. 4: (Color online) Combined terms for the two-dimensional
Edgeworth: fourth-order terms only in (a) and (d); sixth-order terms
only in (b) and (e); and all terms in (c) and (f). Fourth-order cumu-
lants were set arbitrarily to 1 and sixth-order ones to 2. In (a)–(c),
all cumulants are equal and nonzero, while in (d)–(f), cumulants C04,
C13, C06, C15 and C24 were set to zero in order to illustrate the possi-
bility of asymmetric shapes.

We emphasize again that the shapes shown are for illustrative
purposes only and do not represent real data.

IV. DISCUSSION

The multivariate Edgeworth expansions (33)–(34) appear
to be a promising tool for quantitative shape analysis in HBT.
While the real test will be to gauge their performance in ac-
tual data analysis, they do seem to have the right features and
behaviour. A number of issues deserve further comment:

1. It has been noted previously [14, 15] that the traditional
radii of a Gaussian-shaped R2(q) could be found by di-
rect measurement rather than from fits. In the present
formulation, this amounts to the direct measurement of
the second-order cumulants λi j, which can be directly

400 310

301 220

202 121

FIG. 5: (Color online) Typical contours for three-dimensional terms
f0(1+Fn1n2n3 Cn1n2n3 Hn1n2n3) with indices as shown. Note that only
a single contour is shown in each case.

(a) (b)

FIG. 6: (Color online) (a) Typical contour plot for combined Edge-
worth with cumulants C310, C220, C211 and their permutations set to
0.3 with all others (including 6th order) set to zero. (b) Combined
Edgeworth with cumulants C220, C202, C002, C211, C121, C112 set to
0.15 and all others to zero. Only single contours are shown.

converted to “radius parameter” form via Eq. (13). Go-
ing beyond Refs. [14, 15], we suggest that higher-order
cumulants can be measured directly also.

2. Many people have rightly expressed concern that these
radii do not adequately represent the true shapes and be-
haviour of HBT correlations. Our Edgeworth expansion



Brazilian Journal of Physics, vol. 37, no. 3A, September, 2007 883

confirms that such radii are clearly not the whole story,
but that they do represent the appropriate lowest-order
approximation (for Gaussian reference) with respect to
which non-Gaussian shapes should be measured.

3. We have demonstrated that it is imperative to write
Edgeworth expansions in a fully multivariate way: the
combinatoric pre-factors Fn1n2n3 in (34) are large for
multivariate “off-diagonal” cumulants, while the influ-
ence of diagonal cumulants is strongly suppressed due
to their small prefactors. The cumulant C211, for exam-
ple, has a weight 12 times larger than C400, and indeed
the entire expansion is dominated by the off-diagonal
cumulants. Furthermore, even large diagonal cumulants
do not change the shape much, as a glance at Fig. 3 will
confirm.

4. Deviations from Gaussian shapes are consistently quan-
tified by the sign and magnitude of higher-order cumu-
lants, which are identically zero for a null-case pure
Gaussian f (q). The Edgeworth expansion using these
cumulants, while recreating the shape of f (q), therefore
at the same time provides a quantitative framework for
comparison of different shapes.

5. Operationally, we suggest a procedure of successive ap-
proximation, whereby in a first step all elements of the
covariance matrix κi j = λi j are measured, thereby de-
termining all the σ’s and the Pearson coefficient; this
is equivalent to the usual determination of radii. This
is followed by measurement of the set of fourth-order
cumulants Cn1n2n3 . The measured numbers for fourth-
order cumulants then represent the basis for shape quan-
tification and comparison. If statistics permit, sixth-
order cumulants can be added as a further refinement.

6. The q-cumulants proposed here are numbers rather than
functions of q. From the viewpoint of compactness of
description, this will be an advantage compared to the
shape decompositions in terms of spherical and carte-
sian harmonics [4, 10], in which each coefficient is a
function of |q|. It may, however, in some cases be bet-
ter to see the detail provided by such functions.

7. The procedure outlined above involves no fits. This rep-
resents a major advantage over fit-based quantification
in two ways:

Firstly: In three-dimensional analysis, typical fits are
dominated by phase space, i.e., by the fact that there
are many more bins at intermediate and large |q| than at
small |q|. This dominance suppresses the influence of
the most interesting region on the χ2 for best-fit values
of the parameters. In Ref. [3], for example, we found
that the regions of intermediate |q| dominated the shape
and quality of various fits.

Secondly, as shown in Fig. 2, cumulants are sensitive to
the tails of distributions, and they will hence access the
same information as these fits and parametrizations, but
in a more direct and sensitive way. It is well known that

a direct fit to a probability distribution that is close to
Gaussian is an ineffective and inaccurate way to quan-
tify non-Gaussian deviations, while cumulants do so in
the most direct way possible.

8. It remains to be seen how the proposed procedure fares
when the practical experimental difficulties of finding
f (q) and the higher-order cumulants come into play.
Much will also depend on the size and accuracy of
statistical errors. Fortunately, current sample sizes are
large enough to warrant some optimism in this respect.

9. The traditional chaoticity parameter λ remains unde-
termined within the present Edgeworth framework, be-
cause it cancels already in the definition (3) of f (q). For
a given level of approximation (Gaussian only, fourth-
order cumulants, sixth-order), it and the overall normal-
ization factor γ may be recovered afterwards by using
(34) in a two-parameter fit mode using parametrization

C2(q) = γ [1+λ f0(q)(Edgeworth expansion) ]

with the previously experimentally-determined radii
and Cn1n2n3 treated as constants, with γ and λ the fit pa-
rameters.

10. We note the importance of the parity argument
C2(−q) = C2(q) in eliminating odd-order terms in the
Edgeworth expansion. The parity argument falls away,
however, in variables where this symmetry does not
arise; for example, any one-dimensional Edgeworth ex-
pansion involving only positive differences (e.g. in qinv)
would have to include third- and fifth-order terms.
A corollary of the parity argument is that three-
dimensional correlations may not be represented in
terms of positive absolute values of the components
(qo,qs,ql) as this destroys the underlying symmetries.
The best one can do to improve statistics is to combine
bins that map onto each other under the transformation
q →−q and thereby eliminate four of the eight octants
in the three-dimensional (qo,qs,ql)-space.

11. In the present formulation, any dependence on average
pair momentum K resides in the cumulants: all κi jk...,
including the traditional radii and the Pearson coeffi-
cient, are in principle functions of K.

12. The Edgeworth analysis set out in this contribution is
based on a Gaussian reference f0. Shapes that differ
significantly from Gaussian will not be described well
in either the Edgeworth framework or the spherical or
cartesian harmonics frameworks. One should not, for
example, expect power laws such as a pure Coulomb
wavefunction (whose square tails off like |q|−2) to work
in a Gaussian-based Edgeworth expansion. Indeed, it
is known that large cumulants can lead to a situation
where the truncated Edgeworth expansion of f (q) be-
comes negative in some regions. It is therefore suitable
only for shapes that do not deviate strongly from Gaus-
sians; for strong deviations, other expansions will be-
come a necessity.
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13. The Edgeworth framework is easily extended to the
case of nonidentical particles. In that case, cumulants
of all orders will have to be measured. It may well
be that the fluctuations of lower-order quantities render
the measurement of higher-order cumulants impossible,
and great care will clearly have to be taken.
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in: Soft Physics and Fluctuations, Proc. Cracow Workshop
on Multiparticle Production, Cracow, 1993, ed. A. Białas,
K. Fiałkowski, K. Zalewski, and R.C. Hwa, World Scientific
(1994), p. 175.
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