
284 Brazilian Journal of Physics, vol. 35, no. 2A, June, 2005
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In this review, I discuss briefly how the presence of a cosmological constant in the Universe may imply
a decoherent evolution of quantum matter in it, and as a consequence a fundamental irreversibility of time
unrelated in principle to CP properties (Cosmological CPT Violation). In this context, I also discuss recently
suggested novel possible contributions of massive neutrinos to the cosmological constant, which are not due
to the standard loop expansion in quantum field theory, but rather due to unconventional properties of (some
version of) the quantum theory underlying flavour mixing. It is also argued that quantum space time foam may
be responsible for the neutrino mass differences, observed today, and through the above considerations, for the
(majority of the) dark energy of the Universe in the present era. In the above context, I also present a fit of all
the currently available neutrino oscillation data, including the LSND “anomalous” experimental results, based
on such a CPT Violating decoherent neutrino model. The key feature is to use different decoherent parameters
between neutrinos and antineutrinos, due to the above-mentioned CPT violation. This points to the necessity of
future experiments, concentrating on the antineutrino sector, in order to falsify the model.

I. INTRODUCTION

Recent astrophysical observations, using different experi-
ments and diverse techniques, seem to indicate that 70% of
the Universe energy budget is occupied by “vacuum” energy
density of unknown origin, termed Dark Energy [1, 2]. Best
fit models give the positive cosmological constant Einstein-
Friedman Universe as a good candidate to explain these ob-
servations, although models with relaxing to zero vacuum en-
ergy (quintessential, i.e. involving a scalar field which has not
yet reached the minimum of its potential) are compatible with
the current data.

From a theoretical point of view the two categories of Dark
Energy models are quite different. If there is a relaxing to
zero cosmological vacuum energy, depending on the details of
the relaxation rate, it is possible in general to define asymp-
totic states and hence a proper Scattering matrix (S-matrix)
for the theory, which can thus be quantised canonically. On
the other hand, Universes with a cosmological constant Λ > 0
(de Sitter) admit no asymptotic states, as a result of the Hub-
ble horizon which characterises these models, and hampers
the definition of proper asymptotic state vectors, and hence
a proper S-matrix. Indeed, de Sitter Universes will expand
for ever, and eventually their constant vacuum energy density
component will dominate over matter in such a way that the
Universe will enter again an exponential (inflationary) phase
of (eternal) accelerated expansion, with a Hubble horizon of
radius δH ∝ 1/

√
Λ. It seems that the recent astrophysical ob-

servations [1, 2] seem to indicate that the current era of the
universe is the beginning of such an accelerated expansion.

Canonical quantisation of field theories in de Sitter space
times is still an elusive subject, mostly due to the above-
mentioned problem of a proper S-matrix definition. One sug-
gestion towards the quantisation of such systems could be
through analogies with open systems in quantum mechanics,
interacting with an environment. The environment in cosmo-
logical constant models would consist of field modes whose
wavelength is shorter than the Hubble horizon radius. This
splitting was originally suggested by Starobinski [3], in the
context of his stochastic inflationary model, and later on was

adopted by several groups [4]. Crossing the horizon in ei-
ther direction would constitute interactions with the environ-
ment. An initially pure quantum state in such Universes/open-
systems would therefore become eventually mixed, as a result
of interactions with the environmental modes, whose strength
will be controlled by the size of the Hubble horizon, and hence
the cosmological constant. In particular, for some simple
cases, such as conformally coupled scalar fields [4] in de Sit-
ter spaces it has been shown explicitly that the system modes
decohere if they have wavelengths longer than a critical value,
which is of the order of the Hubble horizon. Such decoherent
evolution could explain the classicality of the early (or late,
in the case of a cosmological constant) Universe phase transi-
tions [5]. The approach is still far from being complete, not
only due to the technical complications, which force the re-
searchers to adopt severe, and often unphysical, approxima-
tions, but also due to conceptual issues, most of which are
associated with the back reaction of matter onto space time,
an issue often ignored in such a context. It is my opinion that
the latter issue plays an important rôle in the evolution of a
quantum Universe, especially one with a cosmological con-
stant, and is associated with quantum gravity issues. The very
origin of the cosmological constant, or in general the dark en-
ergy of the vacuum, is certainly a property of quantum gravity.

Since string theory seems to be the most rigorous and most
successful approach to quantum gravity, to date, encompass-
ing the known quantum field theories of flat space times in its
low energy limit, I would like to approach the problem of the
cosmological constant in this framework. Critical string the-
ory models, which are based on S-matrix theory, at least for
their perturbative formulation, can only accommodate relax-
ing to zero vacuum energy models, which allow for a proper
definition of asymptotic states, but cannot deal with de Sit-
ter Universes [6]. On the other hand, string/membrane theory
models with anti-de-Sitter backgrounds, which admit super-
symmetry, are consistent. In critical string theory an evo-
lution of pure states to mixed do not exist, and this is an-
other way of understanding the incompatibility of conven-
tional strings with de Sitter Universes. However, quantum
effects in strings, generated by dilaton tadpoles in σ-models
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formulated in world sheets with higher topologies (genera)
lead to non-zero contributions to the cosmological constant
(Fischler-Susskind mechanism) [7]. Modular divergences in
such theories require regularisation, which essentially means
that small handles in closed strings (appropriate for grav-
ity), of size smaller than the world-sheet short-distance cut-
off, must be integrated out in an effective Wilsonian path in-
tegral, since such small handles could not be distinguished
from tree-level world-sheet topologies. This corresponds to
adding to the tree level σ-model action a world-sheet counter-
term appropriate for absorbing such modular (small handle)
divergences. The effects of such terms lead to corrections in
the tree-level graviton world-sheet β-functions similar to those
arising in a de Sitter Universe. However, the issue of the im-
possibility of defining a proper S-matrix in de Sitter Universe
brings up an immediate question on the consistency of the ap-
proach within string theory.

II. NON-CRITICAL STRINGS IN DE SITTER
BACKGROUNDS

Fortunately there is a way out, which goes beyond the
above-described Fischler-Susskind mechanism for generat-
ing cosmological constant contributions. From a world-
sheet view point, a non-zero cosmological constant amounts
to contributions to the effective central charge of the two-
dimensional world-sheet field theory, which thus deviates
from its (conformal point) critical value. Stringy σ-models
with a non-zero central charge deficit constitute the so-called
Liouville strings [8]. The path-integral world-sheet quantisa-
tion of such non-critical strings requires the introduction of the
Liouville mode φ, which is an extra world-sheet field whose
target-space signature (time-like or space-like) depends on the
signature of the central charge deficit (positive or negative re-
spectively). This extra field, plays the rôle of a new coordinate
in target space, and its presence is responsible for the restora-
tion of the conformal invariance of the theory [8].

An important step towards the physical significance of the
Liouville mode is the identification [9] of its world-sheet zero
mode φ0 with the target time, in the supercritical (positive cen-
tral charge deficit) theories. Such an identification emerges
from dynamics of the target space low-energy effective field
theory [10], in the sense of minimisation of the effective po-
tential. Furthermore it can be shown rigorously [9] that under
such an identification one cannot define a pure-state S-matrix
but rather a $ -matrix, which is a non-factorisable product of
S and S†, acting on density matrix mixed states rather than
pure states. The non factorisability may be attributed to di-
vergences in the short-distance world-sheet behaviour of the
σ-model theory.

With this identification in mind, one may proceed to dis-
cuss the issue of propagation of quantum matter in a de Sitter
Background, within such a non-critical string framework. By
following simple arguments on world-sheet renormalisation-
group invariance of σ-model quantities which have target-
space physical relevance, it is straightforward to arrive at the
following master equation describing the evolution of string

low-energy matter in a non-conformal σ-model background:

ρ̇ = i[ρ,H]+ : βiGi j[g j,ρ] : (1)

where ρ is the density matrix of string matter excitations, H
is the effective low-energy matter Hamiltonian, gi are back-
ground target-space fields, and βi are their corresponding
σ-model renormalisation group β-functions, expressing their
scaling under Liouville dressing [8]. Canonical quantisation
for the operators/fields gi is possible in Liouville strings [9],
as a result of summing up higher world-sheet topologies, and
thus : · · · : in (1) denotes appropriate quantum ordering. The
quantity Gi j = 2z2z2 <Vi(z)Vj(0) > is the so-called Zamolod-
chikov “metric” in the moduli space of the string, a two-point
correlation function with respect to the vertex operators Vi cor-
responding to the deformations of the σ-model action from the
conformal point S∗:

Sσ = S∗ = gi
Z

Σ
Vi , (2)

where
R

Σ denotes integration over the world-sheet. The dot
over ρ in (1) denotes differentiation with respect to the world-
sheet zero mode of the Liouville field, identified in this ap-
proach with the target time [9]. An important note for the
compact notation in (2) is now in order. The index i runs
over both species of background target space fields as well
as space-time coordinates. Thus the summation over i, j in-
dices in (1) corresponds to a summation over M,N indices but
also a continuous generally covariant space-time integrationR

ddy
√−g, where y denotes a set of d-dimensional space-time

coordinates. It is important to stress that strings respect gen-
eral covariance by construction. For instance, for the case at
hand, where we are interested in perturbations of the metric
background gMN , where M,N are target space-time indices,
one has the correspondence:

gi → gMN(y) ,

Vi → V MN(X ,y) = ∂αXM∂αXNδ(d)(y−X(σ,τ)) ,

where α = σ,τ ,Z

Σ
giVi →

Z
ddy

√−ggMN(y)
Z

Σ
V MN(X ,y) , (3)

For conformal world-sheet backgrounds βi = 0 and one
obtains a normal quantum mechanical equation where pu-
rity of states is preserved under evolution. When non-
conformal string backgrounds are present, however, one has
non-quantum mechanical corrections terms in this evolution,
which in general may imply decoherence of matter, that is
evolution of initially pure states to mixed ones. In a pertur-
bative derivative expansion (in powers of α′, where α′ = `2

s is
the Regge slope of the string, and `s the fundamental string
length), the lowest order graviton β function is just the Ricci
tensor

βMN = α′RMN + . . . (4)

where the . . . indicate terms higher order in α′, which can be
ignored in a low-energy (infrared) framework for the target
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space effective field theory, we are interested in here. From
now on, unless otherwise stated, we shall work in units of
α′ = 1 for brevity.

Conformal backgrounds in string theory are therefore Ricci
flat backgrounds in this framework. On the other hand, de
Sitter backgrounds, for which RMN ∝ ΛgMN 6= 0, with Λ > 0
a cosmological constant, obviously violate this condition, and
the excitation of strings in such backgrounds can be described,
at least perturbatively for the (physically relevant) case of
small Λ, so that the deviation from the Ricci flatness is minute,
by means of a non-critical Liouville dressed σ-model. From
(1), (3), the evolution equation of low-energy string matter in
such a background, then, reads in this case [11]:

ρ̇ = i[ρ,H]+
Z

ddyΛ :
√−ggMN [gMN ,ρ] : (5)

where we took into account the fact that to lowest order, the
Zamolodchikov metric is just the appropriate tensorial identity
in all sets of indices (M and y). If one chooses an antisym-
metric ordering prescription, and adopts a weak-graviton ex-
pansion about flat Minkowski space time, gMN = ηMN +hMN ,
which seems to be the cosmologically relevant case for the
present era of the Universe, then one arrives at a double com-
mutator structure for the decoherence term [11]:

ρ̇ = i[ρ,H]+
Z

ddyΛ[hMN , [hMN ,ρ]] (6)

Notice that the decoherence term, which is real, is not in-
variant, due to its structure, under the time reversal symme-
try t →−t (we remind the reader that under such a symme-
try, the matter Hamiltonian is time reversal invariant, but the
i → −i. Moreover, since we are dealing with small pertur-
bations around flat Minkowski space time, the quanta of the
gravitational field hMN can be taken to respect the time re-
versal symmetry). This breaking of the time reversal invari-
ance is unrelated in principle to properties of matter under the
discrete symmetries of Charge (C) and Parity (P), and thus
the Λ-induced decoherence term is CPT violating. This is
what I would call Cosmological CPT Violation [11], due to
the global nature of the non-quantum mechanical terms in (6).
Moreover, taking into account that ΛgMN in de Sitter spaces
may be viewed as a contribution to the stress tensor T vac

MN of the
vacuum, one observes that the decoherence term in (6) may be
considered as a quantum version of the (integrated over space
time) trace of this tensor, thereby being proportional to the
global conformal anomaly of the de Sitter space-time vacuum.

The above results are in full agreement with the violation
of CPT in decoherent field theories characterised by an evo-
lution of pure to mixed quantum states, which we have here
due to the presence of the Hubble horizon [4]. Indeed, ac-
cording to a mathematical theorem by R. Wald [12], the CPT
operator is not a well-defined quantum mechanical operator in
field theories where there is decoherence, that is evolution of
pure to mixed states. This leads to a violation of CPT symme-
try in its strong form, or rather microscopic time irreversibil-
ity. This may lead to different decoherent parameters eventu-
ally between particles and antiparticles, reflecting the differ-
ent ways of interaction with the foam between the two sectors.

We should remark here that, in the case of two-state systems,
such as two generation neutrino oscillation models, the double
commutator terms proportional to the cosmological constant
in (6) may be expressed in terms of metric variations (∆gMN)2

between, say, neutrino energy eigenstates, expressing back re-
action of neutrino fluctuations onto the space time, as a con-
sequence of interaction with the foam [13]. The induced CPT
violation may in general imply, then, metric variations of dif-
ferent strength between particle and antiparticle sectors.

On the other hand, as stated in [12], it could be possi-
ble that, despite the strong violation of CPT, a weaker form
of CPT invariance is maintained phenomenologically, in the
sense that an observer can always prepare pure initial states
|φ >, which could evolve to pure final states, |ψ >, and for
this subset of states the probabilities for the transition and its
CPT image were equal:

P(φ→ ψ) = P(θ−1ψ→ θφ) (7)

where θ is the anti-unitary CPT operator acting on pure states
only. Such an issue can be disentangled experimentally, and
this is the next topic in our discussion.

III. CHECKING MICROSCOPIC TIME
IRREVERSIBILITY IN THE LAB: NEUTRINOS

The most sensitive, and physically interesting, particle
probe for quantum-gravity decoherence, to date, appears to be
the neutrino, for which recently there is mounting experimen-
tal evidence that it carries a non-trivial mass. The inequality
of neutrino masses among the various flavours leads to oscil-
lations, whose properties are affected by the above-mentioned
decoherent evolution.

In general, decoherent evolution may be induced by other
means, such as the presence of ordinary matter, which the par-
ticle passes through, or the presence of quantum space-time
foam situation, in which microscopic (Planck size) topolog-
ically non-trivial metric fluctuations may make the ground
state of quantum gravity behave as a ‘medium’. Such con-
tributions are in general independent of the above-described
cosmological CPT Violation, although, as we shall discuss be-
low, there might be a common origin of both quantum space-
time foam decoherence and cosmological constant in the fol-
lowing sense: according to some speculative scenaria [14], a
neutrino mass difference, and hence flavour mixing, might be
the result of quantum gravity decoherence, in analogy with
the celebrated MSW effect [15], where contributions to the
mass difference between neutrino flavours is induced as a re-
sult of the passage of neutrinos through ordinary media. In
some approach to the quantisation of flavour mixing in field
theory [16, 17], as we shall discuss in the next section, one can
show that there are non-trivial non-perturbative contributions
to the vacuum energy of the Universe (cosmological constant)
from massive neutrinos, which are in fact proportional to the
(sum) of the mass differences, at least in hierarchical neutrino
models [14]. According to our discussion above, then, this
would imply cosmological CPT Violation, pointing to the in-
applicability of flat-space methods for the quantisation of the
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flavour space, which is thus becoming a curved-space time (de
Sitter) problem, awaiting solution.

From a phenomenological viewpoint, one can adopt a
model-independent approach to arrive at the master equation
for the time evolution of the neutrino density matrix, which
could encompass all such foam or cosmological constant CPT
Violating effects in a unified formalism, without the neces-
sity for a detailed microscopic knowledge of the underlying
physics for the ‘environment’. For three generation neutri-
nos this has been done in [13], and we next proceed to review
briefly the situation.

The mathematical formalism adopted is the so-called Lind-
blad or mathematical semi-groups approach to decoher-
ence [18], which is a very efficient way of studying open sys-
tems in quantum mechanics. The time irreversibility in the
evolution of such semigroups, which is linked to decoherence,
is inherent in the mathematical property of the lack of an in-
verse in the semigroup. This approach has been followed for
the study of quantum-gravity decoherence in the case of neu-
tral kaons in [19, 20].

The Lindblad approach to decoherence does not require
any detailed knowledge of the environment, apart from en-
ergy conservation, entropy increase and complete positivity
of the (reduced) density matrix ρ(t) of the subsystem under
consideration. The basic evolution equation for the (reduced)
density matrix of the subsystem in the Lindblad approach is
linear in ρ(t) and reads:

∂ρ
∂t

=−i[Heff,ρ]+
1
2 ∑

j

(
[b j,ρ(t)b†

j ]+ [b jρ(t),b†
j ]
)

, (8)

where Heff is the effective Hamiltonian of the subsystem, and
the operators b j represent the interaction with the environ-
ment, and are assumed bounded. Notice that the Lindblad part
cannot be written as a commutator (of a Hamiltonian function)
with ρ. Environmental contributions that can be cast in Hamil-
tonian evolution (commutator form) are absorbed in Heff.

It must be noted at this stage that the requirement of com-
plete positivity, which essentially pertains to the positivity of
the map ρ(t) as the time evolves in the case of many parti-
cle situations, such as meson factories (two-kaon states (φ-
factory), or two-B-meson states etc.), may not be an exact
property of quantum gravity, whose interactions with the envi-
ronment could be non linear [9]. Nevertheless, complete pos-
itivity leads to a convenient and simple parametrization, and it
has been assumed so far in many phenomenological analyses
of quantum gravity decoherence in generic two state systems,
such as two-flavor neutrino systems [21–23].

Formally, the bounded Lindblad operators of an N-level
quantum mechanical system can be expanded in a basis of
matrices satisfying standard commutation relations of Lie
groups. For a two-level system [19, 20] such matrices are
the SU(2) generators (Pauli matrices) plus the 2× 2 identity
operator, while for a three level system [24], which will be
relevant for our purposes in this article, the basis comprises of
the eight Gell-Mann SU(3) matrices Λi , i = 1, . . .8 plus the
3×3 identity matrix I3x3.

Let Jµ, µ = 0, . . .8(3) be a set of SU(3) (SU(2)) generators
for a three(two)-level system; then, one may expand the vari-

ous terms in (8) in terms of Jµ to arrive at the generic form:

∂ρµ

∂t
= ∑

i j
hiρ j fi jµ +∑

ν
Lµνρµ ,

µ,ν = 0, . . .N2−1, i, j = 1, . . .N2−1 (9)

with N = 3(2) for three(two) level systems, and fi jk the struc-
ture constants of the SU(N) group. The requirement for en-
tropy increase implies the hermiticity of the Lindblad op-
erators bi, as well as the fact that the matrix L of the the
non-Hamiltonian part of the evolution has the properties that
L0µ = Lµ0 = 0, Li j = 1

2 ∑k,`,m b(n)
m b(n)

k fimk f`k j, with the nota-

tion b j ≡ ∑µ b( j)
µ Jµ.

In the two-level case of [19] the decoherence matrix Lµν
is parametrised by a 4× 4 matrix, whose non vanishing en-
tries are occupied by the three parameters with the dimen-
sions of energy α,β,γ with the properties mentioned above.
If the requirement of a completely positive map ρ(t) is im-
posed, then the 4× 4 matrix L becomes diagonal, with only
one non vanishing entry occupied by the decoherence para-
meter γ > 0 [23].

In [13] the CPT Violation feature of space-time foam de-
coherence, has been taken into account for the neutrino os-
cillation case, by assuming different decoherence parameters
between particle and antiparticle sectors. Below we shall use
the barred notation for the antiparticle sector quantities. No-
tice that this is possible in neutrino oscillations because we are
dealing with oscillations among flavours separately between
particle and antiparticle sectors, e.g. we shall be interested
in probabilities Pνα→νβ , or Pν̄α→ν̄β , where α,β are neutrino
flavours. In contrast, in neutral meson systems [19, 20], one is
dealing with oscillations between particle antiparticle sectors
(e.g. K0 → K̄0 for Kaons, etc.), and hence the relevant deco-
herent evolution contains only one set of parameters (α,β,γ)
for both sectors.

The extension of the completely positive decoherence sce-
nario to the standard three-generation neutrino oscillations
case requires formally the adoption of the three-state Lindblad
problem. The relativistic neutrino Hamiltonian Heff ∼ p2 +
m2/2p, with m the neutrino mass, has been used as the Hamil-
tonian of the subsystem in the evolution of eq.(8). In terms of
the generators Jµ, µ = 0, . . .8 of the SU(3) group, Heff can
be expanded as [24]: Heff = 1

2p

√
2/3

(
6p2 +∑3

i=1 m2
i
)

J0 +
1

2p (∆m2
12)J3 + 1

2
√

3p

(
∆m2

13 +∆m2
23

)
J8, with the obvious no-

tation ∆m2
i j = m2

i −m2
j , i, j = 1,2,3.

The analysis of [24] assumed ad hoc a diagonal form for
the 9×9 decoherence matrix L in (9):

[Lµν] = Diag(0,−γ1,−γ2,−γ3,−γ4,−γ5,−γ6,−γ7,−γ8)
(10)

in direct analogy with the two-level case of complete posi-
tivity [21, 23]. As we have mentioned already, there is no
strong physical motivation behind such restricted forms of de-
coherence. This assumption, however, leads to the simplest
possible decoherence models, and, for our phenomenological
purposes in [13] and here, we will assume the above form and
use it to fit all the available neutrino data. It must be clear to
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the reader though, that such a simplification, if proven to be
successful (which, as we shall argue below, is the case here),
just adds more in favour of decoherence models, given the re-
stricted number of available parameters for the fit in this case.
In fact, any other non-minimal scenario will have it easier to
accommodate data because it will have more degrees of free-
dom available for such a purpose.

In this formalism, the neutrino transition probabilities
read [13, 24]:

P(να → νβ) = Tr[ρα(t)ρβ] =
1
3

+
1
2 ∑

i,k, j
eλktDikD−1

k j ρα
j (0)ρβ

i (11)

where α,β = e,µ,τ stand for the three neutrino flavors, and
Latin indices run over 1, . . .8. The quantities λk are the eigen-
values of the matrix M appearing in the evolution (9), after
taking into account probability conservation, which decouples
ρ0(t) =

√
2/3, leaving the remaining equations in the form:

∂ρk/∂t = ∑ j Mk jρ j. The matrices Di j are the matrices that di-
agonalise M [18]. Explicit forms of these matrices, the eigen-
values λk, and consequently the transition probabilities (11),
are given in [24].

The important point to stress is that, in generic models of
oscillation plus decoherence, the eigenvalues λk depend on
both the decoherence parameters γi and the mass differences

∆m2
i j. For instance, λ1 = 1

2 [−(γ1 + γ2)−
√

(γ2− γ1)2−4∆2
12],

with the notation ∆i j ≡ ∆m2
i j/2p, i, j = 1,2,3. Note that, to

leading order in the (small) squared-mass differences, one
may replace p by the total neutrino energy E, and this will
be understood in what follows. We note that λk depend on the
quantities Ωi j:

Ω12 =
√

(γ2− γ1)2−4∆2
12

Ω13 =
√

(γ5− γ4)2−4∆2
13 (12)

Ω23 =
√

(γ7− γ6)2−4∆2
23

From the above expressions for the eigenvalues λk, it becomes
clear that, when decoherence and oscillations are present si-
multaneously, one should distinguish two cases, according to
the relative magnitudes of ∆i j and ∆γkl ≡ γk− γl : (i) 2|∆i j| ≥
|∆γk`|, and (ii) 2|∆i j| < |∆γk`|. In the former case, the proba-
bilities (11) contain trigonometric (sine and cosine) functions,
whilst in the latter they exhibit hyperbolic sin and cosine de-
pendence.

Assuming mixing between the flavors, amounts to express-
ing neutrino flavor eigenstates |να >, α = e,µ,τ in terms of
mass eigenstates |νi >, i = 1,2,3 through a (unitary) matrix
U : |να >= ∑3

i=1 U∗
αi|νi >. This implies that the density matrix

of a flavor state ρα can be expressed in terms of mass eigen-
states as: ρα = |να >< να| = ∑i, j U∗

αiUα j|νi >< ν j|. From
this we can determine ρα

µ = 2Tr(ραJµ), a quantity needed to
calculate the transition probabilities (11).

Due to CPT Violation, as mentioned above, we should no-
tice at this stage that, when considering the above probabili-

ties in the antineutrino sector, the respective decoherence pa-
rameters γ̄i in general may be different from the correspond-
ing ones in the neutrino sector, as a result of the strong form of
CPT violation. This will be crucial for accommodating [13]
the LSND result [25] without conflicting with the rest of the
available neutrino data. This feature is totally unrelated to
mass differences between flavors.

Compatibility of all available neutrino data, including
CHOOZ [26] and LSND [25], can be achieved through a set
of decoherence parameters γ j in (10) such that: all the γi in
the neutrino sector are set to zero, restricting in this way all
the decoherence effects to the antineutrino one where:

γ1 = γ2 = γ4 = γ5

and
γ3 = γ6 = γ7 = γ8 , (13)

For the decoherence parameters we have chosen (c.f. (13))

γ1 = 2 ·10−18 ·E and γ3 = 1 ·10−24/E , (14)

In the above formulae E is the neutrino energy, and barred
quantities refer to the antineutrinos. This parametrisation
guarantees positivity of the relevant probabilities. Overall, we
have introduced only two new parameters, two new degrees
of freedom, γ1 and γ3, which, as argued in [13] was sufficient
to account for the available experimental data, including the
“anomalous” LSND results. Furthermore, we have also set
the CP violating phase of the NMS matrix to zero, so that all
the mixing matrix elements become real.

Since the neutrino sector does not suffer from decoherence,
there is no need to include the solar data into the fit. We are
guaranteed to have an excellent agreement with solar data, as
long as we keep the relevant mass difference and mixing angle
within the LMA region, something which we shall certainly
do.

As mentioned previously, CPT violation is driven by, and
restricted to, the decoherence parameters, and hence masses
and mixing angles are the same in both sectors, and selected
to be

∆m2
12 = ∆m12

2 = 7 ·10−5 eV2,
∆m2

23 = ∆m23
2 = 2.5 ·10−3 eV2,

θ23 = θ23 = π/4, θ12 = θ12 = .45,
θ13 = θ13 = .05,

as indicated by the state of the art analysis.
At this point it is important to stress that the inclusion of

two new degrees of freedom is not sufficient to guarantee that
one will indeed be able to account for all the experimental ob-
servations. We have to keep in mind that, in no-decoherence
situations, the addition of a sterile neutrino (which comes
along with four new degrees of freedom -excluding again the
possibility of CP violating phases) did not seem to be suffi-
cient for matching all the available experimental data, at least
in CPT conserving situations.

In order to test our model with these two decoherence para-
meters in the antineutrino sector, we have calculated the zenith
angle dependence of the ratio “observed/(expected in the no
oscillation case)”, for muon and electron atmospheric neu-
trinos, for the sub-GeV and multi-GeV energy ranges, when



N. E. Mavromatos 289

mixing is taken into account. Since matter effects are impor-
tant for atmospheric neutrinos, we have implemented them
through a two-shell model, where the density in the mantle
(core) is taken to be roughly 3.35 (8.44) gr/cm3, and the core
radius is taken to be 2887 km. We should note at this stage
that a “fake” CPT Violation appears due to matter effects,
arising from a relative sign difference of the matter potential
between the respective interactions of neutrinos and antineu-
trinos with ordinary matter. This, however, is easily disentan-
gled from our genuine (due to quantum gravity) CPT Viola-
tion, used here to parametrise our model fit to LSND results;
indeed, a systematic study of such effects [27] has shown that
“fake” CPT Violation increases with the oscillation length,
but decreases with the neutrino energy, E, vanishing in the
limit E → ∞; moreover, no independent information regard-
ing such effects can be obtained by looking at the antineu-
trino sector, as compared with data from the neutrino sector,
due to the fact that in the presence of “fake” CPT Violation,
but in the absence of any genuine CPT breaking, the pertinent
CPT probability differences between neutrinos and antineutri-
nos are related, ∆PCPT

αβ =−∆PCPT
βα

, where ∆PCPT
αβ = Pαβ−Pβα,

and the Greek indices denote neutrino flavors. These features
are to be contrasted with our dominant decoherence effects
γ1 (14), proportional to the antineutrino energy, E, which are
dominant only in the antineutrino sector. For the same rea-
son, our effects can be disentangled from “fake” decoherence
effects arising from Gaussian averages of the oscillation prob-
ability due to, say, uncertainties in the energy of the neutrino
beams [28], which are the same for both neutrinos and anti-
neutrinos. We, therefore, claim that the complex energy de-
pendence in (14), with both L ·E and L/E terms being present
in the antineutrino sector, may be a characteristic feature of
new physics, with the L ·E terms being related to quantum-
gravity induced (genuine) CPT Violating decoherence.

The results are shown in Fig. 1 (c), where, for the sake of
comparison, we have also included the experimental data. We
also present in that figure the pure decoherence scenario in the
antineutrino sector (a), as well as in both sectors (b). For com-
pleteness, we also present a scenario with neutrino mixing but
with decoherence operative in both sectors (d). The conclu-
sion is straightforward: pure decoherence is wildly excluded,
while decoherence plus mixing provides an astonishing agree-
ment with experiment.

As bare eye comparisons can be misleading, we have also
calculated the χ2 value for each of the cases [13].From this
analysis it becomes clear that the mixing plus decoherence
scenario in the antineutrino sector can easily account for all
the available experimental information, including LSND. It is
important to stress once more that our sample point was not
obtained through a scan over all the parameter space, but by
an educated guess, and therefore plenty of room is left for
improvements. On the other hand, for the mixing-only/no-
decoherence scenario, we have taken the best fit values of the
state of the art analysis and therefore no significant improve-
ments are expected. At this point a word of warning is in
order: although superficially it seems that scenario (d), deco-
herence plus mixing in both sectors, provides an equally good
fit, one should remember that including decoherence effects in

the neutrino sector can have undesirable effects in solar neu-
trinos, especially due to the fact that decoherence effects are
weighted by the distance travelled by the neutrino, something
that may lead to seisable (not observed!) effects in the solar
case.

One might wonder then, whether decohering effects, which
affect the antineutrino sector sufficiently to account for the
LSND result, have any impact on the solar-neutrino re-
lated parameters, measured through antineutrinos in the Kam-
LAND experiment [29]. In order to answer this question,
it will be sufficient to calculate the electron survival prob-
ability for KamLAND in our model, which turns out to be
Pν̄α→ν̄β |KamLAND' .63, in perfect agreement with observations.
As is well known, KamLAND is sensitive to a bunch of dif-
ferent reactors with distances spanning from 80 to 800 km.
However, the bulk of the signal comes from just two of those,
whose distances are 160 and 179 km. These parameters have
been used to compute the survival probability. It is also in-
teresting to notice that in our model, the LSND effect is not
given by the phase inside the oscillation term ( which is pro-
portional to the solar mass difference) but rather by the deco-
herence factor multiplying the oscillation term. Therefore the
tension between LSND and KARMEN [30] data is naturally
eliminated, because the difference in length leads to an expo-
nential suppression. Another potential source of concern for
the present model of decoherence might be accelerator neu-
trino experiments, which involve high energies and long base-
lines, and where the decoherence L ·E scaling can potentially
be probed. This, however, is not the case. Accelerator ex-
periments typically join their neutrino and antineutrino data,
with the antineutrino statistics being always smaller than the
neutrino one. This fact, together with the smaller antineutrino
cross section, renders our potential signal consistent with the
background contamination. Even more, in order to constrain
decoherence effects of the kind we are proposing here through
accelerator experiments, excellent control and knowledge of
the beam background are mandatory. The new KTeV data [31]
on kaon decay branching ratios, for example, will change the
νe background enough to make any conclusion on the viability
of decoherence models useless. After all, the predicted signal
in our decoherence scenario will be at the level of the elec-
tron neutrino contamination, and therefore one would need to
disentangle one from the other.

Having said that, it is now clear that decoherence models
(once neutrino mixing is taken into account) are the best (and
arguably the only) way to explain all the observations includ-
ing the LSND result. This scenario , which makes dramatic
predictions for the upcoming neutrino experiments, expresses
a strong observable form of CPT violation in the laboratory,
and in this sense, our fit gives a clear answer to the ques-
tion asked in the introduction as to whether the weak form
of CPT invariance (7) is violated in Nature. It seems that,
in order to account for the LSND results, we should invoke
such a decoherence-induced CPT violation, which however
is independent of any mass differences between particles and
antiparticles.

This CPT violating pattern, with equal mass spectra for
neutrinos and antineutrinos, will have dramatic signatures in
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FIG. 1: Decoherence fits, from top left to bottom right: (a) pure decoherence in antineutrino sector, (b) pure decoherence in both sectors, (c)
mixing plus decoherence in the antineutrino sector only, (d) mixing plus decoherence in both sectors. The dots correspond to SK data.

future neutrino oscillation experiments. The most striking
consequence will be seen in MiniBooNE [32], According to
our picture, MiniBooNE will be able to confirm LSND only
when running in the antineutrino mode and not in the neutrino
one, as decoherence effects live only in the former. Smaller
but experimentally accessible signatures will be seen also in
MINOS [33], by comparing conjugated channels (most no-
ticeably, the muon survival probability). We should mention
at this stage that our model is in agreement with the strong
suppression of decoherence in the neutrino sector expected
from astrophysical observations of high energy cosmic neutri-
nos [34].

We next remark that fits with decoherence parameters with
energy dependences of the form (14) imply that the exponen-
tial factors eλkt in (11) due to decoherence will modify the
amplitudes of the oscillatory terms due to mass differences,
and while one term depends on L/E the other one is driven by
L ·E, where we have set t = L, with L the oscillation length
(we are working with natural units where c = 1).

The order of the coefficients of these quantities, γ0
j ∼

10−18,10−24 (GeV)2, found in our sample point, implies that
for energies of a few GeV, which are typical of the perti-
nent experiments, such values are not far from γ0

j ∼ ∆m2
i j. If

our conclusions survive the next round of experiments, and
therefore if MiniBOONE experiment [32] confirms previous
LSND claims, then this may be a significant result. One would
be tempted to conclude that if the above estimate holds, this
would probably mean that the neutrino mass differences might
be due to quantum gravity decoherence. Theoretically it is still
unknown how the neutrinos acquire a mass, or what kind of
mass (Majorana or Dirac) they possess. There are scenaria in
which the mass of neutrino may be due to some peculiar back-
grounds of string theory for instance. If the above model turns
out to be right we might then have, for the first time in low en-
ergy physics, an indication of a direct detection of a quantum
gravity effect, which disguised itself as an induced decohering
neutrino mass difference. Notice that in our sample point only
antineutrinos have non-trivial decoherence parameters γi , for

i = 1 and 3, while the corresponding quantities in the neu-
trino sector vanish. This implies that there is a single cause
for mass differences, the decoherence in antineutrino sector,
which is compatible with common mass differences in both
sectors. If this turns out to be true, it could then lead to im-
portant conceptual changes in our thinking of the problem of
particle masses in field theory.

IV. NEUTRINO MIXING, SPACE-TIME FOAM AND
COSMOLOGICAL CONSTANT?

In what follows we will make this assumption, namely that
decoherence effects, due to interactions with the foam, con-
tribute to the Hamiltonian terms in the evolution of the neu-
trino density matrix, and result in neutrino mass differences
in much the same way as the celebrated MSW effect[15], re-
sponsible for a neutrino mass splitting due to interactions with
a medium. Indeed, when neutrinos travel through matter, the
neutral current contribution to this interaction, proportional to
-GF nn/

√
2, with GF Fermi’s weak interaction constant, and

nn the neutron density in the medium, is present for both νe
and νµ (in a two flavour scenario), while the charged cur-
rent contribution, given by

√
2GF ne, with ne the medium’s

electronic density, is present only for νe. The flavour eigen-
states νe,µ can then be expressed in terms of fields ν̃1,2 with
definite masses m̃1,2 respectively, with a mixing angle θ̃, the
tilde notation indicating the effects of matter. The tilded
quantities are diagonalised with respect to the Hamiltonian
of νe,νµ in the presence of non-trivial matter media, and one
can find the following relations between vacuum (untilded)
and medium parameters[15] sin22θ̃ ' sin22θ

(
∆m2

∆m̃2

)
, with

∆m̃2 =
√

(D−∆m2cos2θ)2 +(∆m2sin2θ)2,D = 2
√

2GF nek.
From this we observe that the medium-induced effects in the
mass splittings are proportional to the electronic density of
the medium and in fact, even if the neutrinos would have been
mass degenerate in vacuum, such a degeneracy would be lifted
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by a medium.
To get a qualitative idea of what might happen with the

foam, one imagines a similar mixing for neutrinos, as a re-
sult of their interaction with a quantum-gravity decohering
foam situation. As a result, there are gravitationally-induced
effective masses for neutrinos, due to flavour dependent inter-
actions of the foam, which are in principle allowed in quan-
tum gravity. In analogy (but we stress that this is only an
analogy) with the MSW effect, the gravitationally-induced
mass-splitting effects are expected now to be proportional to
GNnbhk, where GN = 1/M2

P is Newton’s constant, MP ∼ 1019

GeV is the quantum gravity scale, and nbh is a “foam” density
of appropriate space time defects (such as Planck size black
holes etc.), whose interaction with the neutrinos discriminates
between flavours, in an analogous way to the matter effect.
Neutrinos, being electrically neutral can indeed interact non-
trivially with a space time foam, and change flavour as a re-
sult of such interactions, since such processes are allowed by
quantum gravity. On the other hand, due to electric charge
conservation of microscopic black holes, quarks and charged
leptons, cannot interact non-trivially with the foam. In this
spirit, one can imagine a microscopic charged black-hole/anti-
black-hole pair being created by the foam vacuum. Evapora-
tion of these black holes (probably at a slower rate than their
neutral counterparts, due to their near extremal nature [35])
can produce preferentially e+e− pairs (lighter than muons),
of which the positrons, say, are absorbed into the micro-
scopic event horizons of the evaporating charged anti-black
hole. This leaves us with a stochastically fluctuating (about
a mean value) electron (or more general charge) density,
nc

bh(r), induced by the gravitational foam, 〈nc
bh(r)〉 = n0 6= 0,

〈nc
bh(r)n

c
bh(r

′)〉 6= 0, which, in analogy with the electrons of
the MSW effect in a stochastically fluctuating medium[36],
can interact non-trivially only with νe but not with the νµ,
in contrast to neutral black holes which can interact with all
types of neutrinos[14]. We assume, of course, that the con-
tributions to the vacuum energy that may result from such
emission and absorption processes by the black holes in the
foamy vacuum are well within the known limits. For in-
stance, one may envisage supersymmetric/superstring models
of space-time foam, where such contributions may be van-
ishingly small[37]. The mean value (macroscopic) part, n0,
of nc

bh(r), assumed time independent, will contribute to the
Hamiltonian part of the evolution of the neutrino density ma-
trix, ρ. In analogy with the (stochastic) MSW effect[15, 36],
this part yields space-time foam-induced mass-squared split-
tings for neutrinos:

〈∆m2
foam〉 ∝ GN〈nc

bh(r)〉k (15)

with non trivial quantum fluctuations (k is the neutrino mo-
mentum scale). To ensure a constant neutrino mass one may
consider the case where 〈nc

bh(r)〉, which expresses the aver-
age number of virtual particles emitted from the foam with
which the neutrino interacts, is inversely proportional to the
(neutrino) momentum. This is reasonable, since the faster
the neutrino, the less the available time to interact with the
foam, and hence the smaller the number of foam particles it
interacts with. Such flavour-violating foam effects would also

contribute to decoherence through the quantum fluctuations
of the foam-medium density[14, 36], by means of induced
non-Hamiltonian terms in the density-matrix evolution. Such
effects assume a double commutator structure[14, 36, 38] and
are due to both, the fluctuating parts of the foam density, as
well as the effects of the mixing (15) on the vacuum energy.
Indeed, as we discussed in [14], and shall review briefly be-
low, neutrino flavour mixing may lead to a non-trivial con-
tribution to the vacuum energy, in a non-perturbative way
suggested in [17]. Hence, such effects are necessarily CPT
violating[11], in the sense of entailing an evolution of an ini-
tially pure neutrino quantum state to a mixed one due to the
presence of the Hubble horizon associated with the non zero
cosmological constant, which prevents pure asymptotic states
from being well defined. In that case, CPT is violated in its
strong form, that is CPT is not a well-defined operator, ac-
cording to the theorem of [12].

For convenience we shall discuss explicitly the two-
generation case. The arguments can be extended to three
generations, at the expense of an increase in mathematical
complexity, but will not affect qualitatively the conclusions
drawn from the two-generation case. The arguments are based
on the observation[16] that in quantum field theory, which
by definition requires an infinite volume limit, in contrast
to quantum mechanical treatment of fixed volume[39], the
neutrino flavour states are orthogonal to the energy eigen-
states, and moreover they define two inequivalent vacua re-
lated to each other by a non unitary transformation G−1(θ, t):
|0(t)〉 f = G−1

θ (t)|0(t)〉m, where θ is the mixing angle, t is the
time, and the suffix f(m) denotes flavour(energy) eigenstates
respectively, and G−1

θ (t) 6= G†
θ(t) is a non-unitary operator

expressed in terms of energy-eigenstate neutrino free fields
ν1,2[17]: Gθ(t) = exp

(
θ
R

d3x[ν†
1(x)ν2(x)−ν†

2(x)ν1(x)]
)

. A
rigorous mathematical analysis of this problem has also ap-
peared in [40]. As a result of the non unitarity of G−1

θ (t), there
is a Bogolubov transformation[16] connecting the creation
and annihilation operator coefficients appearing in the expan-
sion of the appropriate neutrino fields of the energy or flavour
eigenstates. Of the two Bogolubov coefficients appearing in
the treatment, we shall concentrate on V~k = |V~k|ei(ωk,1+ωk,2)t ,

with ωk,i =
√

k2 +m2
i , the (positive) energy of the neutrino

energy eigenstate i = 1,2 with mass mi. This function is
related to the condensate content of the flavour vacuum, in
the sense of appearing in the expression of an appropriate
non-zero number operator of the flavour vacuum[17, 40]:
f 〈0|αr†

~k,i
αr
~k,i
|0〉 f = f 〈0|βr†

~k,i
βr
~k,i
|0〉 f = sin2θ|V~k|2 in the two-

generation scenario [16]. |V~k| has the property of vanish-
ing for m1 = m2, it has a maximum at the momentum scale
k2 = m1m2, and for k À√

m1m2 it goes to zero as:

|V~k|2 ∼
(m1−m2)2

4|~k|2
, k ≡ |~k| À √

m1m2 (16)

The analysis of [17] argued that the flavour vacuum |0〉, is the
correct one to be used in the calculation of the average vacuum
energy, since otherwise the probability is not conserved[41].
The energy-momentum tensor of a Dirac fermion field in the
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Robertson-Walker space-time background can be calculated
straightforwardly in this formalism. The flavour-vacuum av-
erage value of its temporal T00 component, which yields the
required contribution to the vacuum energy due to neutrino
mixing, is[17]:

f 〈0|T00|0〉 f = 〈ρν−mix
vac 〉η00

= ∑
i,r

Z
d3kωk,i

(
f 〈0|αr†

~k,i
αr
~k,i
|0〉 f + f 〈0|βr†

~k,i
βr
~k,i
|0〉 f

)
=

8sin2θ
Z K

0
d3k(ωk,1 +ωk,2)|V~k|2. (17)

where η00 = 1 in a Robertson-Walker (cosmological) metric
background. The momentum integral in (17) is cut-off from
above at a certain scale, K relevant to the physics of neutrino
mixing. In conventional approaches, where the mass gener-
ation of neutrino occurs at the electroweak phase transition,
this cutoff scale can be put on the electroweak scale K ∼ 100
GeV, but this yields unacceptably large contributions to the
vacuum energy. An alternative scale has been suggested in
[17], namely K ∼ √m1m2 as the characteristic scale for the
mixing. In this way these authors obtained a phenomenologi-
cally acceptable value for 〈ρν−mix

vac 〉.
In our case we shall use a different cutoff scale [14],

which allows for some analytic estimates of (17) to be de-
rived, as being mathematically consistent with the asymp-
totic form of (16), which is valid in a regime of momenta
k À √

m1m2. This cutoff scale is simply given by the sum
of the two neutrino masses, K ≡ k0 = m1 +m2, is compatible
with our decoherence-induced mass difference scenario, and
also allows for a mathematically consistent analytic estimate
of the neutrino-mixing contribution to the vacuum energy in
this framework. For hierarchical neutrino models, for which
m1 À m2, we have that k0 À√

m1m2, and thus, if we assume
that the modes near the cutoff contribute most to the vacuum
energy (17), which is clearly supported by the otherwise di-
vergent nature of the momentum integration, and take into ac-
count the asymptotic properties of the function V~k, which are
safely valid in this case, we obtain:

〈ρν−mix
vac 〉 ∼ 8πsin2θ(m1−m2)2(m1 +m2)2×(√

2+1+O(
m2

2

m2
1
)
)

∝ sin2θ(∆m2)2 (18)

in the limit m2 ¿ m1. For the (1,2) sector, the corresponding
∆m2 is given by the solar neutrino data and is estimated to
be ∆m2

12 ' 10−5 eV2, resulting in a contribution of the right
order. In this way the cosmological constant Λ is elegantly
expressed in terms of the smallest (infrared, ∆m2) and the
largest (ultraviolet, M2

P) Lorentz-invariant mass scales avail-
able. It can be argued [14] that the above choice of the cutoff
k0 ∼m1 +m2 is consistent with our conjecture on the decoher-
ence origin of the neutrino mass difference, due to interaction
with the foam medium (15). Notice that the above way of de-
riving the neutrino-mixing contribution to the dark energy is
independent of the usual perturbative loop arguments, and, in
this sense, the result (18) should be considered as exact (non
perturbative), if true.

Some important remarks are now in order. First of all, our
choice of cutoff scale was such that the resulting contribution
to the cosmological constant depends on the neutrino mass-
squared differences and not on the absolute mass, and hence
it is independent of any zero-point energy, in agreement with
energy-driven decoherence models [38]. For us, it is curved
space physics that is responsible for lifting the mass degen-
eracy of neutrino mass eigenstates and create the “flavour”
problem. This is an important point, which may serve as mo-
tivation (not proof) behind such a cutoff “choice”, which we
conjecture is a physical “necessity”. We have argued above
that such a cutoff “choice” is a natural one from the point
of view of quantum-gravity decoherence-induced mass differ-
ences. Detailed models of this fall way beyond the purposes
of this brief note. Nevertheless, we believe that the above-
demonstrated self-consistency of this cutoff choice within the
remit of our toy model of space time foam is intellectually
challenging and encouraging for further studies of this impor-
tant issue.

The above considerations above were based on the sugges-
tion of ref. [16] on a Fock-like quantisation of the flavour
space. There is still controversy in the literature regarding the
physical meaning of such quantum flavour states [42], in par-
ticular it has been argued that, although such states are mathe-
matically elegant and correct constructions, nevertheless they
lead to no observable consequences. However, in view of the
results of [17] and of the present work, such an argument may
not be correct, since the mass-squared difference contribution
to the cosmological constant is an observable (global) conse-
quence of the Fock-like flavour space quantisation. The pres-
ence of a time independent cosmological constant (18) in the
flavour vacuum, which notably is not present if one uses in-
stead the mass eigenstate vacuum, implies an asymptotic fu-
ture event horizon for the emerging de-Sitter Universe. The
flat-space time arguments of [42] for the flavour space field
theory cannot then be applied, at least naively, and the prob-
lem of quantisation of the Fock-like flavour space is equivalent
to the (still elusive) quantisation of field theories in (curved)
de-Sitter space times. In such a case one cannot define prop-
erly asymptotic states, and hence a scattering matrix. This
will lead to decoherence, in the sense of a modified temporal
evolution for matter states.

We now remark that in the case of (anti)neutrinos pass-
ing through stochastic media [36], including space time
foam [14], there are additional contributions to decoherence,
besides the presence of a Λ-term, which may offer a natural
explanation of the decoherence parameters of [13]. An im-
portant source of decoherence in such media is due to the un-
certainties in the energy E and/or the oscillation length L of
the (anti)neutrino beam. In fact, it can be shown [28] that
if one averages the standard oscillation probabilities Pνα→νβ

over Gaussian distributions for E and/or L with a variance σ2,
the result is equivalent to neutrino decoherence models, in the
sense of the time dependent profile of the associated proba-
bility being identical to that of a completely-positive decoher-
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ence model. One finds for n flavours [27],

〈Pαβ〉= δαβ−2
n

∑
a=1

n

∑
β=1,a<b

Re
(

U∗
αaUβaUαbU∗

βb

)
×

(
1− cos(2`∆m2

ab)e
−2σ2(∆m2

ab)2
)
−

2
n

∑
a=1

n

∑
b=1,a<b

Im
(

U∗
αaUβaUαbU∗

βb

)
×

sin(2`∆m2
ab)e

−2σ2(∆m2
ab)2

(19)

where U is the mixing matrix ` ≡ 〈x〉, σ =
√
〈(x−〈x〉)2 ≡

(L/4E)r, and x = L/4E. The resulting form is identical to
that of decoherence, as becomes evident by noting that the
exponential damping factors can be written in the form e−γ jL

with t = L (c = 1), and decoherence parameters γ j of order:

2σ2
j(∆m2)2 = γ jL, from which γ j = (∆m2)2

8E2 Lr2
j . There are var-

ious scenaria that restrict the order of σ. In general, the ac-
ceptable bounds on σ may be divided in two major categories,
depending on the form of the uncertainties [28]: σ j ' ∆x '
∆ j

L
4E ≤ 〈L〉

4〈E〉
(

∆ jL
〈L〉 + ∆ jE

〈E〉
)

, or σ j ≤ 〈L〉
4〈E〉

(
[∆ jL
〈L〉 ]

2 +[∆ jE
〈E〉 ]

2
)1/2

.
In three generation models the values of the length and energy
uncertainties may vary between flavours, and also between
neutrinos and antineutrinos, as a result of the intrinsic CPT
violation, hence the subscript j in the above formulae (for an-
tiparticle sectors it is understood that j → j). From the above
considerations it becomes clear that, for L ∼ 2E/∆m2, which
is characteristic for oscillations, one has decoherence para-
meters γ j ∼ (∆m2/E)r2

j . It is interesting to estimate first the
order of decoherence induced by conventional physics, for in-
stance decoherence induced by uncertainties in the measured
energy of the beam due to experimental limitations. For long
base line, atmospheric or cosmic neutrino experiments, where
∆L/L is negligible, and ∆E/E ∼ 1 such decoherence parame-
ters are found at most of order γ∼ 10−24 GeV, for the relevant
range of energies, and they diminish with energy, vanishing
formally when E →∞, which seems to be a general feature of
conventional matter-induced decoherence effects [27].

To obtain the decoherence parameters of the best-fit model
of [13] it suffices to choose for the antineutrino sector r3 =
r8∼∆E/E ∼ 1, and r2

1 = r2
2 ∼ 10−18 ·E2/∆m2. As seen above,

the decoherence parameters exhibiting a 1/E energy depen-
dence could be attributed to conventional energy uncertain-
ties occurring in the beam of the (anti)neutrinos. However,
the parameters proportional to E, if true, may be attributed
to exotic physics. The fact that r j in general receives con-
tributions from both length and energy uncertainties provides
a natural explanation for the different energy dependence of
the decoherence parameter of the model of I in the antiparti-
cle sector. Indeed, having identified r3 = r8 as decoherence
induced by ‘conventional-looking’ energy uncertainties in the
antineutrino sector, it is natural to assume that the γ3 = γ8 ∝ E
decoherence is due to genuine quantum gravity effects, in-
creasing with energy, which are associated with metric tensor
quantum fluctuations. This is achieved provided we assume
that r2

3 = r2
8 ∼ (∆L/L)2, i.e. these decoherence coefficients

are predominantly oscillation-length-uncertainty driven, and

take into account that variations in the invariant length may
be caused by metric fluctuations, since L2 = gµνLµLν, imply-
ing (∆gµν)2 ∼ (∆L)2/L2, in order of magnitude. To obtain the
best fit results of I, then, for L∼ 2E/∆m2, one needs quantum-
gravity induced metric fluctuations in the antineutrino sector
of order (∆gµν)2 ∼ 10−18L ·E. The increase with energy is
not unreasonable, given that the higher the energy of the an-
tineutrino the stronger the back reaction onto space time, and
hence the stronger the quantum-gravity induced metric fluctu-
ations. The factor 10−18 may be thought of as being of order
E/MP, with MP ∼ 1019 GeV the Planck mass, although al-
ternative interpretations may be valid (see discussion on pos-
sible cosmological interpretations at the end of the article).
The increase with L is not uncommon in stochastic models
of quantum foam, where the decoherence ‘medium’ effects
build up with the distance the (anti)particle travels [37]. We
also mention at this stage that, apart from these effects, in sto-
chastic models of foam there are additional contributions to
decoherence, arising from the fluctuations of the density of the
medium. These too can mimic the effects of the best-fit model
of [13] in the antineutrino sector, as discussed in some detail
in [14], but their L-dependence is different from that of the
above effects. Comparison between short and long baseline
experiments, therefore, may differentiate between the various
decoherent contributions.

At this stage we would like to mention that the above-
described model of decoherence provides a novel and ex-
tremely economical mechanism to generate the observed
baryon asymmetry in the Universe [14], through a process of
equilibrium electroweak leptogenesis. To this end we first re-
call that, in the analysis of ref. [20], dealing with decoher-
ent evolution in the neutral Kaon case, the asymmetries be-
tween the semileptonic decays of K0 and those of K0 turned
out to depend linearly on dimensionless decoherence parame-
ters such as γ̂ = γ/∆Γ; in the parametrisation of Ellis et al.
in [19], where ∆Γ = ΓL−ΓS was a characteristic energy scale
associated with energy eigenstates of the kaon system. In fact,
the dependence was such that the decoherence corrections to
the asymmetry were of order γ̂ in complete positivity scenaria,
where only one decoherence parameter, γ > 0 was non zero. In
similar spirit, in our case of lepton-antilepton number asym-
metries, one expects the corresponding asymmetry to depend,
to leading order, linearly on the quantity γ̂ = γ/

√
∆m2, since

the quantity
√

∆m2 is the characteristic energy scale in the
neutrino case, playing a role analogous to ∆Γ in the kaon
case. The only difference from the kaon case, is that here,
in contrast to the kaon asymmetry results, there are no ze-
roth order terms, and thus the result of the matter-antimatter
asymmetry is proportional to the dimensionless decoherence
parameter γ̂, which we are going to take as the larger of the
two dechorence parameters of our model in [13], discussed in
the previous section, namely γ̂ → γ̂1 = 10−18 ·E/

√
∆m2. In

this way, the matter-antimatter asymmetry in the Universe is
estimated to be A = 〈ν〉−〈ν〉

〈ν〉+〈ν〉 ' γ̂1 ' 10−6. The numerical co-
efficient 10−18 on γ may be thought of as the ratio T/MP with
T the temperature, whose value gets frozen at the EW symme-
try breaking temperature. Thus, B = nν−n̄ν

s ∼ Anν
g∗nγ

with nν (n̄ν)
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the number density of (anti) neutrinos, nγ the number density
of photons and g∗ the effective number of degrees of freedom
(at the temperature where the asymmetry is developed) which
depends on the exact matter content of the model but it ranges
from 102 to 103 in our case. This implies a residual baryon
asymmetry of order 10−10, roughly the desired magnitude.

Finally, before closing we would like to alert the interested
reader in another possible aspect of the Fock space quantisa-
tion of the flavour vacuum [17], advocated in [43]. In the case
of non-trivial neutrino mixing, the flavour Fock states do not
satisfy the standard Linear Lorentz invariant dispersion rela-
tions E2 = p2 + m2, where p is the momentum and m a rest
mass, since they are superpositions of mass eigenstates satis-
fying standard dispersion relations but with different masses.
The idea of [43] is that such states may experience non-linear
modifications of the Lorentz symmetry, of which doubly spe-
cial relativities is one example [44], which should guarantee
the frame independence of the results. The remark we would
like to make in connection with this, is that, in view of the con-
tributions of the Flavour Fock states to the cosmological con-
stant (18), it may be possible to specify the non-linear modifi-
cations of the Lorentz symmetry satisfied by the Fock states,
which was not possible for a general mixing angle in [43], by
adopting the idea of [45]. According to that, the low-energy
limit of a quantum theory of gravity in a space time with a

(positive) cosmological constant Λ, must be a theory which
is invariant under a deformed Poincaré symmetry, with the
pertinent (dimensionful) deformation parameter being related
to the cosmological constant. These arguments are valid as
long as the theory behaves smoothly in the limit when the cos-
mological constant becomes small as compared to the Planck
scale (or, in general the scale characteristic of the quantum
gravity), i.e. in the limit Λ`2

Planck → 0, which is certainly the
case of (18). In our case, where the neutrino mass differences
have been conjectured to be the result of a space-time foamy
situation, such considerations become of great importance in
determining the symmetry structure underlying the non-flat
space-time quantum field (or string) theory at hand. We hope
to study such important issues in detail in a future publication.
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