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Braneworld Black Holes as Gravitational Lenses
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Black holes acting as gravitational lenses produce, besides the primary and secondary weak field images, two
infinite sets of relativistic images. These images can be studied using the strong field limit, an analytic method
based on a logarithmic asymptotic approximation of the deflection angle. In this work, braneworld black holes
are analyzed as gravitational lenses in the strong field limit and the feasibility of observation of the images is
discussed.

I. INTRODUCTION

Braneworld cosmologies [7] have attracted great attention
from researchers in the last few years. In these cosmological
models, the ordinary matter is confined to a three dimensional
space called the brane, embedded in a larger space called the
bulk in which only gravity can propagate. Cosmologies with
extra dimensions were proposed in order to solve the hierar-
chy problem, that is to explain why the gravity scale is sixteen
orders of magnitude greater than the electro-weak scale, and
are motivated by recent developments of string theory, known
as M-theory. The study of black holes on the brane is rather
difficult because of the confinement of matter on the brane
whereas the gravitational field can access to the bulk. The
full five dimensional bulk field equations have no known exact
solutions representing static and spherically symmetric black
holes with horizon on the brane. Instead, several braneworld
black hole solutions have been found based on different pro-
jections on the brane of the five dimensional Weyl tensor.

Since the publication of the paper of Virbhadra and Ellis
[1] there has been a growing interest in the study of lensing
by black holes. They analyzed numerically a Schwarzschild
black hole at the Galactic center acting as a gravitational lens.
For black hole gravitational lenses, large deflection angles are
possible for photons passing close to the photon sphere. These
photons could even make one or more complete turns, in both
directions of rotation, around the black hole before eventu-
ally reaching an observer. As a consequence, two infinite se-
quences of images, called relativistic images, are formed at
each side of the black hole. Instead of making a full numer-
ical treatment, a logarithmic approximation of the deflection
angle can be done to obtain the relativistic images. This ap-
proximation was first used by Darwin [2] for Schwarzschild
black holes, rediscovered and called the strong field limit by
Bozzaet al. [3], extended to Reissner–Nordström geometries
by Eiroaet al. [4], and generalized to any spherically sym-
metric black hole by Bozza [5]. The strong field limit was
subsequently applied to retrolensing by Eiroa and Torres [6]
and used by other authors in the analysis of different lensing
scenarios. The study of gravitational lensing by braneworld
black holes could be useful in the context of searching possi-
ble observational signatures of these objects.

II. THE STRONG FIELD LIMIT

In Fig. 1, three possible lensing situations are shown
schematically. In the left, the black hole, which will be called
the lens (l), is between the source (s) and the observer (o); in
the middle, the source is between the lens and the observer;
and in the right the observer is between the source and the
lens. The first case will be called standard lensing and the
other two, respectively, cases I and II of retrolensing. The
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FIG. 1: Schematic diagrams of possible lensing geometries.

observer-source, observer-lens and the lens-source distances,
here taken much greater than the horizon radiusrh, are, in
units of rh, dos, dol anddls, respectively. Definingβ as the
angular position of the point source andθ as the angular po-
sition of the images (i), both seen from the observer, andα
as the deflection angle of the photons, the lens equation [1, 6]
has the form:

tanβ = tanθ−c3 [tan(α−θ)+ tanθ] , (1)

wherec3 = dls/dos for standard lensing andc3 = dos/dol or
c3 = dos/dls for cases I and II of retrolensing, respectively.β
can be taken positive without losing generality. For a spheri-
cally symmetric black hole with asymptotically flat metric:

ds2 =− f (x)dt2 +g(x)dx2 +h(x)dΩ2, (2)

wherex = r/rh is the radial coordinate in units of the hori-
zon radius, the deflection angleα as a function of the closest
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approach distancex0 is given by [8]

α(x0) =−π+
Z ∞

x0

2

[
g(x)
h(x)

]1/2[
h(x) f (x0)
h(x0) f (x)

−1

]−1/2

dx. (3)

There are two cases where the deflection angle can be approx-
imated by simple expressions:

• Weak field limit: for x0 À xps > 1 (xps is the photon
sphere radius), a first non null order Taylor expansion
in 1/x0 [9] is made.

• Strong field limit: α(x0) diverges whenx0 = xps, and
for 0 < x0−xps¿ 1, it can be approximated by a loga-
rithmic function [5]:

α(x0)≈−a1 ln(x0−xps)+a2, (4)

wherea1 anda2 are constants.

The weak field limit is used for small deflection angles, as it
happens when the lens is a star, a galaxy, or for the weak field
images produced by photons with large impact parameters
in the case of black holes. The strong field limit is useful to
make an approximate analytical treatment of the relativistic
images for black hole lenses.

The closest approach distancex0 is related with the impact
parameterb (in units of the horizon radius) by the equation
b= h(x0)/ f (x0) [8], and from the lens geometryb= dol sinθ,
so x0 can be calculated as a function ofθ. By puttingx0(θ)
in Eq. (4) to haveα(θ), then replacingα(θ) in Eq. (1), and
finally inverting the lens equation (1), the positions of the im-
ages are obtained as a function ofβ and the distances involved.

III. FIVE DIMENSIONAL SCHWARZSCHILD BLACK
HOLE LENS

In this Section, a five dimensional Schwarzschild black hole
is studied as gravitational lens in the context of braneworlds.
The cosmological model adopted is Randall-Sundrum type II
[10], which consist of a positive tension brane in a one extra-
dimensional bulk with negative cosmological constant. For
this black hole, the four dimensional induced metric on the
brane is:

ds2 =−
(

1− r2
h

r2

)
dt2 +

(
1− r2

h

r2

)−1

dr2 + r2dΩ2, (5)

wheredΩ2 = dϑ2 +sin2 ϑdϕ2 and

rh =

√
8
3π

(
l
l4

)1/2(
M
M4

)1/2

l4, (6)

with l < 0.1 mm [11] the AdS radius,l4 andM4, respectively,
the Planck length and mass (units in whichc = ~ = 1 are
used). The main features of these braneworld black holes are
[12]:

• If rh ¿ l they are a good approximation, near the event
horizon, of black holes produced by collapse of matter
on the brane.

• Primordial black holes in this model have a lower evap-
oration rate by Hawking radiation than their four di-
mensional counterparts in standard cosmology, and they
could have survived up to present times.

• Only energies of about1 TeV are needed to produce
black holes by particle collisions instead of energy
scales about1016 TeV required if no extra dimensions
are present. These small size black holes could be cre-
ated in the next generation particle accelerators or de-
tected in cosmic rays.

Majumdar and Mukherjee [13] considered gravitational lens-
ing in the weak field limit for the black holes discussed above.
The positions and magnifications of the relativistic images in
the strong field limit are obtained bellow (for more details, see
the paper by Eiroa [14]).

A. Deflection angle

For the braneworld black hole metric (5) the deflection an-
gle is

α(x0) =−π+2x2
0

Z ∞

x0

[
x4(x2

0−1)−x4
0(x

2−1)
]−1/2

dx, (7)

which, near the photon sphere (xps =
√

2), can be approxi-
mated by [14]

α(x0) =−
√

2ln(x0−
√

2)+
√

2ln4−π+O(x0−
√

2). (8)

Using the impact parameterb= x2
0/

√
x2

0−1, it takes the form

α(b) =−
√

2
2

ln

(
b

bps
−1

)
+
√

2ln(4
√

2)−π+O(b−bps).

(9)

B. Image positions

In case of high alignment,β ¿ 1, θ ¿ 1 andα takes val-
ues close to multiples ofπ. There are two sets of relativistic
images. For the first one,α = mπ+∆αm, with 0 < ∆αm¿ 1,
m= 2n for standard lensing andm= 2n−1 for retrolensing
(n∈N). The other set of images haveα =−mπ−∆αm. Then,
the lens equation can be approximated by

β = θ∓c3∆αm, (10)

and from the geometry of the systemb = dol sinθ ≈ dolθ, so,
definingθps = 2/dol , the deflection angle is given by

α(θ) =−c1 ln

(
θ

θps
−1

)
+c2 +O(θ−θps), (11)
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wherec1 =
√

2/2 and c2 =
√

2ln(4
√

2)− π. Inverting Eq.
(11), making a first order Taylor expansion aroundα =±mπ,
and using Eq. (10), the angular position of them-th image is:

θm =±θ0
m+

ζm

c3
(β∓θ0

m), (12)

with

θ0
m = θps

[
1+e(c2−mπ)/c1

]
, (13)

and

ζm =
θps

c1
e(c2−mπ)/c1. (14)

For β = 0 (perfect alignment), instead of point images, an in-
finite sequence of Einstein rings with angular radii

θE
m =

(
1− ζm

c3

)
θ0

m, (15)

is obtained.

C. Image magnifications

As gravitational lensing conserves surface brightness [9],
the magnification of them-th image is the quotient of the solid
angles subtended by the image and the source:

µm =
∣∣∣∣

sinβ
sinθm

dβ
dθm

∣∣∣∣
−1

≈
∣∣∣∣

β
θm

dβ
dθm

∣∣∣∣
−1

; (16)

so, using Eq. (12) and keeping only the first order term in
ζn/c3, it is easy to see that

µm =
1
β

θ0
mζm

c3
, (17)

for both sets of images. The total magnificationµ is found
by summing up the magnifications of all images; then, for
standard lensingµ is given by

µ=
8
β

ec2/c1
(
1+ec2/c1 +e2π/c1

)

d2
olc1c3(e4π/c1−1)

, (18)

and for retrolensing by

µ=
8
β

e(c2+π)/c1

[
1+e(c2+π)/c1 +e2π/c1

]

d2
olc1c3(e4π/c1−1)

. (19)

Whenβ = 0 the point source approximation fails because the
magnifications diverge. Then, an extended source analysis is
needed. In this case, it is necessary to integrate over its lu-
minosity profile to obtain the magnification of the images. If
the source is an uniform diskD(βc,βs), with angular radiusβs
and centered inβc (taken positive), the magnification of the
m-th image is

µm =
I

πβ2
s

θ0
mζm

c3
, (20)

where

I = 2[(βs+βc)E(k)+(βs−βc)K(k)], (21)

with K(k) =
R π/2

0

(
1−k2sin2 φ

)−1/2
dφ and E(k) =

R π/2
0

(
1−k2sin2 φ

)1/2
dφ, respectively, the complete el-

liptic integrals of first and second kind with argument
k = 2

√
βsβc/(βs + βc). Then, the total magnification of an

uniform source for standard lensing is

µ=
8I

πβ2
s

ec2/c1
(
1+ec2/c1 +e2π/c1

)

d2
olc1c3(e4π/c1−1)

, (22)

and for retrolensing

µ=
8I

πβ2
s

e(c2+π)/c1

[
1+e(c2+π)/c1 +e2π/c1

]

d2
olc1c3(e4π/c1−1)

. (23)

These expressions always give finite magnifications.

IV. OTHER BRANEWORLD BLACK HOLE LENSES

Whisker [15], using the Randall–Sundrum II cosmologi-
cal model, made a strong field limit analysis for two possi-
ble braneworld black hole geometries. The tidal Reissner-
Nordstr̈om black hole [16] has the metric on the brane:

ds2 = −
(

1− 2GM
r

+
Q
r2

)
dt2 +

(
1− 2GM

r
+

Q
r2

)−1

dr2 + r2dΩ2, (24)

where the tidal charge parameterQ comes from the projection
on the brane of free gravitational field effects in the bulk, and
it can be positive or negative. WhenQ is positive, it weak-
ens the gravitational field, and if it is negative the bulk effects
strengthen the gravitational field, which is physically more
natural. This metric has the same properties as the Reissner-
Nordstr̈om geometry forQ > 0, there are two horizons, both
of which lie within the Schwarzschild horizon. WhenQ < 0,
there is one horizon, lying outside Schwarzschild horizon. For
all Q, there is a singularity atr = 0. The event horizon radius
is given byrh = r+ = GM+

√
(GM)2−Q and the radius of

the photon sphere by

rps =
3
2

GM+
1
2

√
9(GM)2−8Q.

The strong field limit coefficientsc1 andc2 has to be obtained
numerically and they are plotted in Fig. 4 of Ref. [15].

Whisker [15] also proposed as aworking metric for the
near-horizon geometry the “U = 0” solution:

ds2 =− (r− rh)2

(r + rt)2 dt2 +
(r + rt)4

r4 dr2 +
(r + rt)4

r2 dΩ2, (25)
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which has the horizon atr = rh. This metric has several dif-
ferences to the standard Schwarzschild geometry; the horizon
is singular (except whenrh = rt , for which is just the standard
Schwarzschild solution in isotropic coordinates), and the area
function has a turning point atr = rt , that can be either inside
or outside the horizon. Another difference, coming from that
gtt 6= g−1

rr , is that the ADM mass and the gravitational mass
(defined bygtt ) are not the same. The photon sphere has ra-
dius:

rps = rh + rt +
√

r2
h + rhrt + r2

t .

The coefficientsc1 andc2 for the metric “U=0” are plotted in
Fig. 3 of Ref. [15].

The expressions for the positions and magnifications of
the relativistic images obtained in Sec. III are valid for
these metrics, replacingc1 and c2 by the values obtained
by Whisker, and using the corresponding value ofrh to
adimensionalize the distances. The metrics considered in this
Section, unlike those studied in Sec. III, can be applied to
massive astrophysical black holes. In Ref. [15], the case of
the supermassive black hole in the Galactic center was ana-
lyzed and the results for the two geometries described above
were compared with those corresponding to the standard four
dimensional Schwarzschild black hole.

Another related work, using the Arkani-Hamed, Dimopou-
los and Dvali braneworld model, is that by Frolovet al. [17].
They found the induced metric on the brane by a Schwarz-

schild black hole moving in the bulk, and also studied the de-
flection of light on the brane produced by the black hole.

V. FINAL REMARKS

The relativistic images produced by black hole lenses have
an angular position about the size of the angle subtended by
the photon sphere and they are strongly demagnified, making
their observation extremely difficult. In astrophysical scenar-
ios, the observation of these relativistic images is not possible
today and it will be a challenge for the next decade. Whisker
[15] have shown that a braneworld black hole in the center of
our galaxy could have different observational signatures than
the four dimensional Schwarzschild one. In the case of small
size black holes studied as gravitational lenses by Eiroa [14],
the observation of the relativistic images in astrophysical con-
texts will be even more difficult. But if the braneworld model
is correct and these black holes can be produced by the next
generation of particle accelerators or in cosmic ray showers, it
opens up the possibility of observing the phenomena of lens-
ing by black holes in the laboratory.
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