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The conservation laws associated with a previously studied metric nonsymmetric theory of gravitation are
established and their physical significance is discussed. Conservation laws are obtained for the generalized
energy and momentum. Some applications of the results are made for a spherically symmetric fluid with a view
to future study of stelar equilibrium.

. INTRODUCTION 9By +g@rf +gfIre —gePre. =0, (23)

In previous works [1] a generalized theory of gravitation and
based on a nonsymmetric metric tenggg have been stud- g[aB] 8= A (2.4)
ied. After establishing the field equations in [1-1] their solu- ’
tion for a point source mass was obtained in [1-11], togetheWe use the notatioaqp) = (8ug +apy)/2 andaye) = (8up —
with its implications for the motion of test particles and light. ag,)/2 for the symmetric and antisymmetric partsagg and
The theory was shown to be consistent with the four classithe notationajupy = ap).y + @ya).p + dpy,a for the curl of
cal solar tests of general relativity (GR). Next, in [1-11l], the aqg. In the first equation
electromagnetic field was included into the theory and the so-
lution for a point charge was obtained. In a more recent pa- Uap ={4p) 6~ (3o)a + r?ﬂﬁ)r?pc) - r?ap)r?ag), (2.5)
per, 11-1V], it was shown that the theory is definitely free of

ghost-negative radiative modes even when expanded arounds¥mmetric because the second term is (see (2.12) below) and
Riemannian GR background space. containing only the symmetric part of the connection, is the

The sources of the field are the energy-momentum-stresdtalogue of the Ricci tensof is the cosmological constant
tensorT,g and the fermionic current densis§. For a macro- ~and we have used the notation

scopic system this current is taken to®e= fnu®, wheref _ 1

is the coupling to the geometny® is the velocity andh is the Top=Tap— igaBT ' (2.6)
rest number density found, for instance, in the description of ] ) )
the interior of stars (electrons, protons and neutrons). In (2.3) and (2.4) the notatioX = \/—gX with g=det{gqp) is

It is the aim of this paper to establish the conservation lawdeing used ang®® is the inverse ol as defined by
for the generalized energy and momentum and discuss their
physical significance. Some of the results are applied to a 9"Pgay = ¢® gy = & . (2.7)
perfect fluid with a view to future application to the study of
stelar equilibrium.

The paper is organized as follows. We present the field [ ap +AJag = KT[O(B] , (2.8)
equations in Sec. Il. In Sec. lll the Variational Principle is ’
discussed and the conservation of energy and momentum ayghere My = rﬁm} is a vector involving contractions of the
established. In Sec. IV we will deduce an equation expresssntisymmetric part of the connection. From (2.4) we have

ing the total energy of a system as an integral over the sourceg st — o, the equation of continuity for the fermionic cur-
of the field. In Sec. V we make some applications to a statigent, saying that

spherically symmetric perfect fluid. In Sec. VI we draw our 7
conclusions and highlight future works. F— <993 (2.9)

Equation (2.2), came as the result of

is a constant. This is the fermionic charge of the system.
Equation (2.3) can be solved for the symmetric part of the
connection (1-1) giving ,

Il.  THE FIELD EQUATIONS
The field equations of the theory are [1-1] N
Uap +A9iap) = KT () (2.1) Mg = Eg(oy) (o, + Spra — Supy)

1 s
— = (g©v o5V _ Y50 S
T +- (954 — 850 — OO (In ) (2.10)
Ay = KT (apyi» (2.2) 4( Pt B) 9/
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wheres,g, symmetric and with determinast is the inverse Ill. THE VARIATIONAL PRINCIPLE

of 9@ as defined by
We will now derive the field equations and the differential
Spd @ = 5}; : (2.11)  form of the conservation laws following the standard proce-
. . durein GR [3]. Following the same strategy as in GR we take
In deriving Eg. (2.10) from (2.3) we come across the relat|on(2_3) for grant and use it to get rid of the second-order deriv-
B atives of the metric which are present in the tegt¥Uqg
Ffm = <In g) , (2.12) of the free Lagrangian (2.14). Upon contraction of (2.5) with
vV=s/p 9®® and making use of (2.3) and

which can be re-obtained from (2.3). One then sees that the
second term on the right of (2.5) is in fact symmetric.
The total Lagrangian density we ended up with in [1-1] is

g(OfB)?[3 +g(Bc>rt(1oB) =0 (3.1)

that comes from it, we obtain
Lt=L+Lpm, 2.13

T M ( ) g(GB)UaB: Mo-’o"‘rl_/ (32)
wherelL is the field Lagrangian,

L = g®F(Ugp + M) +2v/—0A (2.14)

this being Eq. (1-1:5.13) here without the unnecessary factor

2/3 and with the replacement &, by 4. Ly is the interac- gnd

tion matter part, modeled after GR, containing here the gener-

alized nonsymmetric energy-momentum-stress tefygoand L' = g(dﬁ) e rP _ro rP ) (3.4)
the fermionic curren§”, as given by ( (@p)” (oB) ~ (aB)" (ap) )

where

MO =g@Bro _ g@RrP

Therefore, the free Lagrangian can be written as

— _ — ap —
OLm = —Ky/—gTudg™" 4 41/—gS ol g, (2.15) L=MgtLl’ 41, (3.5)
where K = 8MG as usual. Using,/—gdg™® = 3g°F — |\ here
g"Pg,w 89" /2 we can also write
_ Ly =grgg+2V/—0A. (3.6)
Bl = —KTgpd0™P + 4mSar g . (2.16) @
) . i , The variation of the action
Together with the down-indic€gg, defined in (2.15), 7
_ 4
_ 1 8Ly o 17 | = QLd X (3.7
P K=o agR &2 . . . o _
under variations of the field variables will receive no contri-
we will be working with the upper-indices stress tengdY bution of the divergence term because that term leads to an
defined by the variation with respectdg,, integral of M9 over the surfac& enclosing the volume& ,
where the variationsg®® anddg°®,; are required to vanish.
T — 1 6L7M . (218) Therefore
V-9 6gw z I 4
ol=  O(L'+Ly+Ly)d*. 3.8
This second stress is related to the first one [1-1] by Q (L Lot bw)dx (3.8)
Top = GGy TH (2.19)  AsL; does not depend a? ; andL’ not onl g we have

which follows from the relation‘f)gp\,/é')go‘B = —QavQ,p result- , (L +Lq) oL’ ap
ing from the variation of (2.7). It should be kept in mind that O(L'+L1)={ agep - ° agB 139
(2.19) does not imply a rule for lowering indices because this ¢
operation is not defined for a nonsymmetric metric. A better

name for the upper-indices stress would probablyZ®¥ebut oL1 oL’
we shall use the sante for both tensors. Notice that the in- _<aﬁm)5r“ +0o(
verse relation iTH = g“Bgo“’TaB and that both tensors have ’

the same tracg T = g™ Tyg. Also, even for a symmetric  From the requiremerdl = 0 for g°® andar o arbitrary inQ
upper-indices stress as is the case for a pressureless fluid wighit vanishing or it follows the field equations (2.1), (2.2)
the dust-like formT* = putu’, p being the matter rest den- and (2.4), the first two coming from

sity, Tog Will have a symmetric and a nonsymmetric part as B

well. UUB + F[q_’m +/\gUB = KTGB . (310)

s 0L

3, al_(MEFO(). (3.9)
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To obtain this equation one makes use of the two relations using (3.13). With the help of (3.15) and (3.17) we have for
the variationdg®®(x) = g*(x) — g°(x),

oL’ _ 17 _ro p o p
ages - 8 =" ewiop ~Fan (op G 5P — (g% g+ 8 og™ — 87 g — £GP ) . (3.21)
and Taking this and the previous relation into (3.18) and integrat-
K 1 ing by parts théJ,g term yields
_ 1’0 _ _ o —(xorP orP
agr g~ Sap = Top 5%l (g + % e (312) T N
O=I—-I'=—¢ QE {(Ugpg™ +Upqg
the details of which we give in Appendix A. This gives
if we remember thaf‘()Bp) o IS symmetric from (2.12), which 7
comes from (2.3) that was taken for grant from the very be- +e ao{UqB(EO‘QGB + EBguo _ gogaky
ginning. Q
We consider the action corresponding.-to
z 10 (za B B qap _zp OB _ zpyaB
L p (&7 p0™ 4 &7 pd"" — &° pg™F — EFgF,
F—  Ld% (3.14) ap(&p P P p)
Q
which remains invariant under linear coordinate transforma- +L E"}d“x. (3.22)

tions becausd’ transforms as a scalar density under such o _ _ _
a kind of transformations. We consider infinitesimal linearUnder variations which vanish on the bordethe second in-

transformation of the form tegral vanishes, so that for arbitra¥y

X = x4 e8%(x) (3.15) (Uapg®® +Upa 0P — 83Up,07) 6 +Up, 0™ a = 0. (3.23)
with £%=constant o€® s=constant Thence the reduced ac- With this identity the right-hand side of (3.22) is reduced to
tions calculated in the two framels,in (3.14) and its second integral. Next, f&* =arbitrary constants, we find

7 the second identity,
I'= _Ld% 3.16
Q (3.10) 06(Ugp0®® +Upa 0P — 83U, 0P

are equall = 1". They are also equal when ttZ8 (x) are
arbitrary but vanish on the boundaxyf Q because according —L’gygBV,a +3%L) =0. (3.24)

to (3.1)L"differ from a true Lagrangian by a divergence.
We calculate now the difference between these actions. EXinally we consider the vanishing conditi@f,; —arbitrary

. 4 . 4— . .
pressing the volume® in terms ofd"x using (3.15) towrite  ¢onstants, to obtain the last identity which can be derived from

_ L,
detg—x =1+, (3.17)
X UGBQOB =+ UBO{ ch - 68U[3ygl3y
followed byL'(x) = L'(x) +€&°L’,q, the difference between
the actions is given by 9
z —L'8 0 a+83L = M(_2L".;Bg<05>JreSf;L/gyg“% (3.25)
0=I—I= (8L'+g(L &% )d, (3.18)
Q where use has been made of th@ symmetry oﬂ_’gB.
where After substituting the value ofU,g from (3.10) a little
B calculation, with details in Appendix B, yields the follow-
3L'=L(x)—L'(x) . (3.19) ing three equations. From (3.23) we have the matter-response
equation
This is the variation of.’, given by
K(Ta% o+ [BY, Q] TPY) + 410 (g 3 P =0 (3.26)
8L’ = (Lyp — 0oL '35)80%P + 05 (L 3509"P)
where

1
=Uqpdg™? +05(L'9509°) , (3.20) [By, 0] = 5 (9ays + 9pay—Tpy:a) (3.27)
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and where for short In the case of the energy (4.2) involves the compong nf
1 the pseudotensor density given in (3.30),
T’ = E(go,\,T‘JV +0waTY9) . (3.28) _ 1
Kto' = —ég['”ajro . (4.4)
Next the second identity leads to
in accordance with the fact that the gravitational field is sup-

(Ta®+1t%),6=0, (3.29)  posed not to change in time at the boundSnAs it is far
away we have there weak field, being then enough the solu-
where tion in the Minkowskian flat space approximation. In this sit-
1 uation (2.4) and (2.8) become, except for the last term of this
Kt = —éLg;gBVm ~Tapd? last one, similar to the Maxwell equations with the flat space

valueshypg of gjqg and F&D of 'y playing the role of the

field strength and potential. Then we infer that to lowest order

1) By — this fields at large distancesof the origin around which the
+§6“(L +lpyg™ +2AV=0). (3.30) material system is located behaves as
The third identity in (3.25) allows us to write the quantity in- @w F 1 e 1
side the parenthesis of (3.29) as a divergence. Making use of Fo"~—++0(5) & i7" ~0(5) (4.5)
(3.12), (2.10), (2.12) and (3.1) a straightforward calculation,
the details of which are given in Appendix B, leads to the fol-and
lowing final result = 1 1

K(T)\p-i-t)\p) ZA)\po,o , (331)

This is in fact the case as it is discussed in detail in Appendix
€. This means that at infinity' goes as > and higher so the
surface integral in (4.2) fom = 0 indeed vanishes. Therefore,

where the superpotential, as is called the corresponding qua
tity in GR, is given by

1 the energyP, is in fact constant.
APC = 2\/_Tgsm(g(p"‘)g("B> —glegPBhy s (3.32) For the momentum the appropriated component is
. 1 . 1 . .
wheres, 4 is the inverse 0§®® according to Eq. (2.8). Ktj' = _ELgyg(By);j +§ro,jg['0] — (g™

It should be pointed out that the matter-response equation
(3.26) can also be derived [1-1] directly from the matter La-
. 1.
grangian (2.16). +§6'j(L’+F[B7y]g[BV] W) (4.7)
with the cosmological constant now present. This is similar
to the situation present in the work of Tolman [4] in his study
. ) . . o of the conservation laws in GR whénis present. We follow
We will be applying our considerations to a limited system e his considerations. We need the flat space solution of the
whose changes can produce no changes in the gravitationglyyitational field (2.1) involving\. As discussed in Appen-
field on and out of a sufficiently distant boundary surface enyjy p the solution is the Schwazschild metric solution of GR
closing the system. Such a system will be referred to as afith the well knownAr2 term together with th&M/r term
isolated system. If we integrate (3.29) and the surface i, the componentsoo andgii (no sum). Now, as remarked
surrounding the matter distribution located around the originby Tolman [4], in the case of the energy there was no restric-
we obtain tion on how far the boundary was to be taken, it could be the
d z 0 o 13 z whole universe, but not so for the momentum because/&ow
0 (T +1ta") dx+ Stalnidsz 0. (4.1) is present. To have the vanishing of the surface integral as-
sured in this case we have to be at distances large enough so
We will show that the surface integral vanishes, that terms of orderGM,/r)? can be neglected, and at the same
7 time small enough that the cosmological tefir? can be ne-
tindS— 0 (4.2) glected too. The systems at hand are then those which are
s ' ’ small compared to the total dimensions of the universe even
though, of course, very large compared with ordinary terres-

leading to the four conservation of energy and momentumrial dimensions. In this situation the solution for the metric
within the boundary taken is

z 2GM
Py = (Tao +tu0) d3®x = const. (4.3) Yiap) = Nop — T”GB ) (4.8)

IV. CONSERVATION OF ENERGY AND MOMENTUM
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Thence, ag? p) goes ag 2 we see from (3.12), (4.5) and recalling Eq. (3.4). Thence,

(a
(4.6) thattji is of orderr—#, meaning that the surface integral
vanishes. Therefor® is also constant.
We can calculate these constants by integrating (3.31) r
calling the time independence at a far away surfaeaclos-

Ktaa =L’ +g“3V]F[BV] . (57)
Shith the help of Eq. (5.5) we then find

ing the system, K (too—tii) =—glOrg; . (5.8)
. ,
KPy = SAo(Oi n'ds. (4.9)  From (4.3) and (5.3) we can write
z
For a = 0 the asymPTOTIC VALUE OF THE SUPERPO- Pa=  (To®+t®—Ti' —t') d*, (5.9)
TENTIAL IS EASILY FOUND to be A% = 2GMxr—3.
Therefore, and using (5.8),
Z
Po=M. (4.10) Py — (TOO i Kflg[OiJroﬁi) d3x . (5.10)

A similar calculation for the space components leads to the
result The last term inside the brackets can be writteg85 o =
(9911 0) i — g9 ;0. The integral of the first term can be writ-
ten as a surface integral at infinity which vanishes con account
81‘ (4.5) and (4.6). Then by using the field equation Eq. (2.4)
we finally obtain
z
Po= (To®—Ti' +4m1Sro) dx, (5.11)

R=0, (4.12)

as we should expect from the fact that the asymptotic metri
is stationary.

V. THE ENERGY AS AN INTEGRAL OVER THE
MATERIAL SOURCE where the abbreviation in (3.28) should be kept in mind. This
expresses the total energy of a stationary system as an integral
When the field is stationary we can express the total energgver the sources of the field.
of the field as an integral over the material sources, again fol-
lowing the same steps as in GR [4], by neglecting also here
the contribution of the cosmological constant. As the field is VI. APPLICATIONS TO A SPHERICAL SYMMETRIC

time-independent (3.29) reduces to PERFECT FLUID
(To' +14'),i=0, (5.1) The matter stress tensor for a perfect fluid with energy den-
, . . sity p, pressurgp and velocityu! has the same form of the GR
with the help of which we can write expression
To' +ta' = (XI(TaJ+taJ))7j . (5.2) TV = (p+ p)u'¥ — pgV , (6.1)

If we integrate this expression in all space the integral of thgiih the proviso that now the metric is nonsymmetric. This
right-hand side can be written as a surface integral, which vany a5 obtained before [5] in the context of a different nonsym-
ishes This is so because, as we are outside Etswe localized Mayatric theory of gravitation but it is valid in our case too be-
terial smircesTuJ vanishes and far away' ~r—~fora=0  5,se only the field part of the Lagrangians are different, ours
and~ r*for o =i. Thence, being given in (2.14), and they do not interfere in the process

z i - of obtainingTH : Lagrange multipliers enforces the normal-
(To' +1to')d°x=0. (5.3)  ization of u®, conservation of rest mass and of the particle
number and of entropy.
From (3.30) we have, for a stationary field, We consider a spherically symmetric distribution contained
1 in a radiusR and ask for the corresponding form of the matter-
Kte® = = (L'+ g[Jk]r“’k]) ) (5.4) response gquation (3.25). . _ .
2 The static and spherically symmetric metric tensor in polar
Consider now the trace of the same equation, coordinates® =t, x! =r, X’ = © andx’ = ® is of the form
1 Joo = Y(r), g1 = —a(r),
ko = —SLia™ a2l +g®rg,  (55)
Making use of (2.3) and (3.12) we easily find 922 = —17, gsz = —rsin’@,
By _ _og@B) (Fo P o P\ o
Lgyd™a=—29 (r(uﬁ)r(op) r(ﬂp)r(oB)) =21, (5.6) Jo1 = —w(r)=—0o, (6.2)
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a

and all other components equal to zero. The hon-zero compo- 1 B ar(o’y)
S(Eh -+ agerty + g% S

nents of the inverse matrix are then ag)
00 _ a 1_ Y
g - ay_u)z ) g - Gy—(A)Z 9 aro
1 1 1 casB | spxaro (aB) (oY) _
22 _ = 33_ _ —=(& 0 Iy — ———==0. Al
g = 20 g = r23in2@ s 2( p6v+ pa\}) (ay) g ag(w) ( )
01 w 10
= —— = . . . . y .
9 ay—w? 9 (6:3)  contraction with™ lp) gives
In this situation a straightforward calculation shows that the v B vV o
mass-response equation in a commoving frame, whlere0 2r<uB>r<W) B r(uv)r(w)
andu® = (goo) /2, acquires the simple forni £ d/dr)
, 1y 1_. B o
P=—5(P+p) 55N 0. (6.4) y w0 v @ lon
2y 4G T2 ap 9™ g w9 g — 0 (A2)
As a second application we look now for the expression of
the rest energy of the sphef®,= M, from (5.11). Differentiating (3.1) with respect tg"V leads to
Taking (6.1) into (3.28) we obtain
or
o _ oW — pd . ] a (Bo) ___ (Bo) __
Ta © = g(av) (P + P)U’u’ — pdy | (6.5) My +9 g = 0. (A3)
Thence, in commoving coordinaté®,® = p andT, | = —3p. ) . ) ) )
Therefore, (5.10) gives Using these relations a little calculation yields (3.11). For
z (3.12) the same procedure is used. If we differentiate (2.3)

Po= v—-g(p+ 3p+4T|K*150I'0) d3x. (6.6)  with respect t@",, and contract With"{um we obtain

Equations (6.4) and this one are of use when studying the arP aro
interior problem for a bounded spherical perfect fluid system. r?w) + r\</ B)(gng) ﬁ _ g(aﬁ)ﬁ) —
VIl. CONCLUSIONS Differentiation of (3.1) with respect tg",, yields
.. : 1 ra
Giving sequence to a program of study on a theory of grav 7(5[)153 + 5ﬁ58) 4 g(gc) (Bo) _ g

itation based on a nonsymmetric metric [1], we have stud- g0
ied here the conservation laws associated to the theory. As ] ]
in GR the invariance of the Lagrangian under suitable coor!sing these two relations we obtain (3.12).
dinate transformation leads to identities which when supple-
mented by the field equations lead to physical conservation
laws. Here we have established the conservation laws for th&PPENDIX.  B: PROOF OF EQUATIONS (3.26), (3.29) AND
generalized energy and momentum. The energy of a station- (3.31)
ary field could be written as an integral over its sources, which
are the matter stress tensor and the fermionic current density. From (3.10) and (2.6) the expression inside the brackets in
Some applications for a spherically symmetric perfect fluid(3.23) is given by
have been written down with a view to a study of stars.
As atopic for future work it would be interesting to analyze UaBQOB +Ugq g* - 53U[3ygBy
the interior problem for a bounded spherically symmetric per-
fect fluid system as a model for a star. This could be followed
by a study of what the modifications of the predictions of GR = K(Tapg®® + Tpa0™®) — 27 (o5 g P!
are for stelar equilibrium and collapse. This particularly by
the fact that, together with the stress tensor, the matter current
is also a source of gravitation. +83(Mpy o +2A/=0) . (B1)

With this and the relations
APPENDIX. A: PROOF OF EQUATIONS (3.11) AND (3.12)

1
V—9q= nggw a (B2)
If we differentiate (2.3) with respect g*¥) we obtain
B and

} 00 | 5050\ P (ao)__ (oY)
2(5u5v +310)) gy +9 ag) (ZF[G"B]g[GB])p = —r[B,o],ag[OB] _ 8”]_[0(,8]88 , (B3)
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where we have used (2.4) for the last term, we obtain APPENDIX. C:PROOF OF EQUATIONS (4.5) AND (4.6)
K(TGBQOB + TBQQBU),G + K-Fp,ygl}y a+8m [0‘=B]§3 =0. (B4

Next we use (2.19) in the first term and write the second one
as, Jap = Nap + hop » (C1)

T_BVQBV o= TBy\/j99By o= \ﬁngGvagﬁogﬁy a- (BY) where nyg =diag(1,—1,-1,-1) and | hyg |< 1. Thence,
g = o and g = N — hP* wherehP® = nPinvhy,.
Thengl®®l = n%® 4 hl®Bl, Thence, to lowest order (2.4) and
K(gGBTOB +gBaTBO) o~ KTpcgpo.u +8-ni—[g,B]SB =0. (B6) (2.8) become

In the weak field linear approximation we set

Noting thatgp,g®Y « = —gpy,«gP¥ we obtain

Performing theo—differentiation leads directly to equation (1) — 70
(3.26). ’ Y10 e o T ANap = KT g (C2
Taking (B1) into (3.24) leads directly to (3.29). and
Using (B1) in the third identity (3.25) gives a
ap]
K(TAP +1,P) = B\ o (B7) hoF g = ans* . (C3)
where Taking the divergence of (C2), using (C3) and choosing the
1 gaugeaﬁrél) = Oleads to the relation
B,P = _L;\%g(Pﬁ) + éLg\flg@v)a;P\ ) (B8) . ) .
1 —
With the help of (3.12) we obtain QaBaBrﬂ TANS = KaBT[uB] : (C4)
po _ 0 ~PB) _ Z(rH  40p) L B 4(ap) 5o In the time-independent regime we are interested in this gives
B =g 0™ — 5 (M 8™ + M%) P J J
. 02r) = 8mAS, + 20 Tlg) (C5)
—Z3P(re, g - glov)y B9
2% (w8 w9 B9 ith solution
To calculate the first term on the right-hand side of this rela- z —(0)
tion we use (2.10) and make use of (2.12) to write W, 17 BAKH2KT ) (F)
Mg’ (r)= I T d>X. (C6)
1, s B
~(In>)y=(Iny/=g)y—rh . B10
2! 9)"y ( Dy~ (B10) Far away we have
In this way we obtain on 4 z
1 , K =0 , 1
1 rgm:j SN - 5 ainaf](r)d3x+0(r7).
rG g(ap) — 79(0\/)9(“9) (Sq +5 _S(] )
(ah) 2/=9 YA T Ay BA (C7)

The second integral can be converted into a surface integral
surrounding the localized source around the origin and van-

1 ;
+3 <g<0v)5£ —glong) — g<vp>5§) (Iny=g)y—Th,). ishes. Therefore,
. o o (BLY) & 27 ? sy 0 o L
When this is substituted into (B8) we immediately see the Fa'(r)=—— S(NdX+0(). (C8)

cancellation of all the terms involving't‘w). The next step
is to perform a convenient differentiation by parts of theFor a = 0 the integral is equal to the fermionic charge
three terms coming from the first part of the right-handFOF_G =i the mtegral is null because in the time independent
side of (B11). For the first one we Writg(up)sqy)\ — regime the equation of continuity reduces&& = 0 : then
—= 5P _ (ap) for th Gy g@p)e  —  0i(XjS) =Sj and, by going to a surface integral of the first
9.0, — g™ .ySay, for the second ONg™ 79" Swa = term, the integral of the current indeed vanishes. Thence (C8)
(89/=091%")) ¢ — (g g(®)) ¢ 5, and a similar decomposi-

leads to (4.5). Next, we ne far away from the sources
tion for the third on. After using (3.1) we arrive at which aécor?jing :; vac; (Cg)%iz] givenwb)y .

1
po _ S g(pd)g(cﬁ) _ g(ca)g(pB) 1
WP = 5 gl )8 Nog = _KFE;?B] . (C9)
1 From the previous result we find for tlBeandij components
+36:°9% g ,) (812) previos heeme
F X 1 1
When this is substituted into (B7) the divergence of the last  hjoij = —ay +O(r3) ;o hi = O(ﬁ) : (C10

term drops out and, therefore, that equation can be written as
in (3.31). which are the content of (4.6).
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APPENDIX. D: THE LINEAR APPROXIMATION OF (2.1) considered 0n|§l'0<(()J> = p, the mass density, is to survive on the
right-hand side. Thence, for tig® component,
In the weak field linear approximation we have (C1). Then 1
2 2
g(GB) _ naB B (o) 0(hoo+ 3/\I‘ ) =Kp. (D4)

and its inverse isqg = Nap + hgp)- The last term in (2.10) From here follows
involving the determinants is of the second order because 15 2GM 1
g=—1-n%hgg = —1—n%hg = s, to first order.. From hoo + N = +O(Tz)' (D)
here we see that, to the order consideréglIB reduces to ] ) .
the Christoffel symbol. Therefortlyz becomes the first-  FOr thei0 component (D3) givelo = 0 and for theij com-
order Ricci tensor and we are in the same situation as in GRPONent the resultis

Thence, in harmonic coordinate$,g — Nagh/2), B—0, the 1 2GM 1
field equation (2.1) reduces to hij — é/\rzéi j=——8+0(3) (D6)

—hap,"o +2ANgg = 2KT_G(8> . (D2) Therefore, the non-null metric components are
For time independent fields and noting thatr? = 6 this goo=1— 2GM _ }/\r2+0(i) (D7)
equation gives r 3 r2

and
P (hag + 3APN4p) = (TS0~ Znapn®Te). (D3
3 w2 2GM 1, ., 1

_ gij = —8ij(1+———3Ar) +0(3) (D8)

where according to (2.19) the zeroth-order down and upper-

indices stress are related 15,;(/8) = nuunBVTm)W. Tothe order involving theA term as in GR, as stated in the text.
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