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In this paper we review and discuss the possibility of having a 2D-nematic ordering of
the surfactant polar heads in bilayer membranes. The coupling between the nematic order
parameters and the curvature can yield instabilities in the shape of the membrane, generally
leading to tubules with mesoscopic radiuses. The nematic directors in the two monolayers
should present coupled disclinations with peculiar characteristics. Para-nematic membranes,
i.e., nematic membranes that are in the isotropic phase when 
at, should behave as the
nematic membranes in the curved state.
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I Introduction

Simple bilayer membranes are formed by the self-

assembly of amphiphilic molecules in an aqueous en-

vironment [1]. The aliphatic chains of the constituent

molecules form an oily sheet that is shielded from con-

tact with water, on both sides, by the polar heads of the

molecules. At high temperatures, in their ground state,

membranes are 
uid, 
at and usually tensionless [2].

Their elastic energy density is therefore a function of

their local curvature only [3]. Self-assembled surfac-

tant membranes can form various phases, such as the

lamellar L� phase, in which the bilayers are staked par-

allel to one another, the L4 phase, in which they form

closed spherical vesicles, and the L3 \sponge" phase,

in which a single membrane is multiply connected in a

random fashion. In nature, lipid membranes constitute

the walls surrounding living cells, and generally host a

large number of inclusions, such as cholesterol or pro-

teins [4].

At lower temperatures, membranes can acquire

varying degrees of orientational and positional order.

The molecules may tilt relative to the surface normal

and develop an hexatic order in which there is a quasi-

long-range correlation of the six-fold bond angle. Tilted

bilayers in the so-called L0� phase tend to have both

tilt and hexatic order [5, 6]. The coupling between tilt

and membrane curvature can produce a shape instabil-

ity yielding elongated vesicles [7], or a \ripple" phase

(P�0) [8, 9]. Chiral bilayers can exhibit various phases

of asymmetric ripples. In principle, membrane having

in-plane nematic order are possible, however their exis-

tence has never been demonstrated. We shall argue in

the following that such membranes may have already

been observed.

Complex membranes can also be formed by mixing

di�erent kinds of amphiphiles [10], or adding inclusion

hosts, such as it naturally occurs in biology. The cou-

pling between the density of surfactants, or inclusions,

and the membrane curvature yields several types of in-

stabilities, generating stable spherical vesicles [11] or

ripples [12, 13, 14].

Nematic e�ects can result from the presence of

anisotropic inclusions [15]. As an example, consider an



integral protein, i.e., an inclusion spanning the whole

bilayer, with an arbitrary shape. It will in general break

both the up-down symmetry of the membrane, and its

rotational in-plane symmetry, de�ning some direction

labelled by a unit vector n. The former e�ect arises for

instance if the inclusion has a conical shape, and the

latter if the cone angle is modulated along the perime-

ter of the inclusion. Purely anisotropic inclusions (with

a vanishing average cone angle) are sketched in Fig.

1. In order to reduce the splay distortion of the am-

phiphiles bounding the inclusion, a 
at membrane will

tend to curve. Around an isotropic conical inclusion

it will curve spherically, whereas around an anisotropic

inclusion it will curve as a saddle (Fig. 1). In other

words, there is a coupling between the curvature tensor

K and the inclusion orientation n of the form n �K �n.
It generates a spontaneous anisotropic curvature of the

membrane, favoring saddle but also tubular shapes (i.e.,

any shape deviating from a sphere). Because of the

parity in n of the membrane{inclusion coupling, even

if the inclusions themselves exhibit an in-plane polar-

ity, they will orient nematically in a curved membrane,

the nematic director being parallel to one of the prin-

cipal axes of curvature [15]. The inclusions form then

a para-nematic phase induced by the membrane curva-

ture, which acts as an external aligning �eld [16].

n

n

n

Figure 1. Purely anisotropic inclusions. They are nemati-
cally oriented by the membrane curvature they themselves
produce.

In this paper we discuss the possible existence of

membranes having a 2D-nematic order of their surfac-

tant polar heads [17]. In section II we describe which

kind of surfactants might yield in-plane nematic or-

der. We discuss the stability of a 
at nematic bi-

layer against curved states. We then show that ne-

matic membranes should generically form tubules with

a mesoscopic radius. We compare our predictions with

recent experiments on membranes formed with dimeric

surfactants [18, 19]. We �nally describe the peculiar

defects that nematic bilayers should exhibit [20]. In

section III, we discuss para-nematic membranes, i.e.,

membranes that are intrinsically isotropic when 
at but

acquire a nematic order through a curvature instability.

In the curved state, para-nematic and nematic mem-

brane should behave in the same way. Finally, we de-

scribe the various phases that nematic membranes can

form.

II Nematic bilayers

The usual phospholipids or surfactants forming mem-

branes possess a double aliphatic chain and a globular

polar head. In an L� membrane, the chains form a

disordered oily sheet, while the polar heads form a 2D

isotropic 
uid on both sides. In recent years, a new

class of surfactants has received increasing attention:

the \gemini" [21]. They are dimeric surfactants whose

polar heads are linked by a rigid spacer, which spon-

taneously form giant worm-like micelles [22]. Recently,

another series of dimeric surfactants has been synthe-

sized: the aggregates formed were tubular vesicles in-

stead of the usual 
at bilayers [18]. There are several

independent indications that the bilayers formed have

an in-plane nematic order [23]. We shall argue in the

following that the formation of tubules supports this

conjecture. In principle, beyond dimeric surfactants,

n-meric surfactants with rod-like polar heads could be

synthesized. In the case where their elongated heads

lie in the plane of the chain-water interface, one might

expect some degree of 2D-nematic susceptibility or a

true nematic order. In this section, we consider such

nematic bilayers, i.e., membranes in which the polar

heads of the molecules form a well-ordered 2D-nematic


uid on each side of the bilayer's oily sheet.

A. Free energy density of a nematic bilayer

The presence of an in-plane nematic ordering pro-

vides an anisotropic character to any tensorial prop-

erty of the head-groups 
uid, which disappears in the

isotropic phase. Hence, as in bulk nematic liquid crys-

tals [24], the order-parameter is a symmetric trace-

less second-rank tensor. We introduce two such order-

parameters, one for each of the two head-groups 
uids:

Q� = S
�
2n� 
 n� � I

�
; (1)

where I is the identity tensor, and (n 
 n)ij = ni nj .

The unit vectors n+ and n� are the directors of the up-



per and lower monolayer, which describe the directions

of anisotropy associated with the two nematic order-

ings. S is the scalar order-parameter, which describes

the amount of parallel ordering of the molecules polar-

heads. We assume S constant and identical in both

monolayers.

Before discussing the free energy of a nematic bi-

layer, let us recall the ordinary curvature elasticity of

simple membranes. At every point, the membrane's

surface has two principal curvatures, c1 and c2, along

two orthogonal axes. In the basis of the principal axes,

the curvature tensor is given by

K =

�
c1 0
0 c2

�
: (2)

The curvature energy per unit surface of a symmetric

membrane, involving all quadratic terms that satisfy

rotational symmetry, has the form [3]

F0 =
1

2
� (c1 + c2)

2
+ �� c1 c2 ; (3)

with � the bending rigidity and �� the Gaussian rigidity.

One can write a similar expansion for each monolayer,

however including a linear term because each of the two

monolayers is individually asymmetric. Since the two

monolayers have opposite curvatures, the linear terms

cancel out when forming the bilayer energy (3).

Following the same procedure for a nematic mem-

brane yields a di�erent result. Let us write the cur-

vature elasticity F� of each of the two nematic mono-

layers. Including a term linear in the curvature tensor

yields the form

F� =
1

4
� (c1 + c2)

2 +
1

2
�� c1 c2 � �� : K : (4)

The constants �� are functions of the nematic order-

ings, i.e., at lowest order

�� = � I+ �Q�: (5)

We have used the notation � :K = �ij Kij (summation

over repeated indices being understood) and neglected

the anisotropy in the elastic constants for the sake of

simplicity. Summing up the two monolayers contribu-

tions yields the curvature energy density

c

Fc =
1

2
� (c1 + c2)

2
+ �� c1c2 + 2� S

�
n+
 n+ � n�
 n�

�
: K : (6)

d

Contrary to what occurs for simple bilayers, the linear

spontaneous curvature term survives if the two direc-

tors are not parallel. Note that a mathematically sim-

ilar model has been introduced for tilted membranes

with a tilt-di�erence across the bilayer [25]. Using (2)

and setting n� = (cos ��; sin ��) yields (n�
n�) :K =
1
2 (c1+ c2)+

1
2 (c1� c2) cos 2��. Therefore, the nematic{

curvature coupling favors the orientation of the two di-

rectors parallel to the principal axes of curvature, and

mutually orthogonal in the two monolayers (�+ = �=2,

�� = 0 if �(c1 � c2) > 0 and �+ = 0, �� = �=2 if

�(c1 � c2) < 0). This anti-nematic con�guration is

sketched in Fig. 2.

To the curvature energy density (6) we must add

the nematic energy density

c

FN =
1

2
LS2

��rn+��2 + 1

2
LS2

��rn���2 � 1

2
�S2

�
n+ � n��2 ; (7)

d

where jrn�j2 = @in
�
j @in

�
j . The two terms involving

the elastic constant L describe the elasticity associated

with director distortions; the term involving the cou-

pling constant � describes a weak interaction between

the two nematic �elds. Our model energy density for

the nematic bilayer is �nally F = Fc + FN.
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Figure 2. Nematic bilayer subject to the e�ect of the
nematic{curvature coupling.

B. Linear stability analysis

Because of the linear curvature term in Fc, the

ground state of the bilayer is no longer the 
at one

if the two directors are non-parallel. Since this com-

petes with the directors coupling when � > 0, a linear

stability analysis is required to investigate the stability

of the 
at membrane.

In the vicinity of the 
at state, the membrane shape

can be parametrized by z = u(x; y) in a rectangular co-

ordinate frame. Calling �� the polar angles of the n�,

the membrane free energy density takes then the form

c

F =
1

2
� (uxx + uyy)

2 + � S (uxx � uyy)
�
cos 2�+ � cos 2��

�
+ 2� S uxy

�
sin 2�+ � sin 2��

�
+
1

2
LS2

h�r�+�2 + �r���2i+ 1

2
�S2 sin2

�
�+ � ��

�
; (8)

where uxx = @2u=@x2 and so on. We have discarded the term proportional to ��, which is in fact a boundary term,

according to the Gauss-Bonnet theorem. To study the stability of the 
at state with parallel uniform directors, it

is enough to develop F to second order globally in u, �+ and ��. Doing so and setting �� = 1
2 (� �  ) yields the

quadratic form

F ' 1

2
� (uxx + uyy)

2 +
1

4
LS2 (r�)2 + 1

4
LS2 (r )2 + 1

2
�S2  2 + 4� S  uxy : (9)

The 
at membrane is unstable if there exist functions u(x; y), �+(x; y) and ��(x; y), i.e., membrane con�gurations,

such that the latter expression is not negatively bounded. This is most easily studied in the Fourier space, in which

the energy density per Fourier mode resulting from integrating (9) can be written in the following diagonalized

form:

1

2
� q4

����u(q)� 4�S

�

qxqy
q4

 (q)

����
2

+
1

2
S2

"
1

2
Lq2 + �� 16�2

�

q2xq
2
y

q4

#
j (q)j2 + 1

4
LS2q2 j�(q)j2 (10)

d
The 
at membrane is therefore unstable for all q's such

that
1

2
Lq2 + �� 16�2

�

q2xq
2
y

q4
< 0 (11)

For a given jqj, the most unstable mode satis�es qx =

qy = jqj=p2, and then the instability condition be-

comes �� 4�2=�+O(jqj2) < 0. The global instability

condition is therefore

� <
4�2

�
: (12)

The most unstable mode is then at q = 0, the modula-

tion occurring at 45� from the direction of the initially

parallel directors. The present analysis does not allow

to determine the actual evolution of the membrane. If

the membrane is held on a frame it might either undu-

late in a \ripple" or an \egg-carton" [26, 27] fashion.

Since there is usually very little interpenetration be-

tween the chains of the two monolayers forming a mem-

brane, the coupling � can be estimated from anisotropic

van der Waals interactions. Summing pairwise interac-

tions yields � ' Aa`
2=(2�d4), where ` is the linear size



of the head-group, d the membrane thickness, and Aa is

the anisotropic Hamaker constant. Since Hamaker con-

stants for interactions across a hydrocarbonic medium

are of order T [1], we take Aa ' 0:1T . Hence, with

d ' 40�A and ` ' 10�A we �nd � ' 2 � 10�7 Jm�2.

Thus, � � �c, and therefore nematic membranes

should spontaneously curve.

Freeze-fracture electron micrographs of cell mem-

branes of Streptomyces hygroscopicus [27], which

contain 40% weight fraction of cardiolipins|a di-

phospholipid with a double elongated polar head to

which are attached four aliphatic chains|show \egg-

cartons" with a period in the range 200{750�A. Hexag-

onal and 1D modulations have also been reported in

similar experimental conditions. The presence of a ne-

matic ordering of the cardiolipins might explain these

unusual observations.

C. Tubular vesicles

In the experiment of Ref. [18], bilayers made of pure

dimeric quaternary ammonium surfactants with rather

long chains (typically C18) were shown to systemati-

cally form very long bilayer tubules. The tube radiuses

were of the order of a few 1000�A, since they could be

seen by video-enhanced optical microscopy. Let us show

that these observations are consistent with the presence

of a nematic order. A cylinder is less favorable than

a saddle for the nematic{curvature coupling, which is

/ jc1�c2j once the directors are aligned along the prin-
cipal axes of curvature. However it has the advantage

to be compatible with uniform director alignments and

it can be closed by spherical cap which avoids a contour

energy.

Let us consider a closed membrane curved as a cylin-

der. To optimize the curvature{nematic coupling we

assume n+ parallel and n� perpendicular to the tube

axis. Setting c1 = 1=R and c2 = 0, we obtain from (6)

Ftub =
�

2

1

R2
� 2� S

1

R
: (13)

Minimizing with respect to R yields the equilibrium

tube radius Rtub = �=(2� S).

Comparison with experiments requires evaluating �.

The constants � and � can be determined from the two

spontaneous curvatures of a monolayer with saturated

order (S = 1) and uniform director. Let us call ck (resp.

c?) the spontaneous curvature in the direction paral-

lel (resp. perpendicular) to the director. Assuming for

instance the director n+ parallel to the principal axis

with curvature c1, we have

c

F+ =
1

4
� (c1 + c2)

2
+

1

2
�� c1 c2 + � (c1 + c2) + � (c1 � c2) : (14)

d
Minimizing this expression with respect to c1 (i.e., ck)

and c2 (i.e., c?) yields

� =
2�+ ��

4

�
ck + c?

�
; (15)

� = � ��

4

�
ck � c?

�
: (16)

Therefore, the tube radius is

Rtub =
2�

��

1

S(c? � ck)
: (17)

Since the dimeric surfactants of Ref. [18] form mem-

branes and not micelles, we expect their spontaneous

curvature to be signi�cantly larger than the monolayer

thickness [1], say 100�A
�1
. The spontaneous curva-

tures ck and c?, which mainly result from packing con-

straints should not be very di�erent, since the chains

are quite long. Hence, it seems reasonable to assume,

e.g., c? ' 120�A
�1

and ck ' 100�A
�1
. With 2�=�� of or-

der unity, and, e.g., S ' 0:3, we obtain Rtub � 2000�A,

which is consistent with the experimental observations.

D. Bidefects of nematic bilayers

Due to the interaction of the two nematic 
uids,

nematic bilayers exhibit disclination defects with very

peculiar features [20]. On a curved membrane the sit-

uation is extremely complex [28], therefore we shall re-



strict our attention to planar bilayers. The latter could

be produced by osmotically blowing up the tubes, or

by patch-clamping techniques.

In terms of � = �+ + �� and  = �+ � ��, where,

as previously, �� are the polar angles of the directors

n�, the nematic energy of a 
at membrane, i.e., FN as

expressed in (7), takes the form

c

F =
1

2

Z
d2r

K

2
(r�)2 + 1

2

Z
d2r

K

2

n
(r )2 + ��2 sin2  

o
; (18)

d
with �2 = K=(2�). The nematic bilayer is thus equiv-

alent to the superposition of two non-interacting ne-

matics: a free nematic (described by �) and a nematic

subject to a uniform �eld (described by  ). The length

� is the analog of a magnetic coherence length.

The physics of defects in both the free and the �eld-

nematic is well known. In the latter, defects emit walls

of thickness � � crossing which the director turns by

��. From the above decomposition, we deduce that

the textures generated by a defect of strength p present

only on the upper monolayer are given by

�� =
1

2

�
�0(p)� ��(p)

�
; (19)

where �0(p) describes the texture of a defect of strength

p in a free nematic and ��(p) that in a nematic under

�eld. Fig. 3(a) shows the director textures in the real

space for p = 1
2 . The full (resp. dashed) lines are the

�eld lines of the upper (resp. lower) monolayer; the dot-

ted line indicate a wall boundary. The textures of the

two monolayers coincide outside the wall. Fig. 3(b)

shows the corresponding textures in the space of the

free and �eld-nematics. The bold lines are the level

lines of the free nematic, and the thin ones those of the

�eld nematic.

More generally, one must consider pairs of associ-

ated defects in the two monolayer, i.e, bi-defects. A

[p; q] bi-defect is the physical superposition in the bi-

layer of a defect with a strength p in the upper mono-

layer and a defect with a strength q in the lower one; it

is equivalent to a pair of defects of strength p+ q in the

free nematic and of strength p� q in the nematic under

�eld. Bi-defects produce walls that reach the bound-

ary of the sample when p 6= q: the textures of the two

monolayers are identical outside the walls and di�erent

in their interior. The number of wall emitted by a [p; q]

bi-defect is N = 2jp� qj. The wall thickness can be de-

termined from the value � ' 2� 10�7 Jm�2 estimated

previously. Taking, e.g., K ' 3T in a nematically or-

dered phase, we obtain � = K1=2=(2�)1=2 ' 1500�A.

The wall thickness, which is actually ' 5 �, should be

in the �m range and thus directly observable by optical

methods.

0

�

7�=83�=45�=8

�=2

3�=8 �=4 �=8

0

�=4

�=2

3�=4

�

b)a)

Figure 3. (a) Field lines of a [ 1
2
; 0] bi-defect. The full

(resp. dashed) lines are the �eld lines of the upper (resp.
lower) monolayer; the dotted line indicates the wall bound-
ary. (b) Level lines in the free (thin lines) and �eld-nematics
(bold lines) spaces.

III Para-nematic membranes

Let us now consider the case in which the anisotropic in-

teractions between the surfactant heads yield a large ne-

matic susceptibility, but not a true nematic phase. This

situation is reminiscent of a liquid crystal's isotropic

phase in the vicinity of a nematic transition. Apply-

ing a strong external �eld yields a para-nematic phase

with a large order-parameter [16]. Here, the situation

is particularly interesting since the \external" �eld is

actually the membrane curvature, which is an internal

parameter controlled by the global energy of the sys-

tem.



Neglecting for simplicity the coupling Q+ :Q� be-

tween the tensorial order parameters of the two mono-

layers and all gradient terms, the nematic energy per

unit surface can be written as

FN =
1

2
A
�jQ+j2 + jQ�j2�+B

�
Q+ �Q�

�
: K ; (20)

where jQ�j2 = Q�ij Q
�
ij . We assume A > 0, in order

for the minimum energy to correspond to the isotropic

phase; the sign of B is arbitrary.

Minimizing (20) with respect to the nematic tensors

yieldsQ� = �(B=A)~K, with ~K the traceless part of the

curvature tensor, which is proportional to c1 � c2. In

the absence of thermal 
uctuations, the nematic direc-

tors of the upper and lower monolayers therefore again

align along the principal axes of curvature, and are per-

pendicular to one another.

For the following, it will be convenient to de�ne the

mean nematic ordering Q and the \staggered" nematic

ordering �Q, according to

Q =
1

2

�
Q(+) +Q(�)

�
; (21)

�Q =
1

2

�
Q(+) �Q(�)

�
: (22)

The free-energy F of the 
uctuating membrane is

obtained from the partition function

e��F =

Z
DR

Z
DQ

Z
D �Q e��(F0+FN) ; (23)

where the integration runs over all the con�gurationsR

of the membrane and of the nematic order-parameter

�elds Q and �Q. Here the parameter � is the inverse

temperature. The functional integral over �Q can be eas-

ily evaluated in the principal curvature frame, in which

the curvature tensor (2) is diagonal. The tensor �Q,

being symmetric and traceless, can be represented in

general as

�Q =

�
� �
� ��

�
: (24)

The functional integral over �Q is therefore proportional

to

c

e��F �Q = exp

�
��
�
1

2
�(c1 + c2)

2 + ��c1c2

��Z +1

�1

d� exp
��2� �A�2 +B(c1 � c2)�

�	
=

r
�

2�A
exp

�
��
�
1

2

�
�� B2

A

�
(c1 + c2)

2
+

�
��+

2B2

A

�
c1c2

��
: (25)

d
Hence, the coupling between the nematic degrees of

freedom and the curvature yields the following renor-

malizations of the membrane's elastic constants:

�� = �B
2

A
; ��� =

2B2

A
: (26)

Taking into account the coupling between the two

nematic order parameters merely adds a constant to A,

while the gradient terms have no e�ects on the e�ec-

tive elastic constants [29]. The reduction of � produces

curvature instabilities when � < 0. This occurs for

A ! 0, i.e., in the vicinity of the nematic transition.

The renormalization of the Gaussian modulus can drive

�� positive, which favors the formation of saddles.

Alike renormalizations were found for isolated large

anisotropic inclusions [15]. The latter tend to orient

along the directions of principal curvature of the mem-

brane, if the curvature is large enough to overcome the

orientational disorder due to thermal 
uctuations. If

one extrapolates this result to small nematogens the

size of phospholipids, one �nds that the curvature re-

quired to get signi�cant elastic constant renormaliza-

tions is of the order of the inverse membrane thickness,

hence too strong for any practical situation. However,

the present study shows that small nematogens can nev-

ertheless yield strong elastic constant renormalizations

provided that they already have a tendency to align

parallel, i.e., possess a nematic susceptibility. The ex-

cluded volume interaction between rod-like objects and

the anisotropic van der Waals forces in a dense collec-

tion of anisotropic phospholipids might yield a coe�-



cient A small enough to provide strong elastic e�ects.

An estimate of the nematic susceptibility coe�cient A

has been given in the framework of a simple Onsager

model [29].

A. Membranes with free topology

To study the paranematic membrane's instabilities

it is necessary to introduce fourth-order terms in (20),

to avoid divergences [29]. For the sake of simplicity, we

make a mean-�eld analysis and we neglect all gradient

terms. The latter approximation amounts to assuming

that the membrane curvature varies slowly in space.

The free-energy density generalizing (20) and including

fourth-order terms is [29]

c

F
(4)
N = Aj �Qj2 + 2B �Q : K+

1

4
E1j �Qj4 + 1

4
E2

�Qij
�Qjk

�Qk`
�Q`i : (27)

Since A is assumed to be positive (the 
at membrane is in its isotropic state), the mean value of Q is zero, not being

coupled to the membrane curvature. Hence we disregarded Q in F
(4)
N . Similarly, also third-order terms identically

vanish and can therefore be neglected. Using (2) and (24), minimizing F
(4)
N with respect to � and �, and adding

the membrane bending energy (3), gives, to fourth-order accuracy, the e�ective membrane's energy density

Fe� =
1

2

�
�� B2

A

�
(c1 + c2)

2 +

�
��+

2B2

A

�
c1c2 +

EB4

16A4
(c1 � c2)

4
; (28)

d

where E = E1 +
1
2E2 > 0 for stability reasons. We

recover the elastic constant renormalizations, as previ-

ously, plus a fourth-order term of nematic origin. In

principle one should also consider all the fourth-order

terms corresponding to the bare membrane. These are

expected to be of the order of �a2, where a is a micro-

scopic length, comparable with the membrane's thick-

ness. They are therefore negligible compared to the

above fourth-order nematic contribution, provided that

the nematic susceptibility 1=A is large enough, which

we assumed throughout. Setting

c+ =
1

2
(c1 + c2) ; c� =

1

2
(c1 � c2) ; (29)

the e�ective free-energy density (28) becomes

Fe� = (2�+��)c+
2�
�
��+

2B2

A

�
c�

2
+
EB4

A4
c�

4
: (30)

This shows that, since we assumed 2�+�� > 0 (the bare

membrane is stable in its 
at state), the free-energy (30)

favors a non zero c�, i.e., structures with c1 6= c2. We

shall therefore consider the possibility of sponge phases

(L3), which correspond to a random minimal surface

where everywhere the membrane is shaped as a saddle,

and of tubules, where one of the two principal curva-

tures is zero.

To model the L3 phase, we assume a periodic mini-

mal structure with c+ = 0 everywhere, and a character-

istic cell size h. In average over the membrane, we then

have hc+2i = 0, hc�2i = M=h2 and hc�4i = M 0=h4,

whereM andM 0 are two constants that depend on the

exact structure of the sponge phase. Minimizing (30)

with respect to h, yields, when 2B2=A>���,

h2L3 =
M 0

M

2EB4

A3

1

A��+ 2B2
; (31)

and the average free-energy per unit surface

hF iL3 = �M
2

M 0

A2

4EB4
(A��+ 2B2)2 : (32)

This energy is negative: the L3 phase is more stable

than the 
at membrane when 2B2=A>���. Note that
M2=M 0 < 1 since the L3 phase is less optimized ener-

getically than a uniform saddle (c� constant), for which

we would have M2 =M 0.

In the case of tubules with radius R, we have c+ =

c� = 1=(2R). Minimizing (30) with respect to R then

yields, when B2=A > �,

R2
tub =

EB4

4A3

1

B2 �A�
; (33)

and the free-energy density

hF itub = � A2

EB4
(B2 �A�)2 : (34)



Therefore, the tubule state is more stable than the 
at

membrane for B2=A > �. The stability of the tubules

relative to the L3 phase is given by the condition [30]

2�+ �� < 2

 p
M 0

M
� 1

!�
B2

A
� �

�
; (35)

which de�nes a �rst-order transition line. These results

are summarized in the phase diagram of Fig. 4. A

general phase diagram of fourth-order membrane elas-

tic theories for systems having internal degrees of free-

dom, of which the one here discussed can be considered

a particular case, has been presented in Ref. [31].

0 �
B2=A

0

2�

��� Flat

Sponge

Tubules

Figure 4. Phase diagram, in the space (���; B2=A) of para-
nematic membranes with free-topology. Full (resp. dashed)
lines indicate �rst-order (resp. second-order) transitions.

B. Membranes with 
at topology

Membranes attached to a frame or spread over a

hole cannot form such phases. They may however un-

dulate in order to create a large number of local saddles

(\egg-carton"). Assuming a �rst-order nematic transi-

tion and 1D modulations to simplify, the membrane

structure can be determined by including sixth-order

terms in FN and solving numerically for the order-

parameter pro�le [29]. The corresponding phase dia-

gram is shown in Fig. 5. Increasing A or approaching

the nematic transition drives the modulation instabil-

ity. The membrane is either anti-nematic (AN) or para-

anti-nematic (pAN), according to the value of the order

parameter. In the modulated pAN/AN phase, there

are regions of high and low order parameter values sep-

arated by line boundaries. The modulation wavevector

is mesoscopic when the nematic transition is weakly

�rst order, and diverges at the second-order transition.

0 1 2
0

0.5

1

B=�q0

A=�q2
0 Flat (I)

Modulated (AN)

Modulated
(pAN=AN)

Mod.
(pAN)

Figure 5. Phase diagram of para-nematic membranes with

at-topology. q�1

0
is a length comparable to the bilayer

thickness. Full (resp. dashed) lines indicate �rst-order (resp.
second-order) transitions. Dotted line: virtual second-order
transition.

IV Conclusions

In this paper we have analyzed the possible existence

of bilayer membranes possessing a 2D-nematic order of

their polar heads. Such a nematic order can arise in

the presence of inclusions, as, e.g., anisotropic integral

proteins or n-meric surfactants with polar heads. Such

membranes may already have been realized [18, 19].

The coupling between the nematic order-parameter and

the curvature can destabilize a 
at membrane, favor-

ing at the same time the orientation of the directors

of the two monolayers parallel to the principal axes of

curvature, and mutually orthogonal in the two mono-

layers. We have shown that nematic membranes should

generically form tubules with a mesoscopic radius. Such

tubules have been observed in the case of dimeric sur-

factants, with a radius compatible with our theoretical

predictions [18]. Due to the interaction between the

nematic directors of the two monolayer, nematic mem-

branes should present disclination lines having very pe-

culiar features [20]. To simplify, we have considered

the case of 
at membranes, that could be obtained

by patch-clamping techniques or osmotically blowing-

up the tubules. We have shown that the nematic bi-

layer can be described in terms of two e�ective non-

interacting nematics, a free nematic, and a nematic sub-

ject to a uniform aligning �eld. As a consequence, the



presence of a defect on only one of the two monolay-

ers gives rise to a non-trivial texture on the defect-free

monolayer. We have called such defects bi-defects. Bi-

defects produce walls that can reach the boundary of

the sample and recombine. The thickness of the walls

is predicted to be in the �m range, accessible to obser-

vations by optical means.

When the anisotropic interactions between the sur-

factant heads are not su�cient to give rise to a nematic

phase in a plane membrane, a para-nematic ordering

can nevertheless develop, because of the coupling be-

tween the curvature and the nematic order-parameters,

provided that the nematic susceptibility is su�ciently

large. In this case, the curvature plays a role similar

to that of an external aligning �eld in a 3D nematic

in the isotropic phase, that can induce a para-nematic

or a true nematic phase [16]. In the curved state,

para-nematic and nematic membrane should behave in

the same way. In particular, we have discussed the

phase diagrams of para-nematic membranes with free

and 
at topology, by means of a mean �eld approach,

taking into account higher-order terms in the nematic

energy-density. In the free topology tubules and sponge

phases can develop, while a membrane bound to a 
at

frame may undulate in an \egg-carton" fashion, in or-

der to create a large number of local saddles, with para-

anti-nematic and/or anti-nematic regions, possibly sep-

arated by line boundaries.
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