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Fluxes and Chern Morphisms of Hyperbolic Orbifolds
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Methods ofK —theory and spectral theory of Dirac operators are applied to describe the Chern isomorphisms
and quantum fields on branes on hyperbolic manifolds.

I. INTRODUCTION The component group is given by the torsion classes in
KO(X), while the trivial component consists of the torus
HOdd(X R)/(K(X)/Tor). The interpretation of the elements
play a significant role. Th& —theory method has been ap- ©f the groupK*(X,U (1)) is complicate, we can restrict our-
plied to computeD—brane charges [1-3] which identifies S€lves tothe case where the cghomolbl@?d(x,R)Ovamshes.
with elements of Grothendick —groups [4—6] for horizon e group of fluxes is simpli*(X,U (1)) = Tork™(X), and
manifolds. The relevant description of the Ramond-Ramondh€ corresponding Ramond-Ramond flux can be represented
charges in term of equivariai€—theory has been demon- PY @ pair (Ey,E,/) of flat vector bundles witirank(Ey) =
strated in [1, 7-9]. It leads to a formalism of fractional branesrank(E, ), i.e., a virtual flat bundleAEy = Ex —E,, of rank
pinned on the orbifold singularities which have componentsero (see Section 3 for notations). In the string theory path
in the twisted sectors of the closed strings. integral a torsion Ramond-Ramond flux gives an additional
In this note the Chern isomorphism for fluxes and branegphase factor to ®—brane. A brane can be represented by a

charges interpretation is considered. We examine the Chetd—homology class, that is a map of an odd spin-mani¥ld
classes and charges of branes using the methddls-tifeory ~ (possibly equipped with an additional Chan-Paton vector bun-
and spectral theory of differential operators related to hy-dle) into the space-tim#l [15]. Therefore, the holonomy of
perbolic spaces (for string compactifications with hyperbolicthe Ramond-Ramond fields over this brane can be associated
horizons, see for example [10]). with the eta invariant of virtual bundI&E, restricted toX.

The complex eta functions of hyperbolic spaces will be con-

sidered in the next section.

In superstring and superconformal field theolesbranes

. RAMOND-RAMOND FIELDS OVER BRANE

. . L Ill. CHERN CLASSES AND K—-THEORY OF
The Ramond-Ramond fields and their flux quantization HYPERBOLIC ORBIFOLDS

could be formulated in terms of differentil—theory [11,
12]. These fields get precise characterization by means of
bundles with connections [13]. The grougs(X,U (1)) (see

[14] for details) describe the flat Ramond-Ramond fluxes on a
compactificationX, wherej matters modulo two by Bott pe-
riodicity and j = 1 for the IIA and j = O for the 1IB theory.
These groups fit the following exact sequence:

U (n)—gauge bundles and the Chern-Simons invariants

Methods of spectral theory of differential operators can
be used in the type Il string compactified on spaces with
the real hyperbolic horizoiX. Let X = G/X be an irre-
ducible rank one symmetric space of non-compact type. Thus
G will be a connected non-compact simple split rank one

dd
KYX)  — HOXR) — KH(X,U(1)) Lie group with finite center, and c G will be a maxi-
i ! mal compact subgroup. The object of interest is the groups
G=S0(n,1) (neZ,)andX = SQ(n). The corresponding
KOX,U(1)) «— H¥*XR) «——  KO(X) symmetric space of non-compact type is the real hyperbolic

spaceX = H" = SO,(n,1)/SA(n) of sectional curvature-1.
The maps fronK—theory to cohomology are the usual Chern | et X = '\G/ X be a real compact hyperbolic manifold. The
character maps, that are isomorphisms over the reals. Sin¢gndamental group oX- acts by covering transformations on
the character is one of the features of Kietheory, which is X and gives rise to a discrete, co-compact subgioupG.
useful in a variety of applications, we shall review briefly the | et P = X ® & be a principal bundle oveX- with the gauge

Chern co_ns_truc_tion in_the topologid&l—?heory. group® = U(n) and letUx. = Ql(Xr;g) be the space of all
For a finite-dimensionasmooth manifoldX the Ramond-  connections orP; this space is an affine space of one-forms
Ramond phase admits a description of the form [15]: on Xr with values in the Lie algebrg of &. Suppose that

X is any one-dimensional representatiormdfactors through
a representation di(X;Z). It can be shown that for a uni-
tary representatiog: ' — U (n), the corresponding flat vector

HOdd(X, R)

0= Kirx) /Tor

— KYX,U(1)) — Tork®(X) = 0
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bundleEy is topologically trivial(Ey = X@C") ifand only if ~ on Xr acting on spinors with coefﬁmsnts ) The Chern-
dety |, : Tort — U (1) is the trivial representation. Hefer  Simons actiorC§y ) (Ay) = —(1/8m) Tr(F NF3 ) can
is the torsion part oH!(M;Z) anddety is a one-dimensional be derived from Eq. (5). Indeed,

representation df defined bydetx (y) :=det(x(y)), foryeT. 7
A three form flux associates a phase to a Euclidean brane IndexD; = CSyim(Ay) dimx ")
world-volume X which is given by the eta invariant of the Ax X 24 wm
; v . : 1
virtual b.undler]'EX r]EX, restricted t@(r.. We czfm ex.press this — 2(n(0.Dy) +h(0.Dy)). ©6)
phase directly in terms of the Chern-Simons invariant. For any 2
extensionAy of a flat connectiory corresponding t the There exists a Selberg type (Shintani) zeta function

second Chern characiein(E, ) ( —(1/810)Tr(Fz AF )) Z(s,Dy) associated with a twisted Dirac opera®y acting
on oriented odd dimensional real hyperbolic spa@gs, Dy )

of Ey can be > expressed in terms of the first and second Cherg 5 meromorphic oft, and forT (%) > 0 one has [19]:
classes chz(IEX) (1/2)01(EX) - Cz(EX) The Chern char-
acter and théd—genus, the usual polynomial related to Rie- l0gZ(0,Dy) = v —1m(0,Dy). (7)

mannian curvature, are given by Thus, finally we get théJ (n)—Chern-Simons invariant of

ch(EX) _ rankEX+cl(IEX)+ch2(EX) ) Fannarllri?ce)ﬁjusc:|ble flat connection on the real hyperbolic three-
= dim + c1(Ey) + chp(Ey), ~
Cym)(Ay) — moduldZ/2)

~ 1
AQY) = 1- p(QY). @ 1,
= é (d|mxn(0a@) 7n(07©X))
Here p1(QM) is the first Pontriagin classQV is the Rie- 1 Z(0,)dimx
mannian curvature of four-manifold which has a boundary = lo [ ’ ] (8)
2m/—1 Z(0,Dy)

OM = Xr. Thus we have
The value of the Chern-Simons functional on the space of

~ . ~ -
ch(Ex)A(Q™) = (dimx + c1(Ey) +cha(Ey)) connections at a critical point can be regarded as a topo-
(1— 1 ) logical invariant of a painXr,x). If the one form flux is
P1 zero andcy(Ey) = 0 then the flux is measured mg(Ey) €
= dimX-f-Cl(Ex)-i-Chz(]Ex) H3(Xr,U(1)). This group of three-form fluxes is gener-
dimy ated by the two-dimensional representation and is given by
- =z pL(QM). (3)  [15]: H*(Xr,Z) = H3(Xr,U (1)) = Z;r|. UsingK—theory the
groups of fluxes can be computed confirming our computation
The integral over the manifoldl takes the form via the Chern-Simons invariants (for more details see [15]).
z z dimy z
= \R/OMY _ = M
MCh(EX)A(Q )= MChZ(]EX)i 24 m P(QY). (4) B. Brane charges
For any representatignone can construct a vector bundig Before discussing the brane charge formula we begin with

over a certain four-manifol¥ which is an extension of a flat  some conventions which apply throughout. Xebe an ori-
complex vector bundlEy overXr. The second Chern charac- ented manifold, and leti*(X) be the cohomology ring oX.
ter for theU (1) part is half the Chern-Simons term. The rel- The Poincag duality, which is well-known result of differen-
evant cobordism group vanish, and in fact for three-manifoldjal topology, gives a canonical isomorphism

Xr we found a four-manifoldM and extended the (n) bun-

dle such that manifold/ is spin. Therefore the intersection ox: HIX = Hi—p(X),

form onM allows one to define the Chern-Simons invariant for all p=0,1,..., n=dimX

usingc?. For the chern classes we hauéEy) € H?(Xr,Z), U

C2(Ey) € HA(Xr,Z), andH* (X, Z) = Zjr,. Let f : Y — X be a continuous map froi to X andm =
The Dirac index is given by [16—18] dimY. For all p> m—n there is a linear map, called the
z Gysin homomorphism:
IndexD/KX = Mch(EX)A(M) fHIY) — Hi=(m=n) ()
1
= 5(n(0,D5) +h(0,9y)), (5)  which is defined such a way that the sequence
where h(0,9y) is the dimension of the space of harmonic HP(Y) 25 Hm—p(Y) *, Hm-—p(X)
spinors onXr (h(0,9y) = dimKer®y = multiplicity of the 1

fi

0-eigenvalue of9, acting onXr); ®y is a Dirac operator Him_p(X) —X5 HP=(M=1) (x)HP= (M=) () 1 ()
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is commutative. Thud, = 0;1 f. 0y, wheref, is the natural of spaces stratified fibered over real hyperbolic spaces. Let
push-forward map acting on homology. As an example of thatis beforeXr be a closed (means compact and without bound-
construction let us assume théats an oriented vector bundle ary) connected Riemannian manifold with negative curvature.
E overX of fiber dimensior?. The canonical projection map LetY! c Y? c Y3 C ... be a sequence of connected compact
m: E — X and the inclusiori : X — E of the zero section smooth manifolds an& be a finite group which acting on
induce maps on homology with.i, = Id. For all j we have Xt via isometries and on eadH via smooth maps. Assume

the following isomorphisms: also the smooth embedditg c Y/*1 is bothF —equivariant
o o , o and/—connected. Le¥ =Y = U?_;Y* and giveY the di-
1 HITHE) S HIX) iy HI(X) =5 HITYE) rect limit topology. The induced action & onY is free.

Assuming thatW'}$_, is the orbit spacer x Y* under the
Hiagonal action of andW =W is directlimit,_.W’. Let
X be the orbit spacr/F andp, : W' — X be the map in-
duced from the canonical projection ¥f x Y!. The each
pe(£=1,2, ... ) is a stratified system of fibrations 0h[23]
(Definition 8.2).

Let R be a ring with unity andGLy(R) be the invertible
n x n matrices with entries irR. Let E;(R) be the sub-
group of elementary matrices. By definition an elementary
matrix Ejj(a) has 1 on the diagonal entrg € R— {0} at
the (i, j)—position while the remaining entries are 0. De-
fineGL:=1impoGLn(R), E(R) :=limp_»En(R); the limitis
taken over the following map$sLs(R) — GLy1(R), (a) —

11 is the Gysin map; it can be associated with integration ove
the fibers ofE — X. We haverti, = Id, so thatri = (i)~
The mapi, is called the Thom isomorphism of the oriented
vector bundle€E. The particular examplg= 0is an important
case of the Thom isomorphism. Fpe= 0 a mapH9(X) —
H’(E), and the image of € H(X) determines a conomology
class®[E] = ii(1) € HY(E) , which is called the Thom class
of E.

Let us considetd (n) gauge bundl€E on the brane. It
has been shown that, as an elemenHd{X), the Ramond-
Ramond charge associated witlDa-brane wrapping a su-
persymmetric cycle in spacetinfe Y — X with Chan-Paton

bundleE — Y is given by diaga, 1). Let
Q=ch(fiE}) A [A(TX)J*2. ©) C.i=Cp—Ci1— .. —C
The map be a finiteCW—complex.
e KX)o 0 — HoX Q)= HEx ) o) e Whienead groumiD) of T e usIr) ot

nz0 < I,—I >— K4(Z[r]) is determine by sending-y to the

is an isomorphism, and it can be extend to a ring isomorphism x 1 matrix (+y), ¥y € I'. As a consequenc&y/h(1) = 0.
[20]: ch: K*(X) 22 Q = H*(X,Q), which mapK —1(X) @2, The groupWh(I") has been checked for several classes of
Q onto H°¥(X, Q). Note that the rational cohomology ring 9rOUPS: for free Abelian groups [24]; for free non-Abelian
He¥eYX,Q) has a natural inner product, while the pairing 9"0UPS [25]; for the fundamental group of any complete non-

K(X), associated with the cohomology rifg(X) @7 Q, is positively curved Riemannian manifold [26]; for the funda-
given’ by the index of the Dirac operator. ’ mental group of finite polyhedra with non-positive curvature

The result (9) is in complete agreement with the fact thaf2/1; for the fundamental group of any Haken three-manifold
D—brane charge is given biy[E] € K(X), and it gives an ex- [2_8_], etc. The Whitehead group of the finite cyclic group is
plicit formula for the brane charges in terms of the Chern chartrvial [29]. _ _
acter homomorphism df—theory. The Chern charactesis* LetY be a contractible; denotingW by I' we have result
(cohomology) ancth, (homology) preserve the “cap” prod- Valid all integersn [30]:

uctn. It means that for every it topological spa¥ehere is a )
Zy—degree preserving commutative sequence [21, 22]: WhNeQ ~ H(X;Wh—(Gy) ®Q), (11)
o T (=0
K*(X)  Ki(X) — Ko(X) L% H, (X, Q) N
T o Kn(ZMN®Q ~  Hi(X;Kn(ZGy)®Q). (12)
H.(X,Q) — H*(X,Q)  H.(X,Q) =0

. N
H* (X Q)OH*(X Q) cht_ ch. K*(X)OK*(X) Here Gy = m(p~i(y)) for y € X _and Wh?_-[(Gy) ® Q,
’ ’ Kn_¢(ZGy) ® Q are the corresponding stratified systems of
For a finite CW-complexX, K. (X) is a finitely generated Abelian groups oveX. More precise information contains
abelian group angh, induced an isomorphisri,(X) @,  the following formulas [30]:

Q — H.(X,Q) of Z,—graded vector spaces ovgr N
Kn(ZMN®Q 2=  Hy(M\G/X;fn_r), (13)
(=0
C. Spaces stratified fibered over hyperbolic orbifolds R(M\g/X) is isomorphic tok,(Z(" 917(9_1)) 2Q,

Here we consider algebralk—groups which can be ap- where &, is aTstratified system of) vector spaces over
plied for computation of charges of branes located at point§\G/ %, andl" * g& g~ is a finite subgroup of .
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The isomorphism conjecture of Farrell and Jones [31] statef33] this result has been extended to the discrete groups act-
that the algebrai& —theory of the integral group rin@r ing discontinuously on real hyperbolie-space via isometries
may be computed from the algebrdic- theory of the vir-  whose orbit space has finite volume.
tually cyclic subgroups of (a grouprl is called virtually
cyclic if it has a cyclic subgroup of finite index). For precise
statement and definitions see [32]. In [31] the isomorphism
conjecture has been proved in lower algebtaictheory for
co-compact discrete subgroups of a virtually connected Lie
group, in particular for discrete groups acting discontinuously
and co-compactly by isometries on a simply connected Rie- The authors would like to thank CNPqg and Furdiac
mannian manifold with non-positive sectional curvature. In Araucaria (Paraa) for support.
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