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Dynamical Localization of the Hofstadter Spectra
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†Instituto de F́ısica “Gleb Wataghin”, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brasil

Received on 4 April, 2005

Recent results on magnetoresistance in a two dimensional electron gas (2DEG) under crossed magnetic and
microwave fields show a new class of oscillations, suggesting a new kind of zero-resistance states. We consider
the problem from the point of view of the electronic structure dressed by photons due to an in-plane linearly
polarized ac field. In the strong modulation limit predictions on dressed Hofstadter spectra are discussed, which
could be of interest since the bare spectra have been observed in the past few years.

Keywords: Dynamical localization; Hofstadter spectra; (2DEG)

A two dimensional electron gas (2DEG) under an in-
tense and perpendicular magnetic field shows oscillations
with some zero resistance in the longitudinal magnetoresis-
tance that coincide with plateaus in the transverse magne-
toresistance for some ranges of magnetic field values. This
was named the integer quantum Hall effect[1]. A few years
ago, in high mobility 2DEG at very low magnetic field and
with an applied microwave radiation along the plane showed
zero resistance (ZR) values in the longitudinal magnetoresis-
tance, which are not observed in the absence of the ac field
radiation[2, 3].

These experimental observations have generated an
avalanche of theoretical works to explain these ZR states in-
duced by radiation. An interesting topic to investigate is to in-
clude a periodic potential modulation to the 2DEG[4] and the
purpose of this work is to obtain some insights to this prob-
lem. We know that these experimental observations occur at
B < 0.2 T and radiation frequencyν < 100GHz. Due to di-
mensions of the samples and the intensity of the radiation, as
was explained in a previous paper[5], these fenomena can-
not be explained perturbatively. We address the problem from
dressed electronic structures point of view, developing a tight
binding model coupled nonperturbatively to ac field including
a magnetic field.

The spectra of a bare electronic system are described by a
heuristic tight binding square lattice ofs-orbitals with nearest-
neighbor interaction. The magnetic field interacting with the
system is introduced by means of the Peierls substitution.
Choosing the Landau gaugeA = (0, l1aB,0) leads to the fol-
lowing Hamiltonian

H0 = ∑
l1,l2

εl1,l2σl1,l2σ†
l1,l2

+
V
2 ∑

l1,l2

[
σl1,l2σ†

l1+1,l2
+

σl1+1,l2σ†
l1,l2

+ei2παl1
(

σl1,l2σ†
l1,l2+1 +σl1,l2+1σ†

l1,l2

)]
, (1)

hereσl1,l2 = |l1, l2〉 andσ†
l1,l2

= 〈l1, l2| where(l1, l2) are the
(x,y) coordinates of the sites. Theatomic energiesare taken
constant,εl1,l2 = 4|V| for all sites. For an antidot lattice[6], we
considerεl1,l2 = 4|V| in host latticeandεl1,l2 = 8|V| in antidot

sites, whileV, the nearest-neighbor hopping parameter, is kept
constant toV = −~2/2m∗a2 in both x andy directions. The
lattice parameter of the antidot array isa′ = na, wherea is the
host latticeconstant, and the lateral dimension of the array is
L = ma′. The surface of the antidot array is defined by hard
wall boundary conditions.

The magnetic phase factorα is defined byα = Φ/Φe =
p/q, whereΦe = h/e is the magnetic flux quantum, andΦ =
a2B is the magnetic flux per unit cell of thehost lattice. The
magnetic flux through an antidot unit cell is given byΦ′ =
n2Φ, and the magnetic flux through the total array isΦT =
n2m2Φ[6].

An ac field is applied parallel to one of the square lattice
sides. The coupling of the system to an arbitrarily intense ac
field is described by the HamiltonianH = H0 +Hint , where

Hint = eaFcosωt ∑
l1,l2

σl1,l2 l1σ†
l1,l2

, (2)

the ac field is parallel tox axis as can be seen by the lin-
ear dependence inl1, e is the electron charge,ω and F are
the monochromatic ac field frequency and amplitude, respec-
tively. The treatment of the time-dependent problem is based
on Floquet states|l1, l2,k〉wherek is the photon index. We fol-
low the procedure developed by Shirley[7], which consist in a
Fourier-Floquet transformation of the time-dependent Hamil-
tonian into a time-independent infinity matrix. The elements
of this infinite matrix are

[
(E −k~ω− εl1,l2)δl ′1l1δl ′2l2−

V
2

{
(δl ′1,l1−1 +δl ′1,l1+1)δl ′2l2

+ei2παl1(δl ′2,l2−1 +δl ′2,l2+1)δl ′1l1

}]
δk′k

= F1l1δl ′1l1δl ′2l2(δk′,k−1 +δk′,k+1), (3)

where F1 = 1
2eaF. To diagonalize these matrices for sys-

tems with comparable size to devices, requires a huge com-
putational infrastructure. For one-dimensional arrays the di-
rect diagonalization is feasible, but for a two-dimensional ar-
ray, the computational cost increases very fast. In a previ-
ous paper[8] we have developed a renormalization process
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applied to a truncated Floquet matrix in a tridiagonal form
with dimensionL1× L2× (2K + 1). The diagonal elements
are formed byE(k) = (E − k~ω)I + H0 which are aL1× L2
block matrix representing a photon replica with the elements
given by the left-hand of Eq.(3). The interaction of the ac
field with the system are described by the off-diagonal matri-
cesF (k) = F1l1δl ′1l1δl ′2l2. And we defined the Floquet Matrix

asMF = ∑kE(k)−F (k) = 0, this must be diagonalized doing
det(MF) = 0. We reduce the problem toL1× L2 dimension
by means of renormalization procedure that defines the Green
function G asMFG = I, and since the Floquet states form a
complete basis, the Green functions are given by

∑
k,k′
〈l1, l2,k′|MF|l1, l2,k〉Gk′,k = δk′,k. (4)

We redefine the quasienergy fromE →E + iβ, with β→ 0,
and after successive “renormalization” of the Floquet matrix
MF[8], we obtain the Green’s function. From this last result,
a quasi-density-of-Floquet-states,ρ(E → E + iβ) can be de-
fined as

ρ(E + iβ) =−1
π

Im [ Tr GMM ] . (5)

The lattice models may be useful for emulating the lower
part of the electronic structure of a device, that is well de-
scribed by the effective-mass approximation. We choose the
tight binding hopping parameter in order to emulate the lower
conduction band of GaAs material withm∗ = 0.067me, result-
ing V = −~2/2m∗a2 = −0.142eV, consideringa = 20Å. An
antidot unit cell size ofa′×a′ = 5a×5a, and the total antidots
array size ofL1×L2 = 5a′×5a′ = 25a×25a= 500Å×500Å
are considered in our calculations. The size of our device is an
order of magnitude smaller respect to devices experimentally
obtained but our results are easily projected to actual sizes, if
we consider the extreme quantum limit in the analysis[9, 10].

First, we calculate the quasi-density-of-states (DOS) as a
function ofα = Φ/Φe = p/q for a14×14square lattice with
the sameatomicenergyε = 4|V|= 0.568eV for all sites and
verify the first quarter of the Hofstadter butterfly for the host
lattice. We apply an ac field with energy photon of~ω =
50 meV and a low field intensity ofeaF = 10 meV andk =
10 photons, which produces a ratio ofeaF/~ω = 0.20. The
resulting dressed spectra at high magnetic field in the region
considered is shown in Fig.1. Some regions are darker than
other and represent the evolution of logarithm of DOS from
low values for clear regions to high values for dark regions.
We can observe clearly the Hofstadter butterfly as the darkest
regions, while the replicas due to one, two and three photons
are decreasingly less dark, as expected.

When the ac field intensity increases to high values, the ra-
tio of eaF/~ω increases from value show in Fig. 1 to val-
ues near to zeros of the zero order Bessel function,J0(x)
(x= 2.4048= eaF/~ω), and we observe that miniband widths
are reduced to zero. This effect of the intense ac field is
known as “dynamic localization”[11, 12] and has been inves-
tigated numerically in superlattices and quantum dots. Here

we report that the Hosftadter spectrum also localizes dynam-
ically. One example of this process is show in Fig. 2, when
eaF/~ω = 1.0. Here, we clearly observe modulations and
collapses of the minibands atΦ/Φe = 0.27, 0.31 and 0.36.
The positions of the zeroes ofJ0 are defined by the magnetic
commensurability.

FIG. 1. Dressed Hofstadter spectra for a14×14 square host lattice
at low intensity ac field,eaF/~ω = 0.2.

FIG. 2. Dressed Hofstadter spectra for a14× 14 square lattice at
high intensity ac field,eaF/~ω = 1.0.
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FIG. 3. Dynamical localization of dressed Hofstadter spectra for a
14×14square lattice atp/q = 1/4.

Prior to the total collapse of the Hofstadter spectra, others
collapses occur in the inner structure of the Landau levels.
When we observe the evolution of the spectra atp/q = 1/4,
while the intensity ac field is increased, the DL of the spectra
for a ratio ofeaF/~ω = 0.6 (è F/~ω = 2.4, ` = aq

p) can be
seen as shown in Fig. 3.

To visualize the DOS profile when the DL occurs, we take a
segment of the Fig. 3, for two special values ofeaF/~ω = 0.4
and0.6 -without and with DL, respectively-, which are shown
in Fig. 4. If we associate the valueeaF/~ω = 0.6 to DL of
J0, we find that this localization is associated to2.4/0.6 = 4,
the band numberq = 4. Another localization, not show here,
found atp/q = 1/3 andeaF/~ω = 0.8 means that2.4/0.8 =
3, the band numberq = 3.
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FIG. 4. DOS profile for the dynamical localization of dressed Hofs-
tadter spectra atp/q = 1/4 andeaF/~ω = 0.4 and0.6, respectively.
The localization occurs in the second case.

FIG. 5. DOS of a5×5 antidot array spectra.

Second, we calculate the quasi-DOS as function ofp/q for
a5×5 antidot array, each antidot with5×5 atomicsites with
energyε = 4|V| and8|V| describing a periodic potential mod-
ulation. This periodic modulation breaks the degenerancies
of states and coupling bulk and surfaces states of dots formed
by periodic potential modulation as was described in detail in
Ref.[6]. The DOS of antidot array is shown in Fig. 5.

Apparently there are no traces of Hofstadter butterfly, but
this spectrum is the initial stage of a5×5 antidot array Hof-
stadter spectrum and, observing the inner structure of each
miniband, we can see an autosimilar Hofstadter butterfly for
very low magnetic fields as is shown in Fig.6. These states
belong to bulk states of a quantum dot array.

FIG. 6. DOS of first bulk-like band of a4×4 quantum dot array.



360 P. H. Rivera et al.

-1

0

1

2

3

4
Lo

g 
D

O
S

eaF/hw=0, p/q=0.01

80 85 90 95 100
ENERGY (meV)

0

1

2

3

4
eaF/hw=0.6

FIG. 7. Dynamical localization of autosimilar Hosftadter spectra of
4×4 quantum dot array.

The complete Hofstadter spectra are periodic with magnetic
field intensity. One period finish atp/q= 0.04, this value is 25
times lower thanp/q= 1 and the DL observed foreaF/~ω =
0.6 and0.8 must be observed in the autosimilar spectra of bulk
spectra of quantum dot array formed by the antidot lattice. In
Fig. 7, we show the dynamic localization of these minibands
at p/q= 1/(4×25). Now the ac field intensity should be very
low, eaF= 3 meV, as well as the energy photon,~ω = 5 meV,
to reach the DL.

In conclusion, these preliminary results suggest the exis-
tence of dynamical localization in dressed Hofstadter spectra
induced by an intense ac field and his effects on the formation
of ZR states will be addressed in a future article.
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