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In the present paper we discuss stochastic diffusion of energetic ions by a set of lower hybrid waves with
frequencies close to each other and random phases which change along the time evolution of the system. We
obtain efficient long term diffusion in velocity space, which is more representative of the diffusion produced by
a continuous wave packet than the diffusion produced by a set of waves with random phases which are constant
along the time evolution.

1 Introduction

It is known that the movement of ions in a uniform magnetic
field may become stochastic in the presence of a coherent
electrostatic wave, if the wave amplitude is sufficiently large
[1, 2]. The ensuing diffusion in velocity space may have
important consequences, as indicated by relatively recent
experiments, which show evidence of interaction between
lower hybrid waves and energetic ions in large tokamaks
[3, 4]. A parametric analysis has shown that the threshold
condition for stochasticity as derived in Ref. [1] is not eas-
ily satisfied in present day large tokamaks, although it can
be attained in small tokamaks with relatively modest levels
of wave power [5]. When the threshold condition is satis-
fied a quasilinear formalism can be derived and employed
to describe the stochastic diffusion which occurs in veloc-
ity space [2]. Using quasilinear analysis, significant wave-
particle interaction between energetic ions and lower hybrid
(LH) waves has been indeed demonstrated to occur [6, 7].

In a recent paper we have investigated the transition be-
tween cases in which one coherent LH wave is present in
the system, with amplitude below the stochasticity thresh-
old, and cases with the presence of several LH waves of
close frequencies, studying the appearance of stochasticity
along this transition [8]. We have employed a generaliza-
tion of Karney’s approach, assuming that a finite number of
waves is present in the system, forming a sufficiently narrow
wave packet ink space [8]. Despite the relative simplicity
of the Hamiltonian obtained, the system dynamics has been
shown to be complicated, originating interesting behavior
which had not until quite recently been widely studied in
the literature [9].

The analysis made in Ref. [8] has shown that in the
particular case of a set of coherent waves the threshold
for stochastic diffusion is reduced in comparison with the
threshold in the one wave case, with the ensuing particle
diffusion in velocity space occurring in periodic bursts along
the time evolution. For a set of waves with random phases,
the results appearing in Ref. [8] have shown more effi-

cient long term diffusion in velocity space than in the case
of the same number of coherent waves, although the initial
diffusion rate for incoherent waves may be smaller than in
the case of coherent waves. Reduction of the stochastic-
ity threshold regarding the coherent one-wave case has also
been obtained in other situations, for instance assuming two
waves propagating obliquely to the ambient magnetic field
[9], or considering the possibility of a modulation in the
wave frequency [10].

In the present paper we resume the use of the theoreti-
cal approach employed in Ref. [8], now applied to the case
of a finite set of waves with randomly chosen phases that
are modified along time evolution. This procedure tends to
average out all possibly remaining regularity in the distribu-
tion of the wave phases, so that the outcome must be close
to that expected for a continuous wave packet.

The structure of the paper is the following. In Sec. 2
we present a summary of the theoretical formalism devel-
oped in Ref. [8], which helps to explain fundamental fea-
tures of the system and show how to obtain the equations
of motion. In Sec. 3 we present some numerical results
which illustrate the appearance of stochastic diffusion in the
system due to the presence of a set of incoherent lower hy-
brid waves, considering both the case of waves with random
phases which are fixed along time evolution, and waves with
random phases which change along the time evolution of the
system. Finally, in Sec. 4 we summarize our findings and
comment on the main results of the paper.

2 The description of the system and
the equations of motion

Let us therefore consider the following magnetized system:

B = B0ez

E =
∑

i

Ei(ωi) cos (ki(wi)y − ωit− φi) ey. (1)
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Theωi appearing in this expression are angular frequencies
of the individual waves in a set ofnω waves, theEi(ωi) are
the amplitudes of these waves, and theφi are their phases.

Assuming the Coulomb gauge,

A = −B0yex,

we can writeE = −∇Φ, with

Φ = −
∑

i

Ei(ωi)
ki(ωi)

sin (ki(wi)y − ωit− φi) ey. (2)

The Hamiltonian for the system can be written as fol-
lows.

h =
P 2

2m
+ qΦ, (3)

where

P 2 = p2
x + p2

y + q2B2
0y2 − 2qpxB0y,

and whereq andm are the ion charge and mass respectively,
and thepi are the cartesian components of the particle mo-
mentum. We have usedpz(t = 0) = 0, which implies
pz(t) = 0.

For the sake of simplicity, we consider thatnω is an odd
number, with waves equally spaced in frequency. We denote
the amplitude, the angular frequency and the phases of the
central wave asE, ω, andφ, respectively, and assume initial
conditions such that the phase of the central wave is zero
(φ = 0). Using these definitions, we introduce the dimen-
sionless variables

t′ = Ω t, Ω =
qB0

m
, y′ = k y,

p′i =
k

mΩ
pi, (i = x, y) (4)

wherek = ki(ωi = ω).
As a consequence of these definitions, the Hamiltonian

appears as follows.

h′ =
1
2

[
(p′x + y′)2 + p′2y

]

−α
∑

i

rEi

rki

sin (rkiy
′ − νit

′ − φi) , (5)

where

α =
qmE0

k

k
2

m2Ω2
=

E0

B0

k

Ω
=

E0/B0

Ω/k
,

rEi =
Ei(ωi)

E0
,

rki = ki/k, νi = ωi/Ω, andh′ = hm/(mΩ/k)2. The
amplitudeE0 is obtained from the following normalization
condition,

E2
0 = 2

〈(∑

i

Ei cos ϕiey

)
·

∑

j

Ej cosϕjey




〉
,

whereϕi ≡ (kiy−ωit−φi), and the symbol< ... > means
the time average over a time interval sufficiently large in
order to be an integer multiple of the periods of all waves
appearing in thek wave packet. The rate of amplitudesrEi ,
therefore satisfies the following constraint

nω∑

i=1

r2
Ei

〈
cos2 ϕi

〉
+2

nω−1∑

i=1

∑

j>i

rEi
rEj

〈cos ϕi cosϕj〉 =
1
2
.

(6)
After performing the time average, we obtain〈

cos2 ϕi

〉
= 0.5, and〈cosϕi cos ϕj〉 = 0.0, and therefore,

from Eq. (6),
nω∑

i=1

r2
Ei

= 1. (7)

Also for the sake of simplicity, we consider the case in
which thenω waves of thek space packet have the same
amplitude (rEi = rE , for anyi),

rE = (nω)−1/2
. (8)

We can also definerωi
= ωi/ω, and consider that the

wave spectrum is non-vanishing only betweenω − δω and
ω + δω, and thereforerωi spreads fromrωi = 1 − ∆ to
rωi = 1 + ∆, where∆ = δω/ω. If the wave packet ink
space is narrow, we may assume also for the sake of sim-
plicity that for the waves in the packet

ω

k
' V, (9)

whereV is a constant. As a consequence,

rωi =
ωi

ω
=

V ki(ωi)
V ki(ω)

=
ki(ωi)

k
= rki(ωi),

and therefore

νi =
ωi

ω

ω

Ω
= rkiν, where ν =

ω

Ω
.

Dropping the ’primes’, for simplicity, we obtain as the
system’s Hamiltonian,

h =
1
2

[
(px + y)2 + p2

y

]

−α
∑

i

rEi

rki

sin [rki (y − νt− φi)] . (10)

Following steps similar to those employed in Ref. [1],
we perform the following canonical transformation

(x, y, px, py) ⇒ (X, Y, Px, Py)

F2(x, y, Px, Py) = (Px − νt)x + Py(y − νt + Px) (11)

X =
∂F2

∂Px
= x + Py

Y =
∂F2

∂Py
= y − νt + Px

px =
∂F2

∂x
= Px − νt
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py =
∂F2

∂y
= Py

K = h +
∂F2

∂t
= h− ν(x + Py) = h− νX,

resulting
Y = y + px, X = x + py.

The new Hamiltonian is

K(X, Y, Px, Py) =
1
2

[
Y 2 + P 2

y

]

−α
∑

i

rEi

rki

sin [rki(Y − Px)− φi]− νX. (12)

Performing now a second canonical transformation,

(X, Y, Px, Py) ⇒ (I1, ω1, I2, ω2)

F1(X,Y, ω1, ω2) =
1
2
Y 2cotg(ω1) + Xω2.

Px =
∂F1

∂X
= ω2,

Py =
∂F1

∂Y
= Y cotg(ω1) → Py = (2I1)1/2 cos(ω1),

I1 = −∂F1

∂ω1
=

1
2
Y 2cosec2(ω1) → Y = (2I1)1/2 sin(ω1),

I2 = −∂F1

∂ω2
= −X,

we arrive at the final form of the Hamiltonian, denoted as
H,

H = K +
∂F1

∂t
= K.

The Hamiltonian is therefore

H = I1 + νI2

−α
∑

i

rEi

rωi

sin {rωi [R sin(ω1)− ω2]− φi} , (13)

where we have usedrki = rωi and definedR = (2I1)1/2.
The Hamiltonian equations are easily obtained as fol-

lows

ω̇i =
∂H

∂Ii
, İi = −∂H

∂ωi
,

ω̇1 = 1−sin(ω1)
1
R

α
∑

i

rEi cos {rωi [R sin(ω1)− ω2]− φi} ,

ω̇2 = ν,

İ1 = cos(ω1)Rα
∑

i

rEi cos {rωi [R sin(ω1)− ω2]− φi} ,

İ2 = −α
∑

i

rEi cos {rωi [R sin(ω1)− ω2]− φi} . (14)

This set of coupled equations is now ready to be object
of a numerical analysis, with results presented in Sec. 3.

3 Some numerical results

For the numerical solution of the Hamiltonian equations, we
assume a given number of particles (np) and a given num-
ber of waves (nω) and giveα andν as parameters. We also
assume a given value of∆ and a distribution of wave ampli-
tudesrEi

.
As loading procedure for the numerical calculation we

initially consider the following case: We give parameters
I0
1 , a0, and the initial HamiltonianH, and attribute, for the

np particles, regularly spaced values ofI1, ω1 andω2:

I1 = I0
1 +

1
np

a0, I
0
1 +

2
np

a0, ......, I
0
1 + a0,

ω1 = 2π
1
np

, 2π
2
np

, ......, 2π,

ω2 = 2π
1
np

, 2π
2
np

, ......, 2π,

I2 = (H − I1 + S)/ν, (15)

where

S ≡ α
∑

i

rEi

rωi

sin {rωi
[R sin(ω1)− ω2]− φi} .

In other words, the loading procedure assumes initial
values forI1, ω1 andω2, and evaluateI2, in such a way that
all the particles have the same initial Hamiltonian (H), for
which we have arbitrarily assumed the valueH = I0

1 +νI0
1 .

In Ref. [8] we have also considered the same set of par-
ticle initial conditions utilized here, and also a different set
of initial conditions. The results obtained were qualitatively
similar in both cases, indicating that they were not restricted
to a special set of conditions.

It is useful to remark here that when assuming the initial
value ofI1 for each particle, we are simply assuming the ini-
tial value of the perpendicular canonical momentum of the
particles, since reversing the canonical transformations one
obtains

I1 =
1
2

k
2

m2Ω2

[
p2

y + (px − qAx)2
]
,

wherepx andpy are thex andy dimensional components
of the particle momentum, as used in Eq. (3), before the
introduction of the dimensionless variables by Eq. (4).

With the choice of parametersI0
1 anda0, the spread of

perpendicular momenta of the particles is such that50.0 <
R < 57.4, where as we have seenR =

√
2I1. This range

of parameters is similar to that utilized in previous studies
of the one-wave case, which we use for comparison when
considering the case of several waves [1, 2].

According to these studies, for one wave and integer
value of ν, and small wave amplitude, the phase space
is dominated by large first order islands. At intermediate
wave amplitudes, stochastic motion appears near the sepa-
ratrixes between the islands. For growing wave amplitude
the size of the stochastic region increases, and the threshold
for stochasticity has been defined as the wave amplitude for
which the fraction of phase space occupied by the islands
has appreciably diminished, in comparison with the size of
stochastic regions [1]. The limits of the stochastic region are
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α dependent and have been stablished approximately as the
following [1],

Rmin = ν −√α, Rmax = (4αν)2/3(2/π)1/3.

Forν = 30 andα = 2.0, the stochasticity therefore will
fully occur in the region28.6 < R < 33.2. For α = 4.0,
in the region28.0 < R < 43.5, and forα = 6.0, in the
region27.5 < R < 69.0. Therefore, for our choice of pa-
rameters, in the one-wave case small amount of stochastic-
ity may be expected forα = 2.0, for instance, since the
range50.0 < R < 57.4 is far from the stochastic range,
and appreciable amount of stochasticity forα = 4.0, since
the range50.0 < R < 57.4 is close to the stochastic range.
On the other hand, for larger wave amplitude, as in the case
of α = 6.0, for instance, one can expect fully stablished
stochasticity in the chosen range, which will be completely
immersed in the stochastic region. These expectations will
be now subjected to numerical confirmation, and compared
to the case of fixed wave amplitude and different number of
incoherent waves.

We start by considering the one-wave case, same situa-
tion considered in Refs. [1] and [2].

In order to illustrate the effect of the increase of the wave
intensity, we present in Fig. 1 the quantityR versusω2 (mod.
2π), for the case of 50 particles and one wave, withα = 2.0,
3.0, 4.0, and 5.0, assumingI0

1 = 1.25× 103, a0 = 400, and
ν = 30.0. The sequence of panels illustrates the gradual
modification of particle trajectories caused by the increase
in the wave intensity. It is seen the gradual appearance of
the overlap of particle orbits which has been shown to cor-
respond to stochastic diffusion in velocity space [1, 2].
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Figure 1.R as a function ofω2 (mod. 2π), for 50 particles,
one wave (nω = 1), ν = 30, and (a)α= 2.0, (b)α=3.0, (c)
α = 4.0, and (d)α = 5.0.

We now consider the presence of more than one wave,
with different frequencies and random phases which are
fixed in time, with the phase of the central wave assumed
to be zero (φ = 0). The random phases are obtained from
a random number generator which starts from a numerical
seed. All the results which follow, unless explicitly stated
otherwise, are generated with the use of the same seed for
the random number generator.

In Fig. 2 it is seen the case ofR versusω2 (mod. 2π),
considering 50 particles andα = 2.0, for several values of

the number of waves (1, 3, 5, and 7), using∆ = 1.0× 10−2

and the other parameters as in Fig. 1. Figure 2 clearly shows
that the presence of the waves with random phases cause the
complete spreading of the particle orbits which are present
in the case of only one-wave, for the same value ofα.
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Figure 2. R as a function ofω2 (mod. 2π), for 50 parti-
cles and waves with fixed random phases,α= 2.0,ν = 30,
∆ = 1.0 × 10−2, and number of waves (a) 1, (b) 3, (c) 5,
and (d) 7.
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Figure 3. R as a function ofω2 (mod. 2π), for 50 parti-
cles and waves with fixed random phases,∆ = 1.0× 10−2,
nω = 5, and (a)α= 0.25, (b)α= 0.5, (c)α= 1.0, and (d)α=
2.0.

In Fig. 3 we showR as a function ofω2 (mod. 2π),
for the case in which five waves are present in the sys-
tem, considering smaller values of the wave amplitude (α =
0.25, 0.5, 1.0, and2.0), and∆ = 1.0 × 10−2, and waves
with random phases. The loading procedure and other pa-
rameters are also the same as in the previous figures. We
observe that the amount of stochastic diffusion, for the same
number of iterations, gradually decreases when the wave en-
ergy is reduced, but even in the case ofα= 0.25 the degree
of stochasticity is larger than that obtained in the one-wave
case andα= 2.0, seen in the first panel of Fig. 1 and in the
first panel of Fig. 2.
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The presence of stochastic behavior can also be investi-
gated by following the time behavior of the following quan-
tities,

(δIj)t =

{
1

np − 1

np∑

i=1

[Ij(t)− Ij(0)]2
}1/2

, (16)

wherej = 1, 2. In a plot of(δIj)t versust, the inclination
of (δIj)t relative to thet axis is a measure of the diffusion
coefficient in velocity space [11].

In Fig. 4 we show(δI1)t as a function of normalized
time, for I0

1 = 1.25 × 103, a0 = 400, ν = 30.0, andα =
2.0, for nω= 1, 5, and 9, for the case of waves with ran-
dom phases which are fixed in time. For this figure, we have
considerednp = 1000, which results in much better statis-
tics than obtained withnp = 50. The Poincaŕe plots pre-
sented in Figs. 1 to 3, on the other hand, were obtained with
np = 50 because with a larger number of particles it be-
comes very difficult to see any structure in the plots, due to
the proximity of the dots which represent sucessive passages
of particles by the Poincaré section. Panel (a) shows the evo-
lution up tot ' 120, while panel (b) shows the evolution up
to t ' 1200. According to Fig. 4, the long term evolution
of the quantity(δI1)t appearing in Fig. 4b shows continued
diffusion, without the conspicuous “steps” appearing in the
case of coherent waves [8].
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Figure 4. (δI1)t as a function of normalized time, for the
case of waves with fixed random phases, forI0

1 = 1.25 ×
103, a0 = 400, ν = 30.0, andα = 2.0, fornω= 1 (full line),
5 (broken line), and 9 (dotted line). (a) Short-term evolution;
(b) Long-term evolution.

Figure 4 has been obtained for a given set of random
phases. If a different seed would be attributed to the random
number generator, a different set of random phases would
be obtained, which would result in different time evolution
for the quantity depicted in the figure. We have obtained
results for different sets of initial random phases, some of
which have been displayed in Ref. [8]. What we have ob-
served from these different cases is that, although the ob-
vious differences between the different curves obtained, the
inclination relative to thet axis is approximately the same
in all corresponding cases, indicating similar average diffu-
sive behavior. The interesting parameters for the emulation
of the interaction of a narrow wave packet with energetic
particles seem to be the wave energy and the width of the
spectrum, and not the particular phases of the waves com-
posing the finite set of waves chosen to arbitrarily represent
the spectrum. These results could be in principle improved
by an ensemble average, considering a large number of sets
of random phases, which would require very intensive use

of numerical calculation. It is expected that the average be-
havior obtained using different sets of random phases would
tend to become more and more similar for increasing num-
ber of waves, so that in the limit of infinite wave number
the difusion caused by the waves would be independent of
the particular set of random phases utilized in the calcula-
tion. Instead of proceeding with this costly approach, we
may consider the case of a finite set of waves, with randomly
chosen phases that are modified along time evolution, which
tend to average out all possibly remaining regularity in the
phase distribution, so that the outcome must be close to that
expected for a continuous wave packet.

We now consider the presence of more than one wave,
with different frequencies and random phases which are
modified along the time evolution, with the initial phase
of the central wave assumed to be zero (φ = 0). The
phases are modified after a real time interval which aver-
agesδt = 2π/δω, so that for longer time intervals all phase
correlations are averaged out. In nondimensional time, for
∆ = 1.0 × 10−2 and ν = 30.0, the modification of the
phases occurs after an average intervalδt ' 20. The effect
of the finite set of waves becomes truly random and more
adequate to the emulation of a wave packet of finite width.
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Figure 5. R as a function ofω2 (mod. 2π), for 50 par-
ticles and waves with random phases which change along
time evolution,α= 2.0,ν = 30, ∆ = 1.0× 10−2, and num-
ber of waves (a) 1, (b) 3, (c) 5, and (d) 7.

For this situation, in Fig. 5 it is seen the Poincaré plot of
R versusω2 (mod. 2π), again considering 50 particles and
α = 2.0, for several values of the number of waves (1, 3, 5,
and 7), using∆ = 1.0 × 10−2 and the other parameters as
in Fig. 1. Except for the random phases which change along
time, these are exactly the same conditions used to gener-
ate Fig. 2. Fig. 5 clearly shows that the randomly changing
phases cause the complete spreading of the particle orbits
which appeared in the fixed phase one-wave case, result-
ing in a plot which appears qualitatively independent of the
number of the waves, at least for the region in phase space
which is depicted in Fig. 5.

In Fig. 6 we showR as a function ofω2 (mod. 2π), for
the case in which five waves with randomly changing phases
are present in the system, considering smaller values of the
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wave amplitude (α = 0.25, 0.5, 1.0, and2.0, the same val-
ues considered for Fig. 3), and∆ = 1.0×10−2. The loading
procedure and other parameters are also the same. We ob-
serve that the amount of stochastic diffusion, for the same
number of iterations, is gradually smaller for smaller wave
energy, but even in the case ofα= 0.25 the degree of stochas-
ticity is larger than that obtained in the one-wave case and
α= 2.0, seen in the first panel of Fig. 1 and in the first panel
of Fig. 2. Comparing the first panel of Fig. 6 with the first
panel of Fig. 3, it is seen that the randomness of the phases
is responsible for significant diffusive behavior which was
pratically absent in the corresponding case ofα = 0.25 for
five waves with fixed phases.
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Figure 6. R as a function ofω2 (mod. 2π), for 50 par-
ticles and waves with random phases which change along
time evolution,∆ = 1.0 × 10−2, nω = 5, and (a)α= 0.25,
(b) α= 0.5, (c)α= 1.0, and (d)α= 2.0.
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Figure 7. (δI1)t as a function of normalized time, for the
case of waves with random phases that change along time
evolution, forI0

1 = 1.25 × 103, a0 = 400, ν = 30.0, and
α = 2.0, fornω= 1 (full line), 5 (broken line), and 9 (dotted
line). (a) Short-term evolution; (b) Long-term evolution.

Proceeding along the proposed line, in Fig. 7 we show
(δI1)t as a function of normalized time, forI0

1 = 1.25×103,
a0 = 400, ν = 30.0, andα = 2.0, for nω= 1, 5, and 9,
for the case of waves with random phases that change along
time evolution. As for Fig. 4, the number of particles has
been assumed to be 1000. The long-term evolution depicted
at panel (b) at the right-hand side shows that the stochas-
ticity introduced by the randomly changing waves results in
continued diffusive behavior in velocity space, even for the
one wave case.

In Fig. 8 we show(δI1)t as a function of normalized
time, for the one-wave case (nω = 1), I0

1 = 1.25 × 103,

a0 = 400, ν = 30.0, andα = 2.0, 3.0, 4.0, and 5.0, con-
sidering that the phase of the wave changes randomly along
the time evolution. Panel (a) of Fig. 8 shows the evolution
up to normalizedt ' 120, and panel (b) shows the extended
evolution, up tot ' 1200. Fig. 8 clearly shows that long-
term diffusive behavior, measured by the inclination of the
curve relative to thet axis, is nearly proportional to the wave
amplitude, while it should be nearly absent in the region of
the phase space depicted in the figure, forα ' 2.0, if the
phase of the wave were kept constant along time evolution,
according to the analysis presented at the beginning of the
present section.
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Figure 8. (δI1)t as a function of normalized time, for
nω = 1, I0

1 = 1.25 × 103, a0 = 400, ν = 30.0, andα =
2.0 (full line), 3.0 (broken line), 4.0 (dashed line), and 5.0
(dotted line). The phase of the wave is randomly modified
along time evolution. (a) Short-term evolution; (b) Long-
term evolution.

4 Final remarks

We have generalized the discussion on stochastic diffusion
of energetic ions by lower hybrid waves by considering a
case where a set of waves with similar frequencies and ran-
dom phases which change randomly along time evolution
is present in the system. As in Ref. [8], the task has been
accomplished by generalization of the approach utilized in
Refs. [1, 2] under the restriction that the spectra is suffi-
ciently narrow such that the phase velocity of the waves
present in the system can be considered to be a constant.
The present discussion generalizes previous results obtained
assuming a set of waveswith fixed phases, since the random
modification of the phases along time evolution tends for
long time evolution to be equivalent to an ensemble average
over fixed phases, which would be much more costly from a
numerical point of view.

The results obtained indicate significant long term diffu-
sion which is nearly independent from the number of waves
present in the system. The random modification of the
phases along time evolution averages possible regularities
originated from a given set of phases, and produces stochas-
tic diffusion which must be close to that expected from a
continuous wave packet of finite fequency width.
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