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Energy-Momentum Distribution of the Weyl-Lewis-Papapetrou and the Levi-Civita Metrics
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This paper is devoted to compute the energy-momentum densities for two exact solutions of the Einstein
field equations by using the prescriptions of Einstein, Landau-Lifshitz, Papapetrou and Möller. The spacetimes
under consideration are the Weyl-Lewis-Papapetrou and the Levi-Civita metrics. The Weyl metric becomes
the special case of the Weyl-Lewis-Papapetrou solution. The Levi-Civita metric provides constant momentum
in each prescription with different energy density. The Weyl-Lewis-Papapetrou metric yields all the quantities
different in each prescription. These differences support the well-defined proposal developed by Cooperstock
and from the energy-momentum tensor itself.

Keywords: Energy-Momentum Distribution

I. INTRODUCTION

The relativistic analogues of the classical principle of the
conservation of energy and momentum can be obtained with
the help of the well-known equation [1]

∂
∂xb (ℑb

a + tb
a ) = 0, (a,b = 0,1,2,3),

where ℑb
a is a tensor density of material energy and momen-

tum and tb
a is the pseudo-tensor density of gravitational energy

and momentum. The definition of localized energy density is
a longstanding problem [2] in General Relativity (GR). On the
basis of the principle of equivalence, it is usually assumed that
the gravitational energy cannot be localized. The principle of
equivalence is frequently invoked to ensure that the gravita-
tional field can be made vanish in a sufficiently small region
of the spacetime. Misner at el. [3] showed that the energy can
only be localized in spherical systems. But later on, Coop-
erstock and Sarracino [4] proved that if energy is localizable
for spherical systems, then it can be localized in any system.
Much attention has been devoted for this problematic issue.

An energy-momentum complex is the sum of the energy-
momentum of matter and an appropriate pseudo-tensor. Ein-
stein showed that the energy-momentum pseudo-complex
provides satisfactory expression for the total energy and mo-
mentum of a closed system in the form of three dimensional
integral. There are some drawbacks of the Einstein energy-
momentum complex. One of these drawbacks is that it is not
symmetric in its indices. However, Landau-Lifshitz energy-
momentum complex satisfies this requirement. In order to
determine the conserved total four-momentum for gravitation
with matter, Landau-Lifshitz introduced a system of coor-
dinates at some particular point in spacetime for which all
the first derivatives of the metric tensor vanish. Papapetrou
energy-momentum complex is the least known among the
four definitions under discussion and as a result, it has been
re-discovered several times. Although the Einstein energy-
momentum complex provides useful expression for the total
energy-momentum of a closed system. However, from the GR
viewpoint, Möller argued that it is unsatisfactory to transform
a system into quasi-Cartesian coordinates. Möller tried to find

out an expression of energy-momentum which is independent
of the choice of particular coordinate system.

Einstein was the first to construct a locally conserved
energy-momentum complex [5]. After this attempt, many
physicists including Tolman [6], Landau-Lifshitz [7], Papa-
petrou [8], Bergmann [9] and Weinberg [10] introduced dif-
ferent definitions for the energy-momentum complex. These
definitions can only give meaningful results if the calculations
are performed in Cartesian coordinates. In 1990, Bondi [11]
argued that a non-localizable form of energy is not allowed in
GR. After this, the idea of quasi-local energy was introduced
by Penrose and other researchers [12-14]. In this method, one
can use any coordinate system while finding the quasi-local
masses to obtain the energy-momentum of a curved space-
time. Bergqvist [15] considered seven different definitions
of quasi-local mass and showed that no two of these defin-
itions give the same result. Chang at el. [16] showed that
every energy-momentum complex can be associated with a
particular Hamiltonian boundary term and hence the energy-
momentum complexes may also be considered as quasi-local.

Möller [17,18] proposed an expression which is the best
to make calculations in any coordinate system. He claimed
that his expression would give the same results for the total
energy and momentum as the Einstein’s energy-momentum
complex for a closed system. Lessner [19] gave his opinion
that Möller’s definition is a powerful concept of energy and
momentum in GR. However, Möller’s prescription was also
criticized by some people [11,20,21]. Komar’s complex [21],
though not restricted to the use of Cartesian coordinates, is
not applicable to non-static spacetimes. Thus each of these
energy-momentum complex has its own drawbacks. As a re-
sult, these ideas of the energy-momentum complexes could
not lead to some unique definition of energy in GR.

Virbhadra [22] generated interest on this topic by us-
ing different prescriptions to calculate energy-momentum
of a spacetime. He found that different prescriptions
could lead to the same result if appropriate coordinates are
used. Aguirregabiria et al. [23] showed that five differ-
ent energy-momentum complexes gave the same result for
any Kerr-Schild class (including the Schwarzchild, Reissner-
Nordström, Kerr and Vaidya metrics). Xulu [24,25] extended
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this investigation and found same energy distribution in the
Melvin magnetic and Bianchi type I universe. Chamorro and
Virbhadra [26] and Xulu [27] studied the energy distribution
of charged black holes with a dilaton field.

It was hoped [25] that some particular properties might
give a basis to believe that some pseudo-tensors of energy-
momentum density had a special meaning. However, there
exists examples of spacetimes which do not support this view-
point. In this regard, Sharif [28,29] considered the class of
gravitational waves and Gödel universe and used the four de-
finitions of energy-momentum. He concluded that results ob-
tained are not consistent in different prescriptions. Recently,
Sharif and Fatima [30,31] considered some more examples
of Non-Null Einstein-Maxwell solution, singularity-free cos-
mological model and Weyl metrics and applied four differ-
ent complexes. They found that the energy-momentum com-
plexes do not provide the same results for any of these space-
times. This paper continues the investigation by considering
two more examples.

The paper is organized as follows. In section 2, we shall
briefly mention different prescriptions to evaluate energy-
momentum distribution. Sections 3 and 4 are devoted for the
evaluation of energy-momentum densities for the two partic-
ular spacetimes using the prescriptions of Einstein, Landau-
Lifshitz, Papapetrou and Möller. Finally, in the last section,
we shall discuss and summarize all the results obtained.

II. ENERGY-MOMENTUM COMPLEXES

In this section, we shall elaborate four different approaches
to evaluate the energy-momentum density components of dif-
ferent spacetimes.

A. Einstein Energy-Momentum Complex

The energy-momentum complex of Einstein [2] is given by

Θb
a =

1
16π

Hbc
a,c, (a,b, ... = 0,1,2,3), (1)

where

Hbc
a =

gad√−g
[−g(gbdgce−gcdgbe)],e. (2)

It is to be noted that Hbc
a is anti-symmetric in indices b and c.

Θ0
0 is the energy density, Θi

0 (i = 1,2,3) are the components
of momentum density and Θ0

i are the energy current den-
sity components. Einstein showed that the energy-momentum
pseudo-complex Θb

a provides satisfactory expression for the
total energy and momentum of closed system in the form of
3-dimensional integral.

B. Landau-Lifshitz Energy-Momentum Complex

There were some drawbacks of Einstein energy-momentum
complex. One main drawback was that it was not symmetric

in its indices. As a result, this cannot be used to define conser-
vation laws of angular momentum. However, Landau-Lifshitz
energy-momentum complex is symmetric and they are able to
develop a conserved angular momentum complex in addition
to that of energy-momentum. The energy-momentum com-
plex of Landau-Lifshitz [7] is given by

Lab =
1

16π
`acbd
,cd , (3)

where

`acbd =−g(gabgcd −gadgcb). (4)

L00 represents the energy density of the whole system includ-
ing gravitation and Loi represent the components of the mo-
mentum density. `abcd has symmetries of the Riemann curva-
ture tensor. It is clear from Eq.(3) that Lab is symmetric with
respect to its indices.

C. Papapetrou Energy-Momentum Complex

Papapetrou energy-momentum complex is the least known
among the four definitions under discussion, as a result, it
has been re-discovered several times. The expression was
found using the generalized Belinfante method. The symmet-
ric energy-momentum complex of Papapetrou [8] is given as

Ωab =
1

16π
Nabcd

,cd , (5)

where

Nabcd =
√−g(gabηcd −gacηbd +gcdηab−gbdηac), (6)

and ηab is the Minkowski spacetime. The quantities Nabcd

are symmetric in its first two indices a and b. The locally
conserved quantities Ωab contain contribution from the mat-
ter, non-gravitational and gravitational field. The quantity Ω00

represents energy density and Ω0i are the momentum density
components.

D. Möller Energy-Momentum Complex

Although the Einstein energy-momentum complex pro-
vides useful expression for the total energy-momentum of a
closed system. However, from the GR viewpoint, Möller
[17] argued that it is unsatisfactory to transform a system
into quasi-Cartesian coordinates. Möller tried to find out
an expression of energy-momentum which is independent
of the choice of particular coordinate system. His energy-
momentum complex is given by

Mb
a =

1
8π

Kbc
a,c, (7)

where

Kbc
a =

√−g(gad,e−gae,d)gbegcd . (8)
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Here Kbc
a is antisymmetric, M0

0 is the energy density, Mi
0 are

the momentum density components and M0
i are the energy

current density components. In the next two sections, we ap-
ply these prescriptions to evaluate energy-momentum distrib-
ution for two particular examples.

III. WEYL-LEWIS-PAPAPETROU METRIC

The class of stationary axisymmetric solutions of the Ein-
stein field equations is the appropriate framework for the at-
tempts to include the gravitational effect of an external source
in an exact analytical manner [32]. At the same time, such
spacetimes are of obvious astrophysical importance, as they
describe the exterior of the body in equilibrium. The complete
family of exact solutions representing accelerating and rotat-
ing black holes with possible electromagnetic charges and a

nut parameter is known in terms of a modified Plebanski-
demianski metric. This demonstrates the singularity and hori-
zon structure of the sources but not that the complete space-
time describes two causally separated black holes. To demon-
strate this property, the metric was first cast in the Weyl-
Lewis-Papapetrou form. The line element of stationary ax-
isymmetric spacetime of the Weyl-Lewis-Papapetrou metric
is given by [33]

ds2 = e2ψ(dt−ωdφ)2− e2(γ−ψ)(dρ2 +dz2)−ρ2e−2ψdφ2,
(9)

where ω is the angular velocity and γ, ψ, ω are functions of ρ
and z only. It is mentioned here this reduces to the Weyl met-
ric for ω = 0. To get meaningful results in Einstein, Landau-
Lifshitz and Papapetrou prescriptions, we transform this met-
ric into Cartesian coordinates given by

ds2 = e2ψdt2 +(ω2e2ψ−ρ2e−2ψ)(
xdy− ydx

ρ2 )2− e2(γ−ψ)(
xdx+ ydy

ρ
)2

− 2ωe2ψ(
xdy− ydx

ρ2 )dt− e2(γ−ψ)dz2. (10)

A. Energy-Momentum Densities in Einstein Complex

The energy-momentum densities of the Weyl-Lewis-Papapetrou metric can be found by Einstein complex with the components
of Hbc

a that can be computed by using Eq.(2). When we make use of these components in Eq.(1), we obtain the following
components of energy, momentum and energy current densities

Θ0
0 =

1
8πρ

[γρ(e2γ−1)−ργρρ +2ψρ +2ρψρρ−ργzz +2ρψzz

+
ω2

ρe4ψ

2ρ
+

ωωρe4ψ

2ρ
− ωωρe4ψ

2ρ2 +
2ωωρψρe4ψ

ρ
], (11)

Θ0
1 =

y
16πρ2 [(ωρρ +ωzz)+2ω(γρρ + γzz)+2(ωργρ +ωzγz)

− 2ω{2(γρρ−2ψρρ)+(γzz−2ψzz)}−2ω{(γρ−2ψρ)ψρ

+ (γz−2ψz)ψz}+
4ω2e4ψ

ρ2 (ωρψρ +ωzψz)

+
ω2e4ψ

ρ2 (ωρρ +ωzz)+
2ωe4ψ

ρ
(ω2

ρ +ω2
z )−

2ωρ

ρ
+

2ω
ρ2

+
ωρe2γ

ρ
+

2ωγρe2γ

ρ
− 2ωe2γ

ρ2 − 2ω2ωρe4ψ

ρ3 ], (12)

Θ0
2 = − x

16πρ2 [(ωρρ +ωzz)+2ω(γρρ + γzz)+2(ωργρ +ωzγz)

− 2ω{2(γρρ−2ψρρ)+(γzz−2ψzz)}−2ω{(γρ−2ψρ)ψρ

+ (γz−2ψz)ψz}+
4ω2e4ψ

ρ2 (ωρψρ +ωzψz)

+
ω2e4ψ

ρ2 (ωρρ +ωzz)+
2ωe4ψ

ρ
(ω2

ρ +ω2
z )−

2ωρ

ρ
+

2ω
ρ2

+
ωρe2γ

ρ
+

2ωγρe2γ

ρ
− 2ωe2γ

ρ2 − 2ω2ωρe4ψ

ρ3 ], (13)
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Θ1
0 = − ye4ψ

16πρ2 [(ωρρ +ωzz)+4(ωρψρ +ωzψz)], (14)

Θ2
0 =

xe4ψ

16πρ2 [(ωρρ +ωzz)+4(ωρψρ +ωzψz)], (15)

Θ0
3 = 0 = Θ3

0. (16)

B. Energy-Momentum Densities in Landau-Lifshitz Complex

The non-zero components of `abcd can be found by using Eq.(4) and consequently the components of energy and momentum
(energy current) densities in Landau-Lifshitz prescription turn out to be

L00 =
1

16πρ2 [4ρ(γρ−ψρ)e(γ−ψ)−4ρ(γρ−2ψρ)e2(γ−2ψ)

− 2{(γρρ−2ψρρ)+(γzz−2ψzz)}e2(γ−2ψ)−4{(γρ−2ψρ)2

+ (γz−2ψz)2}e(γ−2ψ) +
2e2γ

ρ2 {ω(ωρρ +ωzz)+2(ω2
ρ +ω2

z )

+ 4ω(ωργρ +ωzγz)+ω2(γρρ + γzz)+2ω2(γ2
ρ + γ2

z )

− 2ωωρ

ρ
− 2ω2γρ

ρ
+

ω2

ρ2 }], (17)

L10 = L01 =− ye2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+ 2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )−
ωρ

ρ
− 2ωγρ

ρ
], (18)

L20 = L02 =
xe2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+ 2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )−
ωρ

ρ
− 2ωγρ

ρ
], (19)

L30 = L03 = 0. (20)

C. Energy-Momentum Densities in Papapetrou Complex

Here the non-zero components of Nabcd are obtained with the help of Eq.(6). When we make use of these values in Eq.(5), it
yields the following components of energy and momentum (energy current) densities

Ω00 =
e2γ

8πρ
[(1− e−4ψ)γρ +{2ψρ−ρ(γρρ−2ψρρ + γzz−2ψzz)}e−4ψ

− 2ρ{(γρ−2ψρ)2 +(γz−2ψz)2}e−4ψ +
1
ρ

(ω2
ρ +ω2

z )

+
2ω2

ρ
(γ2

ρ + γ2
z )+

ω
ρ

(ωρρ +ωzz)+
ω2

ρ
(γρρ + γzz)

+
4ωωρ

ρ
(ωργρ +ωzγz)+

2ω2

ρ3 − 3ω2γρ

ρ2 − 3ωωρ

ρ2 ], (21)
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Ω10 = Ω01 =− ye2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+ 2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )−
ωρ

ρ
− 2ωγρ

ρ
], (22)

Ω20 = Ω02 =
xe2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+ 2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )−
ωρ

ρ
− 2ωγρ

ρ
], (23)

Ω30 = Ω03 = 0. (24)

D. Energy-Momentum Densities in Möller Complex

This prescription does not require the transformation into
Cartesian coordinates. The non-zero components of Kbc

a are
found from Eq.(8). Consequently, the components of energy,
momentum and energy current densities become

M0
0 =

1
4π

(ψρ +ρψρρ +ρψzz)+
e4ψ

8πρ
[ω(ωρρ +ωzz)

+ 4(ωρψρ +ωzψz)+(ω2
ρ +ω2

z )−
ωωρ

ρ
], (25)

M0
2 = − e4ψ

8πρ
[(ω2 +ρ2)(ωρρ +ωzz)

+ 4(ω2 +ρ2)(ωρψρ +ωzψz)+2ω(ω2
ρ +ω2

z )

+ 4ωρ2(ψρρ +ψzz)+4ρωωρ +ωρ−
ω2ωρ

ρ
], (26)

M2
0 =

e4ψ

8πρ
[ωρρ +ωzz +4(ωρψρ +ωzψz)−

ωρ

ρ
], (27)

M0
1 = 0 = M1

0 = M0
3 = M3

0 . (28)

IV. THE LEVI-CIVITA METRIC

The Levi-Civita metric is given by [34]

ds2 = ρ4sdt2−ρ4s(2s−1)(dρ2 +dz2)−α2ρ2(1−2s)dφ2, (29)

where α is a parameter and s is a charge density parameter.
The following interpretations are somewhat accepted for:

s = 0, 1
2 , this becomes locally flat spacetime,

s = 0, α = 1, this reduces to Minkowski spacetime and
s = 0, α 6= 1, we have cosmic string.
One of the most interesting metrics of the family of the Weyl
solutions is called γ-metric, also known as Zipoy-Voorhes
metric [35]. The Levi-Civita metric can be obtained from
a family of the Weyl-metric, i.e., the γ-metric by taking the
limit when the length of its Newtonian image source tends to
infinity. The line element can be transformed into Cartesian
coordinates and is given by

ds2 = ρ4sdt2−ρ4s(2s−1)(
xdx+ ydy

ρ
)2

− α2ρ2(1−2s)(
xdy− ydx

ρ2 )2−ρ4s(2s−1)dz2. (30)

A. Energy-Momentum Densities in Einstein Complex

Using the components of Hbc
a , we obtain the components of

energy-momentum

Θ0
0 =

s2ρ8s2−2

2πα
, (31)

Θ0
i = 0 = Θi

0 (32)

which gives constant momentum.

B. Energy-Momentum Densities in Landau-Lifshitz Complex

The non-zero components of `abcd lead to the following
components of energy and momentum (energy current) densi-
ties in Landau-Lifshitz complex
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L00 =
s

2π
[(2s−1)ρ8s2 −α2(8s3−16s2 +9s−1)]ρ8s2−8s−2, (33)

Li0 = 0 = L0i. (34)

This also yields momentum constant.

C. Energy-Momentum Densities in Papapetrou Complex

Here the components of energy and momentum (energy
current) densities will become

Ω00 =
s2ρ8s2−2

2πα
[1−8α2(s−1)2ρ−8s], (35)

Ωi0 = 0 = Ω0i (36)

which gives constant momentum.

D. Energy-Momentum Densities in Möller Complex

The energy-momentum densities turn out to be

Mb
a = 0 (37)

giving a constant energy-momentum. We note that all the pre-
scriptions provide constant momentum for this metric.

V. SUMMARY AND DISCUSSION

This paper continues the investigation of comparing vari-
ous distributions presented in the literature. We have used
four different prescriptions namely Einstein, Landau-Lifshitz,
Papapetrou and Möller to calculate energy-momentum densi-
ties of two particular examples. These prescriptions turn out
to be a powerful tool to evaluate energy-momentum for var-
ious physical systems. Although this work does not resolve
the longstanding and crucial problem of the localization of
energy in GR, but provides some information about it through
such solutions. The following tables yield the non-zero com-
ponents of the energy-momentum densities in each case. The
notation EM has been used for Energy-Momentum.

Table 1(a). Weyl-Lewis-Papapetrou Metric: Einstein Complex

EM Densities Expressions

Θ0
0

1
8πρ{γρ(e2γ−1)−ργρρ +2ψρ +2ρψρρ−ργzz

+2ρψzz +
ω2

ρe4ψ

2ρ + ωωρe4ψ

2ρ − ωωρe4ψ

2ρ2 + 2ωωρψρe4ψ

ρ }

Θ0
1

y
16πρ2 [(ωρρ +ωzz)+2ω(γρρ + γzz)+2(ωργρ

+ωzγz)−2ω{2(γρρ−2ψρρ)+(γzz−2ψzz)}
−2ω{(γρ−2ψρ)ψρ +(γz−2ψz)ψz}+ 4ω2e4ψ

ρ2 (ωρψρ

+ωzψz)+ ω2e4ψ

ρ2 (ωρρ +ωzz)+ 2ωe4ψ

ρ (ω2
ρ +ω2

z )

− 2ωρ
ρ + 2ω

ρ2 + ωρe2γ

ρ + 2ωγρe2γ

ρ − 2ωe2γ

ρ2 − 2ω2ωρe4ψ

ρ3 ]

Θ0
2

− x
16πρ2 [(ωρρ +ωzz)+2ω(γρρ + γzz)+2(ωργρ

+ωzγz)−2ω{2(γρρ−2ψρρ)+(γzz−2ψzz)
−2ω{(γρ−2ψρ)ψρ +(γz−2ψz)ψz}+ 4ω2e4ψ

ρ2 (ωρψρ

+ωzψz)+ ω2e4ψ

ρ2 (ωρρ +ωzz)+ 2ωe4ψ

ρ (ω2
ρ +ω2

z )

− 2ωρ
ρ + 2ω

ρ2 + ωρe2γ

ρ + 2ωγρe2γ

ρ − 2ωe2γ

ρ2 − 2ω2ωρe4ψ

ρ3 ]

Θ1
0 − ye4ψ

16πρ2 [(ωρρ +ωzz)+4(ωρψρ +ωzψz)]

Θ2
0

xe4ψ

16πρ2 [(ωρρ +ωzz)+4(ωρψρ +ωzψz)]
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Table 1(b). Weyl-Lewis-Papapetrou Metric: Landau-Lifshitz Complex

EM Densities Expressions

L00

1
16πρ2 [4ρ(γρ−ψρ)e(γ−ψ)−4ρ(γρ−2ψρ)e2(γ−2ψ)

−2{(γρρ−2ψρρ)+(γzz−2ψzz)}e2(γ−2ψ)

−4{(γρ−2ψρ)2 +(γz−2ψz)2}e(γ−2ψ) + 2e2γ

ρ2 {ω(ωρρ

+ωzz)+2(ω2
ρ +ω2

z )+4ω(ωργρ +ωzγz)+ω2(γρρ

+γzz)+2ω2(γ2
ρ + γ2

z )− 2ωωρ
ρ − 2ω2γρ

ρ + ω2

ρ2 }]

L10 = L01 − ye2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )− ωρ
ρ −

2ωγρ
ρ ]

L20 = L02
xe2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )− ωρ
ρ −

2ωγρ
ρ ]

Table 1(c). Weyl-Lewis-Papapetrou Metric: Papapetrou Complex

EM Densities Expressions

Ω00

e2γ

8πρ [(1− e−4ψ)γρ +{2ψρ−ρ(γρρ−2ψρρ

+γzz−2ψzz)}e−4ψ−2ρ{(γρ−2ψρ)2

+(γz−2ψz)2}e−4ψ + 1
ρ (ω2

ρ +ω2
z )+ 2ω2

ρ (γ2
ρ + γ2

z )

+ω
ρ (ωρρ +ωzz)+ ω2

ρ (γρρ + γzz)

+ 4ωωρ
ρ (ωργρ +ωzγz)+ 2ω2

ρ3 − 3ω2γρ
ρ2 − 3ωωρ

ρ2 ]

Ω10 = Ω01 − ye2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )− ωρ
ρ −

2ωγρ
ρ ]

Ω20 = Ω02
xe2γ

16πρ2 [(ωρρ +ωzz)+4(ωργρ +ωzγz)

+2ω(γρρ + γzz)+4ω(γ2
ρ + γ2

z )− ωρ
ρ −

2ωγρ
ρ ]

Table 1(d). Weyl-Lewis-Papapetrou Metric: Möller Complex

EM Densities Expressions

M0
0

1
4π (ψρ +ρψρρ +ρψzz)+ e4ψ

8πρ [ω(ωρρ +ωzz)

+4(ωρψρ +ωzψz)+(ω2
ρ +ω2

z )− ωωρ
ρ ]

M0
2

− e4ψ

8πρ [(ω2 +ρ2)(ωρρ +ωzz)+4(ω2 +ρ2)(ωρψρ

+ωzψz)+2ω(ω2
ρ +ω2

z )+4ωρ2(ψρρ +ψzz)

+4ρωωρ +ωρ− ω2ωρ
ρ ]

M2
0

e4ψ

8πρ [ωρρ +ωzz +4(ωρψρ +ωzψz)− ωρ
ρ ]
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Table 2. Levi-Civita Metric

Prescription Energy-Momentum Densities

Einstein Θ0
0 = s2ρ8s2−2

2πα , Θ0
i = 0 = Θi

0

Landau-Lifshitz
L00 = 1

16π [ρ16s2−8s−2(16s2−8s)
−2α2(16s2−16s−1)ρ8s2−8s−2]

Li0 = 0 = L0i

Papapetrou Ω00 = s2ρ8s2−2

2πα [1−8α2(s−1)2ρ−8s]
Ωi0 = 0 = Ω0i

Möller Mb
a = 0

From these tables, it is concluded that the energy-momentum
densities turn out to be finite and well-defined in all the pre-
scriptions for the spacetimes under consideration. In Weyl-
Lewis-Papapetrou metric, the non-vanishing momentum den-
sities turn out to be the same in Landau-Lifshitz and Papa-
petrou complexes while the energy is different in each com-
plex. It is worth mentioning here that for ω = 0 the results
reduce to the case of the Weyl metric as found in the pa-
per [31]. The energy for the Levi-Civita metric is different
while momentum becomes constant in each prescription. It is
worth mentioning that energy-momentum becomes constant
for s = 0 as expected for Minkowski spacetime.

We would like to remark that the results of energy-
momentum distribution for different spaceimes are not sur-
prising. They support the fact that different energy-
momentum complexes, which are pseudo-tensors, are not co-
variant objects. This is in accordance with the equivalence
principle [3] which implies that the gravitational field can-
not be detected at a point. In GR, many energy-momentum
expressions (reference frame dependent pseudo-tensors) have
been proposed. There is no consensus as to which is the best.
However, each expression has a geometrically and physically
clear significance associated with the boundary conditions.

The difference of results supports the well-defined proposal
developed by Cooperstock [36] and verified by many authors
[28-31,37]. It is mentioned here that the results of the Weyl-
Lewis-Papapetrou metric found in teleparallel theory of grav-
ity do not coincide with the results in GR [38].

Finally, we would like to mention that Virbhadra found
[22] energy-momentum distribution of the Kerr-Newman met-
ric by using Einstein, Landau-Lifshitz, Tolman and Möller
energy-momentum complexes. He concluded that the four
prescriptions could give the same result for the Kerr-Newman
spacetime if appropriate coordinates are used. As is well-
known, Einstein, Landau-Lifshitz, Tolman’s prescriptions can
give meaningful results only if Cartesian coordinates are used
but Möller’s prescription does not require any such condition.
We have followed the same coordinate system to obtain the
energy-momentum for the two spacetimes. One can recover
the results only if coordinates can be defined such that the
metric can be made compatible. This is not always possible.
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[17] C. Möller, Ann. Phys. (NY) 4, 347 (1958).
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