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Fluxes and Chern Morphisms of Hyperbolic Orbifolds
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Methods ofK−theory and spectral theory of Dirac operators are applied to describe the Chern isomorphisms
and quantum fields on branes on hyperbolic manifolds.

I. INTRODUCTION

In superstring and superconformal field theoriesD−branes
play a significant role. TheK−theory method has been ap-
plied to computeD−brane charges [1–3] which identifies
with elements of GrothendickK−groups [4–6] for horizon
manifolds. The relevant description of the Ramond-Ramond
charges in term of equivariantK−theory has been demon-
strated in [1, 7–9]. It leads to a formalism of fractional branes
pinned on the orbifold singularities which have components
in the twisted sectors of the closed strings.

In this note the Chern isomorphism for fluxes and brane
charges interpretation is considered. We examine the Chern
classes and charges of branes using the methods ofK−theory
and spectral theory of differential operators related to hy-
perbolic spaces (for string compactifications with hyperbolic
horizons, see for example [10]).

II. RAMOND-RAMOND FIELDS OVER BRANE

The Ramond-Ramond fields and their flux quantization
could be formulated in terms of differentialK−theory [11,
12]. These fields get precise characterization by means of
bundles with connections [13]. The groupsK j(X,U(1)) (see
[14] for details) describe the flat Ramond-Ramond fluxes on a
compactificationX, where j matters modulo two by Bott pe-
riodicity and j = 1 for the IIA and j = 0 for the IIB theory.
These groups fit the following exact sequence:

K1(X) −→ Hodd(X,R) −→ K1(X,U(1))

↑ ↓
K0(X,U(1)) ←− Heven(X,R) ←− K0(X)

The maps fromK−theory to cohomology are the usual Chern
character maps, that are isomorphisms over the reals. Since
the character is one of the features of theK−theory, which is
useful in a variety of applications, we shall review briefly the
Chern construction in the topologicalK−theory.

For a finite-dimensionalsmooth manifoldX the Ramond-
Ramond phase admits a description of the form [15]:

0→ Hodd(X,R)
K1(X)/Tor

→ K1(X,U(1))→ TorK0(X)→ 0

The component group is given by the torsion classes in
K0(X), while the trivial component consists of the torus
Hodd(X,R)/(K1(X)/Tor). The interpretation of the elements
of the groupK1(X,U(1)) is complicate, we can restrict our-
selves to the case where the cohomologyHodd(X,R) vanishes.
The group of fluxes is simplyK1(X,U(1)) ∼= TorK0(X), and
the corresponding Ramond-Ramond flux can be represented
by a pair (Eχ,Eχ′ ) of flat vector bundles withrank(Eχ) =
rank(Eχ′ ), i.e., a virtual flat bundle4Eχ = Eχ−Eχ′ of rank
zero (see Section 3 for notations). In the string theory path
integral a torsion Ramond-Ramond flux gives an additional
phase factor to aD−brane. A brane can be represented by a
K−homology class, that is a map of an odd spin-manifoldX
(possibly equipped with an additional Chan-Paton vector bun-
dle) into the space-timeM [15]. Therefore, the holonomy of
the Ramond-Ramond fields over this brane can be associated
with the eta invariant of virtual bundle4Eχ restricted toX.
The complex eta functions of hyperbolic spaces will be con-
sidered in the next section.

III. CHERN CLASSES AND K−THEORY OF
HYPERBOLIC ORBIFOLDS

A. U(n)−gauge bundles and the Chern-Simons invariants

Methods of spectral theory of differential operators can
be used in the type II string compactified on spaces with
the real hyperbolic horizonX. Let X = G/K be an irre-
ducible rank one symmetric space of non-compact type. Thus
G will be a connected non-compact simple split rank one
Lie group with finite center, andK ⊂ G will be a maxi-
mal compact subgroup. The object of interest is the groups
G = SO1(n,1) (n∈ Z+) andK = SO(n). The corresponding
symmetric space of non-compact type is the real hyperbolic
spaceX = Hn = SO1(n,1)/SO(n) of sectional curvature−1.
Let XΓ = Γ\G/K be a real compact hyperbolic manifold. The
fundamental group ofXΓ acts by covering transformations on
X and gives rise to a discrete, co-compact subgroupΓ ⊂ G.
Let P = XΓ⊗G be a principal bundle overXΓ with the gauge
groupG = U(n) and letUXΓ = Ω1(XΓ;g) be the space of all
connections onP; this space is an affine space of one-forms
on XΓ with values in the Lie algebrag of G. Suppose that
χ is any one-dimensional representation ofΓ factors through
a representation ofH1(X;Z). It can be shown that for a uni-
tary representationχ : Γ→U(n), the corresponding flat vector
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bundleEχ is topologically trivial(Eχ ∼= X⊗Cn) if and only if
detχ|Tor1 : Tor1→U(1) is the trivial representation. HereTor1

is the torsion part ofH1(M;Z) anddetχ is a one-dimensional
representation ofΓ defined bydetχ(γ) := det(χ(γ)), for γ∈ Γ.

A three form flux associates a phase to a Euclidean brane
world-volumeXΓ which is given by the eta invariant of the
virtual bundleηEχ −ηE

χ′
restricted toXΓ. We can express this

phase directly in terms of the Chern-Simons invariant. For any
extensionÃχ of a flat connectionAχ corresponding toχ the

second Chern characterch2(Ẽχ)
(
=−(1/8π2)Tr(FÃχ

∧FÃχ
)
)

of Ẽχ can be expressed in terms of the first and second Chern

classes:ch2(Ẽχ) = (1/2)c1(Ẽχ)2− c2(Ẽχ). The Chern char-
acter and thêA−genus, the usual polynomial related to Rie-
mannian curvatureΩ, are given by

ch(Ẽχ) = rankẼχ +c1(Ẽχ)+ch2(Ẽχ) (1)

= dimχ+c1(Ẽχ)+ch2(Ẽχ),

Â(ΩM) = 1− 1
24

p1(ΩM). (2)

Here p1(ΩM) is the first Pontriagin class,ΩM is the Rie-
mannian curvature of four-manifoldM which has a boundary
∂M = XΓ. Thus we have

ch(Ẽχ)Â(ΩM) = (dimχ+c1(Ẽχ)+ch2(Ẽχ))

×(1− 1
24

p1(ΩM))

= dimχ+c1(Ẽχ)+ch2(Ẽχ)

− dimχ
24

p1(ΩM). (3)

The integral over the manifoldM takes the form

Z

M
ch(Ẽχ)Â(ΩM) =

Z

M
ch2(Ẽχ)− dimχ

24

Z

M
p1(ΩM). (4)

For any representationχ one can construct a vector bundleẼχ
over a certain four-manifoldM which is an extension of a flat
complex vector bundleEχ overXΓ. The second Chern charac-
ter for theU(1) part is half the Chern-Simons term. The rel-
evant cobordism group vanish, and in fact for three-manifold
XΓ we found a four-manifoldM and extended theU(n) bun-
dle such that manifoldM is spin. Therefore the intersection
form on M allows one to define the Chern-Simons invariant
usingc2

1. For the chern classes we havec1(Eχ) ∈ H2(XΓ,Z),
c2(Eχ) ∈ H4(XΓ,Z), andH4(XΓ,Z)∼= Z|Γ|.

The Dirac index is given by [16–18]

IndexDÃχ
=
Z

M
ch(Ẽχ)Â(M)

− 1
2
(η(0,Dχ)+h(0,Dχ)), (5)

whereh(0,Dχ) is the dimension of the space of harmonic
spinors onXΓ (h(0,Dχ) = dimKerDχ = multiplicity of the
0-eigenvalue ofDχ acting onXΓ); Dχ is a Dirac operator

on XΓ acting on spinors with coefficients inχ. The Chern-
Simons actionCSU(n)(Ãχ) = −(1/8π2)

R
M Tr(FÃχ

∧FÃχ
) can

be derived from Eq. (5). Indeed,

IndexDÃχ
= CSU(n)(Ãχ)− dimχ

24

Z

M
p1(ΩM)

− 1
2
(η(0,Dχ)+h(0,Dχ)). (6)

There exists a Selberg type (Shintani) zeta function
Z(s,Dχ) associated with a twisted Dirac operatorDχ acting
on oriented odd dimensional real hyperbolic spaces.Z(s,Dχ)
is a meromorphic onC, and forℜ(s2)À 0 one has [19]:

logZ(0,Dχ) =
√−1πη(0,Dχ). (7)

Thus, finally we get theU(n)−Chern-Simons invariant of
an irreducible flat connection on the real hyperbolic three-
manifolds:

CSU(n)(Ãχ) − modulo(Z/2)

=
1
2

(
dimχη(0,D)−η(0,Dχ)

)

=
1

2π
√−1

log

[
Z(0,D)dimχ

Z(0,Dχ)

]
. (8)

The value of the Chern-Simons functional on the space of
connections at a critical point can be regarded as a topo-
logical invariant of a pair(XΓ,χ). If the one form flux is
zero andc1(Eχ) = 0 then the flux is measured byc2(Eχ) ∈
H3(XΓ,U(1)). This group of three-form fluxes is gener-
ated by the two-dimensional representation and is given by
[15]: H4(XΓ,Z) = H3(XΓ,U(1)) = Z|Γ|. UsingK−theory the
groups of fluxes can be computed confirming our computation
via the Chern-Simons invariants (for more details see [15]).

B. Brane charges

Before discussing the brane charge formula we begin with
some conventions which apply throughout. LetX be an ori-
ented manifold, and letH∗(X) be the cohomology ring ofX.
The Poincaŕe duality, which is well-known result of differen-
tial topology, gives a canonical isomorphism

dX : H j(X) ≈−→ H j−p(X) ,
for all p = 0,1, . . . , n = dimX

Let f : Y → X be a continuous map fromY to X and m =
dimY. For all p ≥ m− n there is a linear map, called the
Gysin homomorphism:

f! : H j(Y)−→ H j−(m−n)(X)

which is defined such a way that the sequence

H p(Y) dY−→ Hm−p(Y)
f∗−→ Hm−p(X)

Hm−p(X)
d−1

X−→ H p−(m−n)(X)H p−(m−n)(X)
f!←− H p(Y)
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is commutative. Thusf! = d−1
X f∗ dY, where f∗ is the natural

push-forward map acting on homology. As an example of that
construction let us assume thatY is an oriented vector bundle
E overX of fiber dimensioǹ . The canonical projection map
π : E → X and the inclusioni : X → E of the zero section
induce maps on homology withπ∗i∗ = Id. For all j we have
the following isomorphisms:

π! : H j+`(E) ≈−→ H j(X) i! : H j(X) ≈−→ H j+`(E)

π! is the Gysin map; it can be associated with integration over
the fibers ofE → X. We haveπ! i! = Id, so thatπ! = (i!)−1.
The mapi! is called the Thom isomorphism of the oriented
vector bundleE. The particular examplej = 0 is an important
case of the Thom isomorphism. Forj = 0 a mapH0(X) →
H`(E), and the image of1∈H0(X) determines a cohomology
classΦ[E] = i!(1) ∈ H`(E) , which is called the Thom class
of E.

Let us considerU(n) gauge bundleE on the brane. It
has been shown that, as an element ofH∗(X), the Ramond-
Ramond charge associated with aD−brane wrapping a su-
persymmetric cycle in spacetimef : Y ↪→ X with Chan-Paton
bundleE→Y is given by

Q = ch( f!E)∧ [Â(TX)]1/2 . (9)

The map

ch : K(X)⊗ZQ−→ Heven(X,Q)≡
M

n≥0

H2n(X,Q) (10)

is an isomorphism, and it can be extend to a ring isomorphism
[20]: ch : K∗(X)⊗ZQ ≈−→H∗(X,Q), which mapsK−1(X)⊗Z
Q onto Hodd(X,Q). Note that the rational cohomology ring
Heven(X,Q) has a natural inner product, while the pairing
K(X), associated with the cohomology ringK(X)⊗Z Q, is
given by the index of the Dirac operator.

The result (9) is in complete agreement with the fact that
D−brane charge is given byf! [E] ∈ K(X), and it gives an ex-
plicit formula for the brane charges in terms of the Chern char-
acter homomorphism onK−theory. The Chern charactersch∗
(cohomology) andch∗ (homology) preserve the “cap” prod-
uct∩. It means that for every it topological spaceX there is a
Z2−degree preserving commutative sequence [21, 22]:

K∗(X)
O

K∗(X)
T
−→ K∗(X) ch∗−→ H∗(X,Q)

H∗(X,Q)
T
←− H∗(X,Q)

O
H∗(X,Q)

H∗(X,Q)
O

H∗(X,Q)
ch∗

N
ch∗←− K∗(X)

O
K∗(X)

For a finite CW-complexX, K∗(X) is a finitely generated
abelian group andch∗ induced an isomorphismK∗(X)⊗Z
Q−→ H∗(X,Q) of Z2−graded vector spaces overQ.

C. Spaces stratified fibered over hyperbolic orbifolds

Here we consider algebraicK−groups which can be ap-
plied for computation of charges of branes located at points

of spaces stratified fibered over real hyperbolic spaces. Let
as beforeXΓ be a closed (means compact and without bound-
ary) connected Riemannian manifold with negative curvature.
Let Y1 ⊂ Y2 ⊂ Y3 ⊂ ... be a sequence of connected compact
smooth manifolds andF be a finite group which acting on
XΓ via isometries and on eachY` via smooth maps. Assume
also the smooth embeddingY` ⊂Y`+1 is bothF−equivariant
and`−connected. LetY ≡ Y∞ = ∪∞

`=1Y
` and giveY the di-

rect limit topology. The induced action ofF on Y is free.
Assuming that{W`}∞

`=1 is the orbit spaceXΓ×Y` under the
diagonal action ofF andW ≡W∞ is directlimit `→∞W`. Let
X be the orbit spaceXΓ/F andρ` : W` → X be the map in-
duced from the canonical projection ofXΓ ×Y`. The each
ρ` (` = 1,2, ...,∞) is a stratified system of fibrations onX [23]
(Definition 8.2).

Let R be a ring with unity andGLn(R) be the invertible
n× n matrices with entries inR. Let En(R) be the sub-
group of elementary matrices. By definition an elementary
matrix Ei j (a) has 1 on the diagonal entry,a ∈ R− {0} at
the (i, j)−position while the remaining entries are 0. De-
fineGL := limn→∞GLn(R), E(R) := limn→∞En(R); the limit is
taken over the following maps:GLn(R)→ GLn+1(R), (a) 7→
diag(a,1). Let

C∗ := C0 −→C1 −→ ...−→C`

be a finiteCW−complex.
The Whitehead groupWh(Γ) of Γ is C1(Z[Γ])/σ(<

Γ,−Γ >), where C1(Z[Γ]) = GL(Z[Γ])/E(Z[Γ]), and σ :
< Γ,−Γ >→ K1(Z[Γ]) is determine by sending±γ to the
1× 1 matrix (±γ), ∀γ ∈ Γ. As a consequence,Wh(1) = 0.
The groupWh(Γ) has been checked for several classes of
groups: for free Abelian groups [24]; for free non-Abelian
groups [25]; for the fundamental group of any complete non-
positively curved Riemannian manifold [26]; for the funda-
mental group of finite polyhedra with non-positive curvature
[27]; for the fundamental group of any Haken three-manifold
[28], etc. The Whitehead group of the finite cyclic group is
trivial [29].

Let Y be a contractible; denotingπ1W by Γ we have result
valid all integersn [30]:

Whn(Γ)⊗Q '
∞M

`=0

H`(X;Whn−`(Gy)⊗Q) , (11)

Kn(ZΓ)⊗Q '
∞M

`=0

H`(X;Kn−`(ZGy)⊗Q) . (12)

Here Gy = π1(ρ−1(y)) for y ∈ X and Whn−`(Gy) ⊗ Q,
Kn−`(ZGy)⊗Q are the corresponding stratified systems of
Abelian groups overX. More precise information contains
the following formulas [30]:

Kn(ZΓ)⊗Q∼=
∞M

`=0

H`(Γ\G/K ;Kn−`), (13)

K`(Γ\g/K ) is isomorphic toK`(Z(Γ
\

gK g−1))⊗Q,

where K` is a stratified system ofQ vector spaces over
Γ\G/K , andΓ

T
gK g−1 is a finite subgroup ofΓ.
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The isomorphism conjecture of Farrell and Jones [31] states
that the algebraicK−theory of the integral group ringZΓ
may be computed from the algebraicK− theory of the vir-
tually cyclic subgroups ofΓ (a groupΓ is called virtually
cyclic if it has a cyclic subgroup of finite index). For precise
statement and definitions see [32]. In [31] the isomorphism
conjecture has been proved in lower algebraicK−theory for
co-compact discrete subgroups of a virtually connected Lie
group, in particular for discrete groups acting discontinuously
and co-compactly by isometries on a simply connected Rie-
mannian manifoldX with non-positive sectional curvature. In

[33] this result has been extended to the discrete groups act-
ing discontinuously on real hyperbolicn−space via isometries
whose orbit space has finite volume.
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