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We study a classical perturbative membrane based on the string-limit model and we discuss the consistency
of the theory where the closure of the classical constraints algebra is verified. We paraquantize the model
(extended string) both in the covariant and the transverse approaches. From the generalized Poincaré algebra,
the so-called Poincaré (para) algebra, we show that the space-time critical dimensions D are related to the
order of the paraquantization Q by the relation D = 3 + 24/Q. The symplectic structure is generalized for the
paraquantum case and applied to the parabosonic membrane coupled to a constant 3-form field. This leads to a
deformed noncommutative relations at the ends of the membrane (extended string) describing a geometry which
might be called a q-noncommutativity.
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I. INTRODUCTION

In the last three decades, a new revolutionary theory
known as string theory has emerged and seemed to be a se-
rious candidate for the fundamental theory of nature by the
fact that it was the alone theory which seemed reconcile the
classical theory of general relativity at large distance scales
with the standard model of quantum particle physics at short
distance scales.

It has been shown that there are five consistent quantum
superstring theories which can be constructed by choosing
different sets of fields on the string world-sheet. These are
the types I, IIA, IIB, heterotic E8⊗E8 and SO(32) theories.

The multiplicity of these theories added with the fact that
the supergravity is an eleven dimentional theory while the
consistent ten-dimensional superstring theories give micro-
scopic models for quantum gravity goes against the success-
ful of the string theory.

In 1995, a remarkable new idea caused a substantial
change in the dominant picture of superstring theory as the
main candidate for fundamental description of the world. In-
deed, all the known consistent string theories seem be special
limit cases of a more fundamental theory which has been
baptized M-theory [1, 2], and which seems to be most nat-
urally described in eleven dimensions. The string has also
lost its position as the main candidate. It is important, how-
ever, to notice that the string theory contains dynamical ob-
jects of several differential dimensionalities; in particular, a
two-dimensional string excitation known as membrane gives
some interesting properties like the eleven-dimensional su-
permembrane which let us think to a microscopic description
of the eleven-dimensional supergravity through a quantiza-
tion of a supermembrane.

Before the emergence of the eleven-dimensional M-
theory, much more attention was given to the ten-
dimensional theories (superstrings) at the expense of the
eleven-dimensional ones because of the misreading of the
eleven-dimensional space-time properties.
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Another intringuing fact emerging in this context is the
connection between string theory and noncommutative ge-
ometry [3]. There has been a flurry of activity in analysing
noncommutativity in strings and membranes, in particular,
those derived in either string coupled to the two-form or the
membrane coupled to the three-form [4–11].

Unlike the string theory, the study of the membrane theory
is more involved than the analogue study in the string case,
since the equations to be resolved are nonlinear [12].

The specificity of the membrane is the fact that the La-
grangian has no Weyl invariance [12], which suggests that
some of the basic techniques in string theory such as the
conformal mapping are not available. In string theory the
critical dimension such as D = 26 is well-known, it is for ex-
ample related to Lorentz invariance in the light cone gauge.
The critical dimension of the membrane has mainly been dis-
cussed with regard to its spectrum [13, 14], to the truncated
versions of the BRST [15] or the Lorentz algebra [16], where
the D = 27 emerges as a necessary condition. Notice how-
ever that, it is not clear wether the dimension of embedding
space plays as crucial a role for membranes as it does for
strings. A natural way to find a critical dimension for the
membrane is to relate this latter to the string theory via di-
mensional reduction [17]. In this string limit, it is natural to
obtain D− 1 = 26 for the bosonic membrane, since one of
the D dimension in the membrane is absorbed by the gauge
freedom [16, 18–23].

The purpose of this paper is to investigate the paraquan-
tum extension of a bosonic membrane. The paraquantiza-
tion, as a generalization of the quantization, was first intro-
duced by Green [24]. Indeed, in 1950, Wigner [25] demon-
strated that, for satisfying the wave particle duality, which
is a direct consequence of the Heisenberg equations of mo-
tion, the set of the usual bilinear canonical commutation re-
lations is a particular solution. Based on trilinear commu-
tation relations, the paraquantization consists in a general-
ization of the creation-annihilation operators algebra for the
bosons and the fermions. We note also that the paraquan-
tization is characterized by a parameter Q, the order of the
paraquantization, such that Q = 1 corresponds to the ordi-
nary quantization [26].

A first study of a paraquantum string theory was done by
F. Ardalan and F. Mansouri [27]. This study is based on the
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particular manner in which the center of mass variables of
the string are to be handled. Indeed, these authors impose on
the center of mass coordinates and the total energy momen-
tum operators of the string xµ, pµ to satisfy ordinary com-
mutation relations. This is done by the choice of a specific
direction in the paraspace of the Green components, charac-
terized by the anzatz xµ(β) = xµδβ1 and pµ(β) = pµδβ1, where
xµ(β) (resp. pµ(β)) are the Green components of xµ (resp. pµ).
This requires relative paracommutation relations between the
center of mass coordinates and the excitation modes of the
string which are exclusively anomalous bilinear commuta-
tion relations in terms of the Green components. Because of
the separation of β = 1 and β 6= 1 in the precedent anzatz,
these bilinear commutations relations can not be rewritten in
trilinear commutation relations form which are the basis of
the paraquantization.

A second study of the parastring theory is proposed
[28, 29], where the paraquantization is done by requiring that
both the center of mass variables and the excitation modes
of the string verify paraquantum commutation relations. In-
deed, in this study, paraquantizing the string theory consists
in reinterpreting the classical bosonic and fermionic string
variables Xµ (σ,τ), P ν (σ′,τ) , and ψρ (σ′′,τ) as operators sat-
isfying the paraquantum trilinear commutation relations (τ is
a time like evolution parameter, while the parameter σ labels
points on the string).

Notice however that in these two approaches, the resulting
parabosonic (resp. paraspinning) string theories are Poincaré
invariant if the dimension D of the space-time and the order
Q of the paraquantization are related by the expressions D =
2+ 24

Q (resp. D = 2+ 8
Q ).

The paper is organized as follows: In section II, a clas-
sical perturbative bosonic membrane theory based on the
study of a string-limit model is reviewed, the closure of
the constraints algebra is discussed. In sections III and IV,
we paraquantize this model both in the covariant and in the
transverse approaches, where from the closure of Poincaré
(para) algebra, a relation between the spacetime dimension
D and the order of the paraquantizations Q is derived im-
plying in this other possibilities of the critical dimensions
other than D = 27. In section V, we discuss the interacting
bosonic membrane and the symplectic structure of the string
in B-field, the paraquantization appears as a q-deformation
of the noncommutative relations, which we baptize as a q-
noncommutative relations. The last section is devoted to dis-
cussion.

II. REVIEW OF A CLASSICAL PERTURBATIVE
BOSONIC MEMBRANE

II.1. Action

An open membrane is a two dimensional object which
when it is moving in (D−1) spatial dimensions sweeps out
a three dimensional world-volume (in D dimensional space-
time) parametrized by σa, a = 0, 1, 2. We use a metric with
a signature (−,+, ...,+) in the target space and Xµ (τ,σ,ρ) a
membrane coordinates. The Polyakov action for the bosonic

membrane is then given by [30]:

S =−Tm

2

Z
d3

σ
√
−h
(

hab
∂aXµ

∂bXν
ηµν−1

)
(1)

where

h = dethab (2)

and µ,ν = 0,1, ...,D− 1. Tm describes the tension of the
membrane.

To simplify the study of the membrane dynamics, we are
leading to use the symmetries of the theory. Unfortunately,
unlike the case of the classical string, where there are three
components of the metric and three continious symmetries
(two diffeomorphism and one scale symmetries) leading to a
complete specification of the metric by gauge fixing, for the
membrane, we have six independent components and only
three diffeomorphism symmetries and in particular no scale
symmetry.

As a consequence, the membrane equations of motion are
intrinsically non linear, which do not allows one to obtain
their general solutions. Some special solutions were con-
sidered in the literature. A particular sector of the solution
is the study of the low-energy limit of small radius for the
cylindrical membrane where we take the σ2 = ρ direction of
the membrane to be wrapped around a circle with radius R
(0 ≤ ρ ≤ 2πR).

We look for solutions of the membrane coordinates
Xµ (τ,σ,ρ) with a judicious ansatz introduced by [23] as fol-
lows:

We consider d = 2 reparametrization invariant truncation
of the coordinates (a = (α,2)) [23, 31]:

Xµ (τ,σ,ρ) = Zµ (τ,σ)+ρW µ (τ,σ) (3)

and of the metric

hαβ = gαβ (τ,σ) (4)

hα2 = gαβ (τ,σ)φβ (τ,σ) (5)

h22 = 1+gαβ
φαφβ (6)

α,β = 0,1

where W µ is a normed constant field.
Notice however that in [31], the perturbative theory is con-

sidered up to the order ε2.
In the begining, the hab metric possess 6 independent

components but in this writing of hab, it remains 5 inde-
pendent components while the sixth is fixed by the gauge
h22 = 1+gαβφαφβ to satisfy the condition dethab = detgαβ.

The action takes then the form

S =−Ts

2

Z
d2

σ
√
−ggαβDαZµDβZν

ηµν (7)

where DαZµ = ∂αZµ + φαW µ, and the tension of the mem-
brane Tm reduces to the scale of the string tension Ts, through
the relation

Ts = 2πRTm =
R
l3
p

(8)

where lp is the Planck’s length.
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Notice here that the ρ reparametrization is hidden by its
absence in the action. However, the field φα plays the part
of ρ with respect to the hidden membrane symmetry which
became an additional symmetry to the extended string and
which takes the form [23, 32]

δΛZµ = W µ
Λ (9)

δΛφα =−∂αΛ (10)

This additional symmetry may be seen as an additional
gauge invariance of the string in the spirit of gauged Wess-
Zumino-Witten models [32].

Finally, this action is invariant under Poincaré, local and
Weyl symmetries, with also the additional gauge invariance
with the parameter Λ.

The canonical momenta for the fields Zµ, gαβ, φα are re-
spectively:

Π
µ
Z =−Ts

√
−gD0Zµ (11)

Π
αβ
g = 0 (12)

Π
α
φ = 0 (13)

It is clear that, while Π
µ
Z is a genuine momentum, Π

αβ
g

and Πα
φ

are the primary constraints of the theory. The first
one is equivalent to the vanishing of the symmetric energy-
momentum tensor:

Tαβ =
2√
−g

δS
δgαβ

=

= −Ts

(
DαZµDβZµ−

1
2

gαβgρσDρZµDσZµ

)
= 0

(14)

and the second is the same as the equation of φα given by

W µDαZµ = 0 (15)

One can then set the three equations of constraints of the
theory as follows:

χ1 = 2gTsT00 = Π
2
Z +TsD1ZµD1Zµ = 0 (16)

χ2 =
√
−gT01 = Π

µ
ZD1Zµ = 0 (17)

χ3 = W µ
Πµ = 0 (18)

which represent the three restrictions on the world-volume
metric through the previous detailed constrained Hamilto-
nian analysis of the free Polyakov membrane [31].

The classical Hamiltonian is expressed as:

H =
Z

dσH0 (19)

where

H0 =
√
−g

2Tsg11
χ1 +

g01

g11
χ2 +

g01

g11
φ1χ3 = 0 (20)

The time evolution of the field Zµ and momenta Π
µ
Z is gov-

erned by:

∂0Zµ = {Zµ,H}PB = {Zµ,Πν
Z}PB

∂H
∂ΠZν

+{Zµ,Zν}PB
∂H
∂Zν

(21)

This latter with the particular choice corresponding to φ0 = 0
leads to an ordinary form of the Poisson brackets (P.B) as the
following:{

Zµ (σ) ,ΠZν

(
σ
′)}

PB =−δ
µ
νδ
(
σ−σ

′) (22){
gaβ (σ) ,Πρσ

g
(
σ
′)}

PB =
1
2

(
δ

ρ

αδ
σ

β
+δ

σ
αδ

ρ

β

)
δ
(
σ−σ

′) (23){
φa (σ) ,Πβ

φ

(
σ
′)}

PB
= δ

β

αδ
(
σ−σ

′) (24)

{otherwise}PB = 0

where now and later Π
µ
Z =−Ts

√
−g∂0Zµ.

Notice here that the P.B for the induced field φ0 is not ver-
ified, this case is identical to the electrodynamic field A0 in
QED, where the Lorentz gauge is used.

From the P.B (22-24), one can easily show that the con-
staints (16-18) satisfy the following closed algebra{

χ1 (σ) ,χ1
(
σ
′)}

PB = 4T 2
s
[
χ2 (σ)+χ2

(
σ
′)]

∂1δ
(
σ−σ

′)
(25){

χ2 (σ) ,χ2
(
σ
′)}

PB =
[
χ2 (σ)+χ2

(
σ
′)]

∂1δ
(
σ−σ

′) (26){
χ3 (σ) ,χ3

(
σ
′)}

PB = 0 (27){
χ1 (σ) ,χ2

(
σ
′)}

PB =−Ts
[
χ1 (σ)+χ2

(
σ
′)]

∂1δ
(
σ−σ

′)
(28){

χ1 (σ) ,χ3
(
σ
′)}

PB = T 2
s
[
χ3 (σ)+χ3

(
σ
′)]

∂1δ
(
σ−σ

′)
(29){

χ2 (σ) ,χ3
(
σ
′)}

PB =
[
χ3 (σ)+χ3

(
σ
′)]

∂1δ
(
σ−σ

′) (30)

the set of these relations is equivalent to the closure of the
constraints algebra of the membrane given in [11].

Now, as it is mentioned above, it is possible to use the two
dimentional world-sheet symmetry: The Weyl symmetry to
fix the gauge gαβ = ηαβ, which is one of the most advandage
of the model.

One can then adopt the usual strategy in string theory with
respect to the Virasoro algebra by regrouping the previous
constraints in a compact writing, this is done by the substi-
tution of the constraint χ3 in the two others. We proceed as
follows:

Let us redefine the Π
µ
Z momentum as

Π̃
µ
Z = Π

µ
Z − (ΠZ)

ν
W µν (31)

where W µν is a symmetric constant tensor verifying

W µν = W µW ν (32)
η

µνWµν = W µ
µ = 1 (33)

We can then write

χ1−χ
2
3 = Π̃

2
Z +TsD1ZµD1Zµ = 0 (34)

χ2−χ3ϕ3 = Π̃
µ
ZD1Zµ = 0 (35)

where ϕ3 is the condition given by the equation ϕ3 =
W µD1Zµ ≡ 0

It is easy to see that[
Π̃

µ
Z ±TsD1Zµ

]2
= 0 (36)
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which correspond to the well-known form of the constraints
in classical string theory.

The equation of motion of the field Zµ is

∂αDαZµ = 0 (37)

we consider the Neumann boundary conditions (for a closed
string)

D1Zµ (τ,0) = D1Zµ (τ,2π) = 0 (38)

Substituting (15) in the equation (37), with the boundary
conditions (38), the general solution coincides with the ordi-
nary equation of the usual string which is given by:

Zµ (τ,σ) = zµ
0 +

1
πTs

pµ
τ+

i
2

√
1

πTs
∑
n 6=0

1
n
×

×
(

α
µ
ne−2in(τ−σ) + α̃

µ
ne−2in(τ+σ)

)
(39)

we can also rewrite the P.B relations (22-24) in terms of
modes as follows

{α
µ
n,α

ν
m}PB =−inη

µν
δn+m (40)

{α̃
µ
n, α̃

ν
m}PB =−inη

µν
δn+m (41){

zµ
0, pν

}
PB =−η

µν (42)

resolving the equation (15), the equation (36) is rewritten in
the form B2

± = 0 where:

Bµ
− = (∂0−∂1)

(
Zµ−W µρZρ

)
(43)

Bµ
+ = (∂0 +∂1)

(
Zµ−W µρZρ

)
(44)

let us now introduce the corresponding Virasoro generators
Ln and L̃n defined through the Fourier transformations of the

previous constraints:

B2
− =

2
πTs

+∞

∑
m=−∞

Lne−2n(τ−σ) (45)

B2
+ =

2
πTs

+∞

∑
m=−∞

L̃ne−2n(τ+σ) (46)

In term of modes, Ln and L̃n take the following forms:

Ln =
1
2 ∑

m
Aµ

n−mAν
nηµν =

1
2

+∞

∑
m=−∞

α
µ
n−mα

ν
n (ηµν−Wµν) (47)

L̃n =
1
2

+∞

∑
m=−∞

Ãµ
n−mÃν

nηµν =
1
2

+∞

∑
m=−∞

α̃
µ
n−mα̃

ν
n (ηµν−Wµν)

(48)

where

Aµ
n = α

µ
n−W µρ

αnρ (49)

Ãµ
n = α̃

µ
n−W µρ

α̃nρ (50)

and which verify the usual form of the classical Virasoro al-
gebra.

One can also see that the Poincaré generators are un-
changed and verify the classical closed algebra.

III. COVARAINT PARAQUANTIZATION AND
ALGEBRAS CLOSURE

III.1. Covaraint paraquantization of the model

The paraquantization of the theory is carried out by rein-
terpreting the classical dynamical variables as operators sat-
isfying the following trilinear relations:

[
Zµ (τ,σ) ,

[
Π

ν
Z
(
τ,σ′

)
,Π

ρ

Z
(
τ,σ′′

)]
+

]
= 2i

[
η

µν
Π

ρ

Zδ
(
σ−σ

′)+η
µρ

Π
ν
δ
(
σ−σ

′′)] (51)[
Π

µ
Z (τ,σ) ,

[
Zν
(
τ,σ′

)
,Zρ
(
τ,σ′′

)]
+

]
=−2i

[
η

µνZρ
δ
(
σ−σ

′)+ iηµρZν
δ
(
σ−σ

′′)] (52)[
Zµ (τ,σ) ,

[
Zν
(
τ,σ′

)
,Π

ρ

Z
(
τ,σ′′

)]
+

]
= 2iηµρZν

δ
(
σ−σ

′′) (53)[
Π

µ
Z (τ,σ) ,

[
Zν
(
τ,σ′

)
,Π

ρ

Z
(
τ,σ′′

)]
+

]
=−2iηµν

Π
ρ

Zδ
(
σ−σ

′) (54)

In terms of modes:[
α

µ
n,
[
α

ν
m,α

ρ

l

]
+

]
= 2n

(
η

µν
δn+m,0α

ρ

l +η
µρ

δn+l,0α
ν
m
)

(55)[
α

µ
n, [A

ν,αρ
m]+
]
= 2nη

µρ
δn+m,0Aν (56)[

α̃
µ
n,
[
α̃

ν
m, α̃

ρ

l

]
+

]
= 2n

(
η

µν
δn+m,0α̃

ρ

l +η
µρ

δn+l,0α̃
ν
m
)

(57)[
α̃

µ
n,
[
Bν, α̃

ρ

l

]
+

]
= 2nη

µν
δn+m,0Bν (58)[

zµ
0, [p

ν, pρ]+
]
= 2i(ηµν pρ +η

µρ pν) (59)[
zµ

0, [C
ν, pρ]+

]
= 2iηµρCν (60)[

pµ,
[
zν

0,z
ρ

0

]
+

]
=−2i

(
η

µνzρ

0 +η
µρzν

0
)

(61)[
pµ,
[
Dν,zρ

0

]
+

]
=−2iηµνDν (62)

where the operators Aµ, Bµ, Cµ and Dµ are given by:
Aµ = zµ

0, α̃
µ
n or pµ.

Bµ = zµ
0, α

µ
n or pµ

Cµ = α
µ
n, α̃

µ
n or zµ

0.
Dµ = α

µ
n, α̃

µ
n or pµ

the other remaining trilinear relations are null.
The Green components of a paraboson A can usually be

expressed as [24, 26]:

A =
Q

∑
α=1

A(α) =
Q

∑
α=1

eαAα (63)
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where α = 1,Q, Q is a parameter of paraquantization and eα

are elements of a Clifford algebra satisfying the following
relations

eαeβ + eβeα = 2δ
αβ (64)[

eα,Aβ

]
= 0 (65)

then, the decomposition of the dynamical variables can be
written in the form

Zµ (τ,σ) =
Q

∑
β=1

Zµ(β) (τ,σ)

=
Q

∑
β=1

{
zµ(β)

0 +
1

πTs
pµ(β)

τ+
i
2

√
1

πTs
∑
n 6=0

1
n

(
α

µ(β)
n e−2in(τ−σ) + α̃

µ(β)
n e−2in(τ+σ)

)}
(66)

In terms of the Green components, the trilinear commu-
tation relations (55-62) transform to the bilinear ones of an

anomalous case:

[
α

µ(α)
n ,α

ν(α)
m

]
= nη

µν
δn+m,0 ;

[
α

µ(α)
n ,α

ν(β)
m

]
+

= 0 α 6= β (67)[
α̃

µ(α)
n , α̃

ν(α)
m

]
= nη

µν
δn+m,0 ;

[
α̃

µ(α)
n , α̃

ν(β)
m

]
+

= 0 α 6= β (68)[
zµ(α)

0 , pν(α)
]

= iηµν ;
[
zµ(α)

0 , pν(β)
]
+

= 0 α 6= β (69)

all the remaining other relations are of the type:[
Aµ(α),Bν(α)

]
= 0 or

[
Aµ(α),Bν(β)

]
+

= 0 for α 6= β.

III.2. Poincaré and constraints (para) algebras

In the parastatistical case, the constraint generators Ln

and L̃n have the same writing as in the classical case with

an adequate symmetrization, one can then write:

Ln =
1
4

+∞

∑
m=−∞

[
α

µ
n−m,αν

n
]
+ (ηµν−Wµν) =

1
2

Q

∑
α=1

+∞

∑
m=−∞

: α
µ(α)
n−mα

ν(α)
n : (ηµν−Wµν) (70)

L̃n =
1
4

+∞

∑
m=−∞

[
α̃

µ
n−m, α̃ν

n
]
+ (ηµν−Wµν) =

1
2

Q

∑
α=1

+∞

∑
m=−∞

: α̃
µ(α)
n−mα̃

ν(α)
n : (ηµν−Wµν) (71)

One can easily verify that the Virasoro algebra is un-
changed except the central charge which takes the form

cQ = Q(D−1)/12 through the relations:

[Ln,Lm] = (n−m)Ln+m +
Q(D−1)

12
n
(
n2−1

)
δn+m,0

(72)[
L̃n, L̃m

]
= (n−m) L̃n+m +

Q(D−1)
12

n
(
n2−1

)
δn+m,0

(73)[
Ln, L̃m

]
= 0 (74)
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In the same way, and with also an adequate symmetriza-
tion, we can define the angular momentum generators asso-

ciated to the Poincaré transformations as follows:

Mµν =
1
2

Z 2π

0
dσ

(
[Zµ,Πν

Z ]+−
[
Zν,Π

µ
Z
]
+

)
=

1
2
[
zµ

0, pν
]
+−

1
2

[zν
0, pµ]+

− i
2

+∞

∑
m=1

1
m

([
α

µ
−m,αν

m
]
+−

[
α

ν
−m,αµ

m
]
+ +

[
α̃

µ
−m, α̃ν

m
]
+−

[
α̃

ν
−m, α̃µ

m
]
+

)
(75)

These generators with the total momentum verify a closed
Poincaré (para) algebra given by:[

pµ, [pν, pρ]+
]
= 0 (76)

[pµ,Mνρ] =−iηµν pρ + iηµρ pν (77)
[Mµν,Mρσ] = iηνρMσµ− iηµσMνρ− iηνσMρµ + iηµρMνσ

(78)

Where the usual relation [pµ, pν] = 0 is broken.
We can show also that the physical state conditions are

invariant under Lorentz transformations, we can see this
through the relations

[Mµν,Ln] =
[
Mµν, L̃n

]
= 0 (79)

IV. TRANSVERSE PARAQUANTIZATION AND
CRITICAL DIMENSIONS

IV.1. Transverse paraquantization

Now that we have explored the paraquantization of a low-
energy limit of small radius for the cylindrical Polyakov
membrane in the covariant gauges imposing the Virasoro
conditions as subsidiary constraints on physical states, there
is still a residual gauge symmetry that remains after set-
ting the gauges and can be used to make further specific
gauge choices. Indeed, by making a particular non covari-
ant choice, it becomes possible to solve the constraint equa-
tions, and describe the theory in a Fock space that describes
physical degrees of freedom only.

This particular choice correpond to impose additional
gauge conditions which will be non covariant but quite con-
venient.

• The first one is as follows: The substitution of the con-
straint χ3 in the two others χ1 and χ2 in (36) in order
to reduce the problem to a string theory, is decribed by
the following specific and convenient choices:

ZD−1 = zD−1
0 (80)

pD−1 = α
D−1
n = α̃

D−1
n = 0 for all n (81)

Zµ (τ,σ) =
(
zD−1

0 ,Zi (τ,σ)
)

, i = 0,D−2 (82)

which reduces the model to an ordinary parabosonic closed
extended string moving in (D−1) flat spacetime.

• The second one corresponds to the usual light-cone
gauge given by the equations:

Z+ (τ,σ) = z+ +α
′p+

τ (closed string) (83)

α
+
n = α̃

+
n = 0 for n 6= 0 (84)

in which the Virasoro constraints equations will be solved
to obtain the dynamical variables αI

n, α̃I
n, z−0 , p+, zI

0 and pI

where I = 1,D−3, and T−1
s = 2πα′.

These latters verify the following trilinear relations:[
α

I
n,
[
α

J
m,αK

l
]
+

]
= 2n

(
δn+m,0δ

IJ
α

K
l +δn+l,0δ

IK
α

J
m
)

(85)[
α

I
n,
[
A,αJ

m
]
+

]
= 2nδn+m,0δ

IJA (86)[
α̃

I
n,
[
α̃

J
m, α̃K

l
]
+

]
= 2n

(
δn+m,0δ

IJ
α̃

K
l +δn+l,0δ

IK
α̃

J
m
)

(87)[
α̃

I
n,
[
B, α̃J

m
]
+

]
= 2nδn+m,0δ

IJB (88)[
zI

0,
[
pJ , pK]

+

]
= 2i

(
δ

IJ pK +δ
IK pJ) (89)[

zI
0,
[
C, pJ]

+

]
= 2iδIJC (90)[

pI ,
[
zJ

0,z
K
0
]
+

]
=−2i

(
δ

IJzK
0 +δ

IKzJ
0
)

(91)[
pI ,
[
D,zJ

0
]
+

]
=−2iD (92)[

z−0 ,
[
p+, p+]

+

]
=−4ip+ (93)[

z−0 ,
[
E, p+]

+

]
=−2iE (94)[

p+,
[
z−0 ,z−0

]
+

]
= 4iz−0 (95)[

p+,
[
F,z−0

]
+

]
= 2iF (96)

where the operators A, B, C, D, E and F are given by:
A = zI

0, α̃I
n, z−0 , p+ or pI .

B = zI
0, αI

n, z−0 , p+ or pI

C = αI
n, α̃I

n, z−0 , p+ or zI
0.

D = αI
n, α̃I

n, z−0 , p+ or pI

E = zI
0, α̃I

n, z−0 , αI
n or pI

F = zI
0, α̃I

n, z−0 , αI
n or pI
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and the other remaining trilinear relations are null.
In terms of Green components, one can write the following

anomalous bilinear relations:

[
α

I(α)
n ,α

J(α)
m

]
= nδ

IJ
δn+m ;

[
α

I(α)
n ,α

J(β)
m

]
+

= 0 α 6= β (97)[
α̃

I(α)
n , α̃

J(α)
m

]
= nδ

IJ
δn+m ;

[
α̃

I(α)
n , α̃

J(β)
m

]
+

= 0 α 6= β (98)[
zI(α)

0 , pJ(α)
]

=−iδIJ ;
[
zI(α)

0 , pJ(β)
]
+

= 0 α 6= β (99)[
z−(α)

0 , p+(α)
]

= i ;
[
z−(α)

0 , p+(β)
]
+

= 0 α 6= β (100)

all the remaining other relations are of the type[
A(α),B(α)

]
= 0 or

[
A(α),B(β)

]
+

= 0 for α 6= β.

IV.2. New critical dimensions

In order to check the consistency of this paraquantum
model, let us construct the Lorentz generators and check their
commutation relations. The only source of the anomaly is the[
MI−,MJ−] commutator which must be zero. From the rela-

tion (75) one can write the following expression for the MI−

generators (we have choosen W D−1 = 0):

MI− =
1
2
[
zI

0, p−
]
+−

1
2
[
z−0 , pI]

+

− i√
2α′

+∞

∑
m=1

1
m

([
α

I
−m,

1
p+ Ltr

m

]
+
−
[

1
p+ Ltr

−m,αI
m

]
+

+
[

α̃
I
−m,

1
p+ L̃tr

m

]
+
−
[

1
p+ L̃tr

−m, α̃I
m

]
+

)
(101)

where the paraquantum form of the modes are imposed as:

α
−
n =

√
2
α′

1
p+ Ltr

n or α
−(β)
n =

√
2
α′

1
p+ Ltr(ββ)

n (102)

α̃
−
n =

√
2
α′

1
p+ L̃tr

n or α̃
−(β)
n =

√
2
α′

1
p+ L̃tr(ββ)

n (103)

α
−
0 = α̃

−
0 =

√
α′

2
p− or α̃

−(β)
0 =

√
2
α′

1
p+

(
Ltr(ββ)

0 −a
)

(104)

(a is the usual ordering constant, and a = ã)

and where the transverse part of the generators Ln and L̃n
are given by

Ltr
n =

Q

∑
α=1

Ltr(αα)
n =

1
4

D−3

∑
I=1

+∞

∑
m=−∞

[
α

I
n−m,αI

n
]
+ =

1
2

Q

∑
α=1

D−3

∑
I=1

+∞

∑
m=−∞

: α
I(α)
n−mα

I(α)
n : (105)

L̃tr
n =

Q

∑
α=1

L̃tr(αα)
n =

1
4

D−3

∑
I=1

+∞

∑
m=−∞

[
α̃

I
n−m, α̃I

n
]
+ =

1
2

Q

∑
α=1

D−3

∑
I=1

+∞

∑
m=−∞

: α̃
I(α)
n−mα̃

I(α)
n : (106)

Now, using the following expressions:

[AB,C]+ = A [B,C]+− [A,C]B or A [B,C]+ [A,C]+ B

(107)

[A,BC]+ = [A,B]+C−B [A,C] or [A,B]C +B [A,C]+
(108)

ζ(0) =−1
2

(109)

where ζ(s) is the well-known Zeta-Riemann function de-

fined as:

ζ(s) =
∞

∑
n=1

n−s (110)

By the use of the set of the trilinear relations (85-96),
one can see that the following relations hold

[
1

p+ ,Ltr
n

]
=[

1
p+ , L̃tr

n

]
= 0. It is not difficult to reduce the expression (101)
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of MI− to the following form:

MI− =
1
α′

[
zI

0,
1

p+

]
+

(
Ltr

0 −a
)
− 1

2
[
z−0 , pI]

+

− i√
2α′

+∞

∑
m=1

([
α

I
−m,

1
p+

]
+

Ltr
m−Ltr

−m

[
1

p+ ,αI
m

]
+

+
[

α̃
I
−m,

1
p+

]
+

L̃tr
m− L̃tr

−m

[
1

p+ , α̃I
m

]
+

)
(111)

which coincides exactely with those imposed in [28].

Now, using the relations (85-100) and (111), straightfor-
ward calculations give

[
MI−,MJ−]=

1

2α′ (p+)2

+∞

∑
m=1

([
α

I
−m,αJ

m
]
+−

[
α

J
−m,αI

m
]
+ +

[
α̃

I
−m, α̃J

m
]
+−

[
α̃

J
−m, α̃I

m
]
+

)[Q(D−3)
12

(
n− 1

n

)
+

1
n

a−2n
]

(112)

which is zero under the conditions

D = 3+
24
Q

(113)

a = 2 (114)

In particular, one can have parabosonic membranes with
the critical dimensions D = 27, 15, 11, 9, 7, 6, 5 and 4 re-
spectively in the orders Q = 1, 2, 3, 4, 6, 8, 12 and 24.

This result, which can be rewritten in the form D− 1 =
2 + 24

Q , reflect the relation D′ = 2 + 24
Q for the parabosonic

string [27–29], since, as it was yet mentioned above, a string
is derived from a dimensional reduction of the membrane, so
that, one of the D dimension in the membrane is absorbed by
the gauge freedom.

V. PARABOSONIC MEMBRANE IN A CONSTANT
BACKGROUND FIELD

As it was briefly discussed in the introduction, let us ex-
amine the study of the bosonic membrane propagating in the
presence of a three form field Aµνρ. As it was mentioned
above, here, we are led to the problem of finding a sim-
pler system which captures the essential features of the open
membrane dynamics in a constant 3-form field. Since the di-
rect paraquantization of the membrane is difficult, so far, we
are led to work in the same sector of solutions used above
in the free case: the low-energy limit of small radius for the
cylindrical membrane.

The problem is reduced to the study of the extended string
propagating in the presence of a 2-form field Bµν. Since, in
the quantum case, the noncommutativity comes from the 2-
form field Bµν which is coupled to the string world-sheet, one
may wonder what result will be obtained in the paraquantum
case?

Let us consider the Polyakov action of a bosonic mem-
brane in the presence of a constant field [8, 34]:

S = −Tm

2

Z
d3

σ

[√
−h
(

hab
∂aXµ

∂bXν
ηµν−1

)
+

+
1
3

Aµνρε
abc

∂aXµ
∂bXν

∂cXρ

]
(115)

Applying the above d = 2 reparametrization invariant
truncation of the coordinates (3) with the writing (4-6) of the
metric hab, the action (115) will be reduced to the expression

S =− 1
4πα′

Z
d2

σ

(
η

αβDαZµDβZν
ηµν +Bµνε

αβ
∂αZµ

∂βZν

)
(116)

where

Bµν = AµνρW ρ (117)

Now, in the gauge φ0 = 0 used in the second section, the
expression of the canonical conjugate momentum is given
by:

Π
µ
Z =− 1

2πα′
(∂0Zµ +Bµν∂1Zν) (118)

The Zµ variation of the action leads to the equation of mo-
tion (37), with the new boundary conditions

∂0Zµ +Bµν∂1Zν
∣∣σ=l
σ=0 = 0 (119)

(l = π for an open string and 2π for a closed one)

One can obtain the solution in the following form

Zµ (τ,σ) = zµ
0 +2α

′ (pµ
τ−Bµ

ν pν
σ
)
+

+ i
√

2α′ ∑
n6=0

1
n

(
α

µ
n cosnσ− iBµ

να
ν
n sinnσ

)
e−inτ

(120)

for the open case and
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Zµ (τ,σ) = zµ
0 +2α

′ (pµ
τ−Bµ

ν pν
σ
)

+
i
2

√
2α′ ∑

n6=0

1
n

[(
α

µ
n− iBµ

να
ν
n
)

e−2in(τ−σ) +
(
α̃

µ
n + iBµ

να̃
ν
n
)

e−2in(τ+σ)
]

(121)

for the closed one.
In the following, we will consider only the open case.
Let us first recall that, in the ordinary case, the quantiza-

tion of Zµ (τ,σ) has to be different from the usual canonical
commutation relations for a free fields, because, the standard
equal time commutation relations are inconsistent with the
boundary conditions (119). One has to modify the quantiza-
tion in a consistent manner. Indeed, while the commutation
relations are the standard ones for any point in the interior of
the open extended string, at the two end points, we find that
the space time coordinates are noncommutative.

Here, in the paraquantum case, we will do the same in the
following, where again, one has to modify the paraquantiza-
tion in a consistent manner.

The usual way to quantize a classical system is to start
with the symplectic structure on the phase space. Applying
the procedure of [9] in the paraquantum case, one find that

the symmertized symplectic form is

Ω =
1
2

〈Z
dση

µν
[
dZµ,dΠ

µ
Z
]
+

〉
(122)

where

〈A〉= lim
T→∞

1
2T

Z T

−T
dτA (123)

In terms of a Green components, we can write

Ω =
Q

∑
α=1

Ω
(αα) +

Q

∑
α 6=β

Ω
(αβ)

where (2α′ = 1)

Ω
(αα) =

〈Z
dση

µνdZ(α)
µ dΠ

µ(α)
Z

〉
(124)

= Mµνd pµ(α)
(

dzν(α)
0 +

π

2
Bν

ρd pρ(α)
)

+ i ∑
n=1

1
n

Mµνdα
µ(α)
n dα

ν(α)
−n (125)

Ω
(αβ) = 0 α 6= β (126)

with Mµν = ηµν−BµρBν
ρ these imply the following anoma- lous bilinear relations

[
α

µ(α)
n ,α

ν(α)
m

]
= n

(
M−1)µν

δn+m,0 ;
[
α

µ(α)
n ,α

ν(β)
m

]
+

= 0 α 6= β (127)[
zµ(α)

0 , pν(α)
]

= iπ
(
M−1)µν

;
[
zµ(α)

0 , pν(β)
]
+

= 0 α 6= β (128)[
zµ(α)

0 ,zν(α)
0

]
= iπ

(
BM−1)µν

;
[
zµ(α)

0 ,zν(β)
0

]
+

= 0 α 6= β (129)[
pµ(α), pν(α)

]
= 0 ;

[
pµ(α), pν(β)

]
+

= 0 α 6= β (130)

which are equivalent to the following trilinear commutation
relations for the modes
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[
α

µ
n,
[
α

ν
m,α

ρ

l

]
+

]
= 2n

[(
M−1)µν

δn+m,0α
ρ

l +
(
M−1)µρ

δn+l,0α
ν
m

]
(131)[

α
µ
n, [A

ν,αρ
m]+
]
= 2n

(
M−1)µρ

δn+m,0Aν (132)[
zµ

0, [p
ν, pρ]+

]
= 2iπ

[(
M−1)µν

pρ +
(
M−1)µρ

pν

]
(133)[

zµ
0,
[
zν

0,z
ρ

0

]
+

]
= 2iπ

[(
BM−1)µν

zρ

0 +
(
BM−1)µρ

zν
0

]
(134)[

zµ
0, [z

ν
0, pρ]+

]
= 2iπ

[(
BM−1)µν

pρ +
(
M−1)µρ

zν
0

]
(135)[

zµ
0, [z

ν
0,α

ρ
n ]+
]
= 2i

(
BM−1)µν

α
ρ
n (136)[

zµ
0, [α

ν
n, pρ]+

]
= 2iπ

(
M−1)µρ

α
ν
n (137)[

pµ,
[
zν

0,z
ρ

0

]
+

]
=−2i

[(
M−1)µν

zρ

0 +
(
M−1)µρ

zν
0

]
(138)

where Aµ = zµ
0 or pµ and the other remaining trilinear rela-

tions are null.
It is not dificult to see that the corresponding trilinear com-

mutation relations for the field Zµ and their momentum con-
jugate Π

µ
Z , can be given as follows

[
Zµ (τ,σ) ,

[
Zν
(
τ,σ′

)
,Zρ
(
τ,σ′′

)]
+

]
= 2iπ

[(
BM−1)µν

Zρ
ε
(
σ,σ′

)
+
(
BM−1)µρ

Zν
ε
(
σ,σ′′

)]
(139)[

Zµ (τ,σ) ,
[
Π

ν
Z
(
τ,σ′

)
,Π

ρ

Z
(
τ,σ′′

)]
+

]
= 2i

[
η

µν
Π

ρ

Z∆+
(
σ−σ

′)+η
µρ

Π
ν
Z∆+

(
σ−σ

′′)] (140)[
Π

µ
Z (τ,σ) ,

[
Zν
(
τ,σ′

)
,Zρ
(
τ,σ′′

)]
+

]
=−2i

[
η

µνZρ
∆+
(
σ−σ

′)+ iηµρZν
∆+
(
σ−σ

′′)] (141)[
Zµ (τ,σ) ,

[
Zν
(
τ,σ′

)
,Π

ρ

Z
(
τ,σ′′

)]
+

]
= 2i

[
π
(
BM−1)µν

Π
ρ

Zε
(
σ,σ′

)
+η

µρZν
∆+
(
σ−σ

′′)] (142)[
Π

µ
Z (τ,σ) ,

[
Zν
(
τ,σ′

)
,Π

ρ

Z
(
τ,σ′′

)]
+

]
=−2iηµν

Π
ρ

Z∆+
(
σ−σ

′) (143)

where

ε
(
σ,σ′

)
=

 1 f or σ = σ′ = 0
−1 f or σ = σ′ = π

0 otherwise.
(144)

and

∆+
(
σ−σ

′)=
1
π

(
1+ ∑

n6=0
cosnσcosnσ

′

)
(145)

notice that in terms of a Green components, we can write[
Zµ(α) (τ,σ) ,Zν(β) (

τ,σ′
)]

qαβ

= iπ
(
BM−1)µν

δαβε
(
σ,σ′

)
(146)[

Zµ(α) (τ,σ) ,Πν(β)
Z
(
τ,σ′

)]
qαβ

= iπη
µν

δαβ∆+
(
σ−σ

′)
(147)[

Π
µ(α)
Z (τ,σ) ,Πν(β)

Z
(
τ,σ′

)]
qαβ

= 0 (148)

where the q-deformed commutator is defined in [35] as

[A,B]q = AB−qBA (149)

qαβ = 2δαβ−1 (150)

One can finally conclude that the inconsistency of the stan-
dard equal time commutation relations (for a free fields)
with the boundary conditions (119) in addition to the gen-
eral approach of the paraquantization lead to a two times
modified commutation relations at the two end points of the
open extended string (noncommutativity and q-deformation)
which we baptize: q-noncommutativity, and a one time mod-
ified commutation relations for the interior of the string (q-
deformation)

VI. DISCUSSION

In this paper, we have developed a string-limit model of
a classical perturbative bosonic membrane and demonstrated
the closure of the constraints algebra for a specific choice of
a gauge. We have paraquantized this model. It is observed
that in the covariant approach, the Poincaré algebra is main-
tained, except the [pµ, pν] commutator which is modified as
a trilinear relation

[
pµ, [pν, pρ]+

]
= 0.

For the second approach, based on the transverse gauge
with the additional one (80-82), different possibilities for the
space-time dimensions D, other than D = 27, are found for
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the parabosonic membrane through the relation D = 3 + 24
Q .

We employ the symplectic structure of the string generalized
to the paraquantum case to study the interacting parabosonic
membrane in the constant B-field. We have also modified the
basic P.B in order to establish a consistency of the boundary
conditions with the basic P.Bs. The modification consisted
of a q-deformed noncommutativity of the two ends of the ex-
tended string and a q-deformation for the interior. It would

be very intreresting to notice that the paraspinning extension
of this work is an investigation which suggests itself. Indeed,
one expects that the truncation used can be equally applied
to the parasupermembrane action which would give a super-
symmetry version for the model considered. From the result
D = 3+ 24

Q for the parabosonic membrane sector, one expects
new possibilities of critical dimensions for the parasuperme-
mbrane [36].
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