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We consider a six-dimensional braneworld model and we study the cosmological evolution of a (4+1) brane-
universe. Introducing matter on the brane we show that the scale factor of the physical three-dimensional
brane-universe is related to the scale factor of the fourth dimension on the brane, and the suppression of the
extra dimension compared to the three dimensions requires the presence of dark energy.

I. INTRODUCTION

Recent high quality data from various independent obser-
vations [1–4] suggest that most of the energy content of our
universe is in the form of dark matter and dark energy. Al-
though there have been many plausible explanations for these
dark components, it is challenging to try to explain them using
alternative gravity theories.

Braneworld models are higher-dimensional modified grav-
ity theories, where matter and gauge interactions are local-
ized on a three-dimensional hypersurface (called brane) in a
higher-dimensional spacetime while gravity propagates in all
spacetime (called bulk). Contrary to the Kaluza-Klein theo-
ries, the extra dimensions can be large if the geometry is non
trivial. In a cosmological context however, they are observa-
tionally much smaller than the size of our perceived universe.
Initially the universe could have started with the sizes of all
dimensions at the Planck length and through some mecha-
nism the extra dimensions remained comparatively small dur-
ing cosmological evolution. Such a mechanism was proposed
in [5]. The basic idea is that strings dominate the dynamics
of the early universe and can see each other most efficiently
in 2(p+1) (p=1 for strings) dimensions. Therefore, strings can
only interact in 3 spatial dimensions, while in higher dimen-
sions they eventually cease to interact efficiently. If branes are
included, the mechanism still survives [6].

In this work we show that in a (4+1) braneworld model in
a six-dimensional spacetime bulk with a cosmological con-
stant, the unknown form of brane dark energy is responsible
for the dynamical compactification of the extra fourth dimen-
sion relatively to the physical three dimensions, and during the
various cosmological evolution phases of the brane-universe it
keeps the extra dimension frozen.

First we consider a 4-brane fixed at some position in the
sixth dimension and we derive the dynamical six-dimensional
bulk equations in normal gaussian coordinates with a cos-
mological constant in the bulk and considering matter on the
brane [7]. We look for time dependent solutions allowing for
two scale factors, the usual scale factora(t) of the three di-
mensional space and a scale factorb(t) for the extra fourth
dimension. Ifa(t) = b(t) we get the Friedmann equation of
the generalized Randall-Sundrum model in six dimensions de-
scribing a four dimensional universe [9]. Ifa(t) 6= b(t) we get

a generalized Friedmann equation in six dimensions [10].
The problem can be looked at a different angle. We con-

sider a 4-brane moving in a static six-dimensional bulk [11,
12]. If a 6= b, a brane observer usesa and b to measure
the departure from six-dimensional spherical symmetry of the
bulk. In order to derive an effective Friedmann equation on
the brane [11],a andb are related through the Darmois-Israel
junctions conditions and this relation depends on the energy-
matter content of the brane.

Using the six-dimensional generalized Friedmann equation
and assuming differente pressures in the physical three dimen-
sions and in the fourth dimension, we make a systematic nu-
merical study of the cosmological evolution of the scale fac-
tors a(t) andb(t) for several values of the parameters of the
model. We find that, in order the fourth dimension to be small
relatively to the other three dimensions and to remain constant
during cosmological evolution,̂w must be negative, indicating
the presence of a dark form of energy in the extra fourth di-
mension.

II. STATIC BRANE IN A DYNAMICAL BULK

We consider a six-dimensional spacetime with a metric of
the form

ds2 =−n2(t,y,z)dt2 +a2(t,y,z)dΣ2
k +b2(t,y,z)dy2

+d2(t,y,z)dz2 , (1)

wheredΣ2
k represents the 3-dimensional spatial sections met-

ric with k =−1, 0, 1 corresponding to the hyperbolic, flat and
elliptic spaces, respectively.

The total energy-momentum tensor can be decomposed in
two parts

T̃M
N = T̆M(B)

N +TM(b)
N , (2)

with the energy-momentum tensor on the brane given by

TM(b)
N =

δ(z−z0)
d

diag(−ρ, p, p, p, p̂,0) , (3)

wherep̂ is the pressure in the extra brane dimension.
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The presence of the brane inz0 imposes boundary condi-
tions on the metric. The discontinuity in the metric deriv-
atives generates a delta function in the metric which must
be matched with the energy-momentum tensor componentes.
Thus, we obtain the following Darmois-Israel conditions

[∂za]
a0d0

= −
κ2

(6)

4
(p− p̂+ρ) ,

[∂zb]
b0d0

= −
κ2

(6)

4
{ρ−3(p− p̂)} , (4)

[∂zn]
d0n0

=
κ2

(6)

4
{p̂+3(p+ρ)} ,

where the subscript(0) indicates quantities on the brane. The
energy conservation equation on the brane can also be derived
from the Einstein equations,

ρ̇+3(p+ρ)
ȧ0

a0
+(p̂+ρ)

ḃ0

b0
= 0, (5)

as well as the generalized Friedmann equation in six-
dimensions

(
ä0

a0
+

1
3

b̈0

b0
+

ȧ0ḃ0

a0b0
+

ȧ2
0

a2
0

)
=

−
κ4

(6)

32

{
ρ(ρ+2p+

2
3

p̂)+(p− p̂)2
}
−2

k

a2
0

−
κ2

(6)

3d2
0

T̆66. (6)

In our case the Einstein equations cannot be integrated ana-
lytically and therefore, the usual form of the Friedmann equa-
tion on the brane cannot be extracted from (6). We just need a
relation betweena andb such that (6) will give the cosmolog-
ical evolution of the scale factora(t).

If a(t) = b(t) = R (t)

2
R̈
R

+3

(
Ṙ
R

)2

=−3
κ4

(6)

64
ρ2−

κ4
(6)

8
ρp−3

k
R 2 −

κ2
(6)

2d2
0

T̆6
6 ,

(7)
which is the generalization of the Randall-Sundrum
Friedmann-like equation in six dimensions, and it has,
as expected, theρ2 term with a coefficient adjusted to six
dimensions.

III. DYNAMICAL BRANE IN A STATIC BULK

We consider a 4-brane moving in a six-dimensional static
bulk with a metric

ds2 =−n(z)2dt2 +a2(z)dΣ2
3 +b(z)2dy2 +d2(z)dz2 . (8)

Introducing an energy-momentum tensor on the brane

T̂µν = hναTα
µ −

1
4

Thµν, (9)

where Tα
µ = diag(−ρ, p, p, p, p̂), the Darmois-Israel condi-

tions

[Kµν] =−κ2
(6)T̂µν (10)

give the equations of motion of the brane

d2ḋṘ 3−dR̈√
1+d2Ṙ 2

−
√

1+d2Ṙ 2

n
×

×
(

dṅṘ +
∂zn
d

− (d∂zn−n∂zd)Ṙ 2
)

= −
κ2

(6)

8

(
3(ρ+ p)+ p̂

)
, (11)

∂za
ad

√
1+d2Ṙ 2 = −

κ2
(6)

8

(
ρ+ p− p̂

)
, (12)

∂zb
bd

√
1+d2Ṙ 2 = −

κ2
(6)

8

(
ρ−3(p− p̂)

)
. (13)

Equation (11) is the main dynamical equation describing
the movement of the brane-universe in the six-dimensional
bulk, while a combination of (12) and (13) acts as a constraint
relatinga andb

a = A b(ρ+p−p̂)/(ρ−3(p−p̂)). (14)

This is the main result of our paper: because of the Darmois-
Israel conditions, the relative cosmological evolution ofa and
b, depend on the dynamics of the energy-matter content of
the brane-universe. Another interesting observation is that,
a brane observer can measure the departure from full six-
dimensional spherical symmetry of the bulk using the quan-
titiesa andb.

IV. THE COSMOLOGICAL EVOLUTION OF THE
BRANE-UNIVERSE

We assume that the universe started as a four-dimensional
one at the Planck scale with all the dimensions at the
Planck length and matter isotropically distributed. Then an
anisotropy was developed in the sense thatp̂= Qpwith Q 6= 1.
The matter distribution on the brane is given by

p = wρ, (15)

p̂ = ŵρ. (16)

From the generalized Friedmann equation the cosmological
evolution of the three-dimensional scale factora(t) is given
by

[
1+

B
3

]
äa2C+1 +

[B2

3
+

2B
3

+1
]
ȧ2a2C

+
κ2

(6)

32
a2

[
1+2w+

2
3

ŵ+(w− ŵ)2
]

−a2C
[
a2

κ2
(6)

3
Λ6−2k

]
= 0 , (17)

where

B =
1−3w+3ŵ
1+w− ŵ

, (18)

C = 3(1+w)+B(ŵ+1) , (19)
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and

b(t) = a(t)B . (20)

We will make a numerical analysis of equations (17) and (20)
and study the time evolution of the two scale factors for dif-
ferent backgrounds and spatial brane-curvature. For the scale
factor b(t) to be small compared to the scale factora(t), the
constantB in (20) should be negative. In Table 1 we give the
allowed range of values of̂w for various values ofw. The
criterion for the acceptance of a solution is to give a growing
evolution ofa(t) and a decaying and freezing out evolution
for b(t).

w ŵ
−1 > 0 or <−4/3
0 > 1 or <−1/3

1/3 > 4/3 or < 0
−1/3 > 2/3 or <−2/3

TABLE I: The allowed values of̂w for B to be negative.

A. De Sitter Bulk

For Λ6 > 0 only negative values of̂w give acceptable solu-
tions fork = 0,−1, while thek = 1 solutions are not accept-
able for any value of̂w.

As we can see from Fig. 1 and 2, the scale factora(t)
grows very fast, while the scale factor of the fourth dimension
goes very fast to small values where it stays constant for the
whole evolution. The reason for the fast growth ofa(t) is that
the cosmological constant of the bulkΛ6 acts as an effective
cosmological constant on the brane and drives an exponen-
tial growth. This is common to the braneworld models with a
cosmological constant in the bulk. It also happens in the five-
dimensional Randall-Sundrum model if we do not impose the
fine tuning between the brane tension and the five-dimensional
cosmological constant.

B. Anti De Sitter Bulk

For Λ6 < 0 andk = −1 there is an interesting evolution of
an oscillating universe shown in Fig. 3, again only for nega-
tive values ofŵ. Forw < −1 there is a small range of values
near the critical value of̂w, wherea(t) escapes from the os-
cillating behaviour and grows very fast, forcingb(t) to decay
and freeze out at certain small value analogously to De Sitter
cases.

C. Minkowski Bulk

For Λ6=0 we do not have the very strong effect of the
bulk cosmological constant. We have physical solutions for
k = 0,−1 as we can see in Fig. 4. The evolution ofa(t)
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FIG. 1: Time evolution of the scale factorsa(t) andb(t) for Λ6 > 0
andk = 0.
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FIG. 2: Time evolution of the scale factorsa(t) andb(t) for Λ6 > 0
andk =−1.

is nearly linear fork = −1, while for k = 0 there is an in-
teresting solution with dark energy in the physical universe
(w = −1) and with ”phantom” energy in the extra dimension
(ŵ = −5/3). The b(t) scale factor decays at a smaller rate
compared with the case of a non-zero bulk cosmological con-
stant. As it happens in all the other cases,ŵ is negative in the
range of values given in Table 1 for all acceptable solutions,
indicating the need of dark energy to suppress the extra fourth
dimension compared to the three other dimensions.

V. CONCLUSIONS

We presented a (4+1)-braneworld cosmological model in
a six-dimensional bulk where the four-dimensional universe
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FIG. 3: Time evolution of the scale factorsa(t) andb(t) in an oscil-
lating universe forΛ6 < 0 andk =−1.

evolves with two scale factors. Demanding an effective
Friedmann-like equation on the brane the motion of the 4-
brane in the static bulk is constrained by Darmois-Israel con-
ditions. Thus,a andb are related in a way that depends on the
energy-matter content of the 4-brane.

We assumed that the universe started higher-dimensional at
the Planck scale with all the dimensions at the Planck length,
and subsequently an anisotropy was developed between the
three physical dimensions and the extra-dimension. In all con-
sidered cases we found that dark energy is needed for the dy-

namical suppression and subsequent freezing out of the extra
fourth dimension.

Acknowledgement: We would like to thank E. Abdalla, A.

0 2 4 6 8 10

t

0

0.2

0.4

0.6

0.8

1

b
(t

)

ω=−1, ω∼ =−5/3 (k=0)

ω=−1, ω∼ =−5/3

ω=0, ω∼ =−2/3

ω=1/3, ω∼ =−1

ω=−1/3, ω∼ =−1

1

5

9

13

17

a
(t

)

FIG. 4: Time evolution of the scale factorsa(t) andb(t) for Λ6 = 0
andk = 0,−1.
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