Acessibilidade / Reportar erro

Uncovering the secrets of unusual phase diagrams: applications of two-dimensional Wang-Landau sampling

We use a two-dimensional Wang-Landau sampling algorithm to calculate the density of states for two discrete spin models and then extract their phase diagrams. The first system is an asymmetric Ising model on a triangular lattice with two- and three-body interactions in an external field. An accurate density of states allows us to locate the critical endpoint accurately in a two-dimensional parameter space. We observe a divergence of the spectator phase boundary and of the temperature derivative of the magnetization coexistence diameter at the critical endpoint in quantitative agreement with theoretical predictions. The second model is a Q-state Potts model in an external field H. We map the phase diagram of this model for Q > 8 and observe a first-order phase transition line that starts at the H = 0 phase transition point and ends at a critical point (Tc,Hc), which must be located in a two-dimensional parameter space. The critical field Hc(Q) is positive and increases with Q, in qualitative agreement with previous theoretical predictions.

Ising and Potts models; Critical endpoints; Two-dimensional Wang-Landau


Sociedade Brasileira de Física Caixa Postal 66328, 05315-970 São Paulo SP - Brazil, Tel.: +55 11 3091-6922, Fax: (55 11) 3816-2063 - São Paulo - SP - Brazil
E-mail: sbfisica@sbfisica.org.br