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The conservation laws associated with a previously studied metric nonsymmetric theory of gravitation are
established and their physical significance is discussed. Conservation laws are obtained for the generalized
energy and momentum. Some applications of the results are made for a spherically symmetric fluid with a view
to future study of stelar equilibrium.

I. INTRODUCTION

In previous works [1] a generalized theory of gravitation
based on a nonsymmetric metric tensorgαβ have been stud-
ied. After establishing the field equations in [1-I] their solu-
tion for a point source mass was obtained in [1-II], together
with its implications for the motion of test particles and light.
The theory was shown to be consistent with the four classi-
cal solar tests of general relativity (GR). Next, in [1-III], the
electromagnetic field was included into the theory and the so-
lution for a point charge was obtained. In a more recent pa-
per, ]1-IV], it was shown that the theory is definitely free of
ghost-negative radiative modes even when expanded around a
Riemannian GR background space.

The sources of the field are the energy-momentum-stress
tensorTαβ and the fermionic current densitySα. For a macro-
scopic system this current is taken to beSα = f nuα, where f
is the coupling to the geometry,uα is the velocity andn is the
rest number density found, for instance, in the description of
the interior of stars (electrons, protons and neutrons).

It is the aim of this paper to establish the conservation laws
for the generalized energy and momentum and discuss their
physical significance. Some of the results are applied to a
perfect fluid with a view to future application to the study of
stelar equilibrium.

The paper is organized as follows. We present the field
equations in Sec. II. In Sec. III the Variational Principle is
discussed and the conservation of energy and momentum are
established. In Sec. IV we will deduce an equation express-
ing the total energy of a system as an integral over the sources
of the field. In Sec. V we make some applications to a static
spherically symmetric perfect fluid. In Sec. VI we draw our
conclusions and highlight future works.

II. THE FIELD EQUATIONS

The field equations of the theory are [1-1]

Uαβ +Λg(αβ) = κT(αβ), (2.1)

Λg[αβ,γ] = κT [αβ,γ], (2.2)

g(αβ),γ +g(ασ)Γβ
(σγ) +g(βσ)Γα

(σγ)−g(αβ)Γσ
(σγ) = 0 , (2.3)

and

g[αβ]
,β = 4πSα . (2.4)

We use the notationa(αβ) = (aαβ +aβα)/2 anda[αβ] = (aαβ−
aβα)/2 for the symmetric and antisymmetric parts ofaαβ and
the notationa[αβ,γ] = a[αβ],γ + a[γα],β + a[βγ],α for the curl of
a[αβ]. In the first equation

Uαβ = Γσ
(αβ),σ−Γσ

(βσ),α +Γσ
(αβ)Γ

ρ
(ρσ)−Γσ

(αρ)Γ
ρ
(σβ), (2.5)

symmetric because the second term is (see (2.12) below) and
containing only the symmetric part of the connection, is the
analogue of the Ricci tensor.Λ is the cosmological constant
and we have used the notation

Tαβ = Tαβ−
1
2

gαβT . (2.6)

In (2.3) and (2.4) the notationX =
√−gX with g=det(gαβ) is

being used andgαβ is the inverse ofgαβ as defined by

gαβgαγ = gβαgγα = δβ
γ . (2.7)

Equation (2.2), came as the result of

Γ[α,β] +Λg[αβ] = κT [αβ] , (2.8)

where Γα = Γµ
[αµ] is a vector involving contractions of the

antisymmetric part of the connection. From (2.4) we have
∂αSα = 0, the equation of continuity for the fermionic cur-
rent, saying that

F =
Z

S0d3x (2.9)

is a constant. This is the fermionic charge of the system.
Equation (2.3) can be solved for the symmetric part of the

connection (1-I) giving ,

Γσ
(αβ) =

1
2

g(σγ) (sαγ,β +sβγ,α−sαβ,γ
)

+
1
4

(
g(σγ)sαβ−δσ

αδγ
β−δγ

αδσ
β

)(
ln

s
g

)

,γ
,(2.10)
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wheresαβ, symmetric and with determinants, is the inverse
of g(αβ) as defined by

sαβg(αγ) = δγ
β . (2.11)

In deriving Eq. (2.10) from (2.3) we come across the relation

Γσ
(βσ) =

(
ln
−g√−s

)

,β
, (2.12)

which can be re-obtained from (2.3). One then sees that the
second term on the right of (2.5) is in fact symmetric.

The total Lagrangian density we ended up with in [1-I] is

LT = L +LM, (2.13)

whereL is the field Lagrangian,

L = gαβ(Uαβ +Γ[α,β])+2
√−gΛ , (2.14)

this being Eq. (1-I:5.13) here without the unnecessary factor
2/3 and with the replacement of∆α by Γα. LM is the interac-
tion matter part, modeled after GR, containing here the gener-
alized nonsymmetric energy-momentum-stress tensorTαβ and
the fermionic currentSα, as given by

δLM =−κ
√−gTαβδgαβ +4π

√−gSαδΓα, (2.15)

where κ = 8πG as usual. Using
√−gδgαβ = δgαβ −

gαβgµνδgµν/2 we can also write

δLM =−κT̄αβδgαβ +4πSαδΓα . (2.16)

Together with the down-indicesTαβ, defined in (2.15),

Tαβ =− 1
κ
√−g

δLM

δgαβ , (2.17)

we will be working with the upper-indices stress tensorTµν

defined by the variation with respect togµν,

Tµν =
1

κ
√−g

δLM

δgµν
. (2.18)

This second stress is related to the first one [1-I] by

Tαβ = gανgµβTµν , (2.19)

which follows from the relationδgµν/δgαβ =−gανgµβ result-
ing from the variation of (2.7). It should be kept in mind that
(2.19) does not imply a rule for lowering indices because this
operation is not defined for a nonsymmetric metric. A better
name for the upper-indices stress would probably beZµν but
we shall use the sameT for both tensors. Notice that the in-
verse relation isTµν = gµβgανTαβ and that both tensors have
the same tracegµνTµν = gαβTαβ. Also, even for a symmetric
upper-indices stress as is the case for a pressureless fluid with
the dust-like formTµν = ρuµuν, ρ being the matter rest den-
sity, Tαβ will have a symmetric and a nonsymmetric part as
well.

III. THE VARIATIONAL PRINCIPLE

We will now derive the field equations and the differential
form of the conservation laws following the standard proce-
dure in GR [3]. Following the same strategy as in GR we take
(2.3) for grant and use it to get rid of the second-order deriv-
atives of the metric which are present in the termg(αβ)Uαβ
of the free Lagrangian (2.14). Upon contraction of (2.5) with
g(αβ) and making use of (2.3) and

g(αβ),β +g(βσ)Γα
(σβ) = 0 (3.1)

that comes from it, we obtain

g(αβ)Uαβ= Mσ
,σ+L ′ (3.2)

where

Mσ = g(αβ)Γσ
(αβ)−g(σβ)Γρ

(βρ) (3.3)

and

L ′ = g(αβ)
(

Γσ
(αρ)Γ

ρ
(σβ)−Γσ

(αβ)Γ
ρ
(σρ)

)
. (3.4)

Therefore, the free Lagrangian can be written as

L = Mσ,σ +L ′+L1 (3.5)

where

L1 = gαβΓ[α,β] +2
√−gΛ . (3.6)

The variation of the action

I =
Z

Ω
Ld4x (3.7)

under variations of the field variables will receive no contri-
bution of the divergence term because that term leads to an
integral ofMσ over the surfaceΣ enclosing the volumeΩ ,
where the variationsδgαβ andδgαβ,σ are required to vanish.
Therefore

δI =
Z

Ω
δ(L ′+L1 +LM)d4x . (3.8)

As L1 does not depend ongαβ,σ andL ′ not onΓα,β we have

δ(L ′+L1) = {∂(L ′+L1)
∂gαβ −∂σ

∂L ′

∂gαβ,σ
}δgαβ

−(∂β
∂L1

∂Γα,β
)δΓα +∂σ(

∂L ′

∂gαβ,σ
δgαβ +

∂L1

∂Γα,σ
δΓα). (3.9)

From the requirementδI = 0 for δgαβ andδΓα arbitrary inΩ
but vanishing onΣ it follows the field equations (2.1), (2.2)
and (2.4), the first two coming from

Uαβ +Γ[α,β] +Λgαβ = κTαβ . (3.10)
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To obtain this equation one makes use of the two relations

∂L ´

∂gαβ = L ´αβ = Γσ
(αβ)Γ

ρ
(σρ)−Γσ

(αρ)Γ
ρ
(σβ) (3.11)

and

∂L ´

∂gαβ σ
= L ′σαβ =−Γσ

(αβ) +
1
2
(δσ

αΓρ
(βρ) +δσ

βΓρ
(αρ)) , (3.12)

the details of which we give in Appendix A. This gives

L άβ−∂σL ′σαβ = Uαβ (3.13)

if we remember thatΓρ
(βρ),α is symmetric from (2.12), which

comes from (2.3) that was taken for grant from the very be-
ginning.

We consider the action corresponding toL´

Í =
Z

Ω
L´d4x (3.14)

which remains invariant under linear coordinate transforma-
tions becauseL´ transforms as a scalar density under such
a kind of transformations. We consider infinitesimal linear
transformation of the form

x̄α = xα + εξα(x) , (3.15)

with ξα=constant orξα
,σ=constant Thence the reduced ac-

tions calculated in the two frames,I ´ in (3.14) and

Ī́ =
Z

Ω̄
L̄´d4x̄ (3.16)

are equal,Ī́ = I ´. They are also equal when theξα(x) are
arbitrary but vanish on the boundaryΣ of Ω because according
to (3.1)L´differ from a true Lagrangian by a divergence.

We calculate now the difference between these actions. Ex-
pressing the volumed4x in terms ofd4x̄ using (3.15) to write

det
∂x̄
∂x

= 1+ εξσ
,σ (3.17)

followed by L̄ ′(x̄) = L̄ ′(x)+ εξσL ′,σ, the difference between
the actions is given by

0 = Ī́ − Í =
Z

Ω

(
δL ′+ ε(Ĺ ξσ),σ

)
d4x , (3.18)

where

δL ′= L̄́(x)−L ′(x) . (3.19)

This is the variation ofL ′, given by

δL ′ = (L ′αβ−∂σL ′σαβ)δgαβ +∂σ(L ′σαβδgαβ)

=Uαβδgαβ +∂σ(L ′σαβδgαβ) , (3.20)

using (3.13). With the help of (3.15) and (3.17) we have for
the variationδgαβ(x) = ḡαβ(x)−gαβ(x),

δgαβ = ε(ξα
,σgσβ +ξβ

,σgασ−ξσ
,σgαβ−ξσgαβ

,σ) . (3.21)

Taking this and the previous relation into (3.18) and integrat-
ing by parts theUαβ term yields

0 = Ī́ − Í =−ε
Z

Ω
ξα{(Uαβgσβ +Uβαgβσ

−δσ
αUβγg

βγ),σ +Uβγg
βγ

,α}d4x

+ε
Z

Ω
∂σ{Uαβ(ξαgσβ +ξβgασ−ξσgαβ)

+L ′σαβ(ξ
α

,ρgρβ +ξβ
,ρgαρ−ξρ

,ρgαβ−ξρgαβ
,ρ)

+Ĺ ξσ}d4x . (3.22)

Under variations which vanish on the borderΣ the second in-
tegral vanishes, so that for arbitraryξα

(Uαβgσβ +Uβαgβσ−δσ
αUβγg

βγ),σ +Uβγg
βγ

,α = 0 . (3.23)

With this identity the right-hand side of (3.22) is reduced to
its second integral. Next, forξα =arbitrary constants, we find
the second identity,

∂σ(Uαβgσβ +Uβαgβσ−δσ
αUβγg

βγ

−L ′σβγg
βγ

,α +δσ
αĹ) = 0 . (3.24)

Finally we consider the vanishing conditionξα,σ =arbitrary
constants, to obtain the last identity which can be derived from
L ,́

Uαβgσβ +Uβαgβσ−δσ
αUβγg

βγ

−L ′σβγg
βγ

,α +δσ
αĹ =

∂
∂xρ (−2L ′ραβg(σβ)+δσ

αL ′ρβγg
(βγ)) (3.25)

where use has been made of theα,β symmetry ofL ′ραβ.

After substituting the value ofUαβ from (3.10) a little
calculation, with details in Appendix B, yields the follow-
ing three equations. From (3.23) we have the matter-response
equation

κ(Tα
σ

,σ +[βγ,α]Tβγ)+4πΓ[α,β]S
β = 0 (3.26)

where

[βγ,α] =
1
2
(gαγ,β +gβα,γ−gβγ,α ) (3.27)
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and where for short

Tα
σ ≡ 1

2
(gανTσν +gναTνσ) . (3.28)

Next the second identity leads to

(Tα
σ + tα

σ) ,σ = 0 , (3.29)

where

κtα
σ =−1

2
L ′σβγg

βγ,α−Γ[α,β]g
[σβ]

+
1
2

δσ
α(L ′+Γ[β,γ]g

[βγ] +2Λ
√−g) . (3.30)

The third identity in (3.25) allows us to write the quantity in-
side the parenthesis of (3.29) as a divergence. Making use of
(3.12), (2.10), (2.12) and (3.1) a straightforward calculation,
the details of which are given in Appendix B, leads to the fol-
lowing final result

κ(Tλ
ρ + tλ

ρ) = Aλ
ρσ,σ , (3.31)

where the superpotential, as is called the corresponding quan-
tity in GR, is given by

Aλ
ρσ =

1
2
√−g

sλα(g(ρα)g(σβ)−g(σα)g(ρβ)),β (3.32)

wheresλα is the inverse ofg(λα) according to Eq. (2.8).
It should be pointed out that the matter-response equation

(3.26) can also be derived [1-I] directly from the matter La-
grangian (2.16).

IV. CONSERVATION OF ENERGY AND MOMENTUM

We will be applying our considerations to a limited system
whose changes can produce no changes in the gravitational
field on and out of a sufficiently distant boundary surface en-
closing the system. Such a system will be referred to as an
isolated system. If we integrate (3.29) and callS the surface
surrounding the matter distribution located around the origin,
we obtain

d
dx0

Z (
Tα

0 + tα
0)d3x+

Z

S
tα

inidS= 0 . (4.1)

We will show that the surface integral vanishes,

Z

S
tα

inidS= 0 , (4.2)

leading to the four conservation of energy and momentum
within the boundary taken

Pα =
Z (

Tα
0 + tα

0)d3x = const. (4.3)

In the case of the energy (4.2) involves the componentt0
i of

the pseudotensor density given in (3.30),

κt0
i =−1

2
g[i j ]∂ jΓ0 . (4.4)

in accordance with the fact that the gravitational field is sup-
posed not to change in time at the boundaryS. As it is far
away we have there weak field, being then enough the solu-
tion in the Minkowskian flat space approximation. In this sit-
uation (2.4) and (2.8) become, except for the last term of this
last one, similar to the Maxwell equations with the flat space

valuesh[αβ] of g[αβ] and Γ(1)
α of Γα playing the role of the

field strength and potential. Then we infer that to lowest order
this fields at large distancesr of the origin around which the
material system is located behaves as

Γ(1)
0 ∼ F

r
+O(

1
r2 ) ; Γ(1)

i ∼O(
1
r2 ) (4.5)

and

h[0i] ∼
F
r2 +O(

1
r3 ) ; h[i j ] ∼O(

1
r3 ) . (4.6)

This is in fact the case as it is discussed in detail in Appendix
C. This means that at infinityt0

i goes asr−5 and higher so the
surface integral in (4.2) forα = 0 indeed vanishes. Therefore,
the energyP0 is in fact constant.

For the momentum the appropriated component is

κt j
i =−1

2
L ′iβγg

(βγ), j +
1
2

Γ0, jg[i0]−Γ[ j,k]g
[ik]

+
1
2

δi
j(L

′+Γ[β,γ]g
[βγ] +2Λ

√−g) (4.7)

with the cosmological constant now present. This is similar
to the situation present in the work of Tolman [4] in his study
of the conservation laws in GR whenΛ is present. We follow
then his considerations. We need the flat space solution of the
gravitational field (2.1) involvingΛ. As discussed in Appen-
dix D the solution is the Schwazschild metric solution of GR
with the well knownΛr2 term together with theGM/r term
in the componentsg00 andgii (no sum). Now, as remarked
by Tolman [4], in the case of the energy there was no restric-
tion on how far the boundary was to be taken, it could be the
whole universe, but not so for the momentum because nowΛ
is present. To have the vanishing of the surface integral as-
sured in this case we have to be at distances large enough so
that terms of order (GM/r)2 can be neglected, and at the same
time small enough that the cosmological termΛr2 can be ne-
glected too. The systems at hand are then those which are
small compared to the total dimensions of the universe even
though, of course, very large compared with ordinary terres-
trial dimensions. In this situation the solution for the metric
is

g(αβ) = ηαβ−
2GM

r
ηαβ . (4.8)
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Thence, asΓσ
(αβ) goes asr−2 we see from (3.12), (4.5) and

(4.6) thatt j
i is of orderr−4, meaning that the surface integral

vanishes. Therefore,Pi is also constant.
We can calculate these constants by integrating (3.31) re-

calling the time independence at a far away surfaceSenclos-
ing the system,

κPα =
Z

S
Aα

0inidS. (4.9)

For α = 0 the asymPTOTIC VALUE OF THE SUPERPO-
TENTIAL IS EASILY FOUND to be A0

0i = 2GMxir−3.
Therefore,

P0 = M . (4.10)

A similar calculation for the space components leads to the
result

Pi = 0 , (4.11)

as we should expect from the fact that the asymptotic metric
is stationary.

V. THE ENERGY AS AN INTEGRAL OVER THE
MATERIAL SOURCE

When the field is stationary we can express the total energy
of the field as an integral over the material sources, again fol-
lowing the same steps as in GR [4], by neglecting also here
the contribution of the cosmological constant. As the field is
time-independent (3.29) reduces to

(Tα
i + tα

i),i = 0 , (5.1)

with the help of which we can write

Tα
i + tα

i =
(
xi(Tα

j + tα
j)
)
, j . (5.2)

If we integrate this expression in all space the integral of the
right-hand side can be written as a surface integral, which van-
ishes This is so because, as we are outside the localized ma-
terial sources,Tα

j vanishes and far awaytα
j ∼ r−5 for α = 0

and∼ r−4 for α = i. Thence,
Z

(Tα
i + tα

i)d3x = 0 . (5.3)

From (3.30) we have, for a stationary field,

κt0
0 =

1
2
(L´+g[ jk]Γ[ j,k]) . (5.4)

Consider now the trace of the same equation,

κtα
α =−1

2
L ′αβγg

(βγ),α +2L ′+g[β,γ]Γ[β,γ] (5.5)

Making use of (2.3) and (3.12) we easily find

L ′αβγg
βγ,α =−2g(αβ)

(
Γσ

(αβ)Γ
ρ
(σρ)−Γσ

(αρ)Γ
ρ
(σβ)

)
= 2L ′, (5.6)

recalling Eq. (3.4). Thence,

κtα
α = L ′+g[βγ]Γ[β,γ] . (5.7)

With the help of Eq. (5.5) we then find

κ
(
t0

0− t i
i) =−g[0i]Γ0,i . (5.8)

From (4.3) and (5.3) we can write

Pα =
Z (

T0
0 + t0

0−T i
i − t i

i)d3x , (5.9)

and using (5.8),

P0 =
Z (

T0
0−T i

i −κ−1g[0i]Γ0,i

)
d3x . (5.10)

The last term inside the brackets can be written asg[0i]Γ0,i =
(g[0i]Γ0),i−g[0i]

,iΓ0. The integral of the first term can be writ-
ten as a surface integral at infinity which vanishes con account
of (4.5) and (4.6). Then by using the field equation Eq. (2.4)
we finally obtain

P0 =
Z (

T0
0−T i

i +4πκ−1S0Γ0
)

d3x , (5.11)

where the abbreviation in (3.28) should be kept in mind. This
expresses the total energy of a stationary system as an integral
over the sources of the field.

VI. APPLICATIONS TO A SPHERICAL SYMMETRIC
PERFECT FLUID

The matter stress tensor for a perfect fluid with energy den-
sity ρ, pressurep and velocityuµ has the same form of the GR
expression

Tµν = (ρ+ p)uµuν− pgµν , (6.1)

with the proviso that now the metric is nonsymmetric. This
was obtained before [5] in the context of a different nonsym-
metric theory of gravitation but it is valid in our case too be-
cause only the field part of the Lagrangians are different, ours
being given in (2.14), and they do not interfere in the process
of obtainingTµν : Lagrange multipliers enforces the normal-
ization of uα, conservation of rest mass and of the particle
number and of entropy.

We consider a spherically symmetric distribution contained
in a radiusRand ask for the corresponding form of the matter-
response equation (3.26).

The static and spherically symmetric metric tensor in polar
coordinatesx0 = t, x1 = r, x2 = Θ andx3 = Φ is of the form

g00 = γ(r), g11 =−α(r),

g22 = −r2, g33 =−r2sin2Θ,

g01 = −ω(r) =−g10, (6.2)
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and all other components equal to zero. The non-zero compo-
nents of the inverse matrix are then

g00 =
α

αγ−ω2 , g11 =− γ
αγ−ω2 ,

g22 = − 1
r2 , g33 =− 1

r2sin2Θ
,

g01 =
ω

αγ−ω2 =−g10 . (6.3)

In this situation a straightforward calculation shows that the
mass-response equation in a commoving frame, whereui = 0
andu0 = (g00)−1/2, acquires the simple form (´= d/dr)

ṕ =−1
2

γ́
γ
(ρ+ p)− 1

4G
Γ 0́S0 . (6.4)

As a second application we look now for the expression of
the rest energy of the sphere,P0 = M, from (5.11).

Taking (6.1) into (3.28) we obtain

Tα
σ = g(αν)(ρ+ p)uσuν− pδσ

α . (6.5)

Thence, in commoving coordinates,T0
0 = ρ andTi

i =−3p.
Therefore, (5.10) gives

P0 =
Z √−g

(
ρ+3p+4πκ−1S0Γ0

)
d3x . (6.6)

Equations (6.4) and this one are of use when studying the
interior problem for a bounded spherical perfect fluid system.

VII. CONCLUSIONS

Giving sequence to a program of study on a theory of grav-
itation based on a nonsymmetric metric [1], we have stud-
ied here the conservation laws associated to the theory. As
in GR the invariance of the Lagrangian under suitable coor-
dinate transformation leads to identities which when supple-
mented by the field equations lead to physical conservation
laws. Here we have established the conservation laws for the
generalized energy and momentum. The energy of a station-
ary field could be written as an integral over its sources, which
are the matter stress tensor and the fermionic current density.
Some applications for a spherically symmetric perfect fluid
have been written down with a view to a study of stars.

As a topic for future work it would be interesting to analyze
the interior problem for a bounded spherically symmetric per-
fect fluid system as a model for a star. This could be followed
by a study of what the modifications of the predictions of GR
are for stelar equilibrium and collapse. This particularly by
the fact that, together with the stress tensor, the matter current
is also a source of gravitation.

APPENDIX. A: PROOF OF EQUATIONS (3.11) AND (3.12)

If we differentiate (2.3) with respect tog(µν) we obtain

1
2
(δα

µδσ
ν +δσ

µδα
ν )Γβ

(σγ) +g(ασ)
∂Γβ

(σγ)

∂g(µν)

1
2
(δβ

µδσ
ν +δσ

µδβ
ν)Γα

(σγ) +g(βσ)
∂Γα

(σγ)

∂g(µν)

−1
2
(δα

µδβ
ν +δβ

µδα
ν )Γσ

(σγ)−g(αβ)
∂Γσ

(σγ)

∂g(µν) = 0 . (A1)

Contraction withΓγ
(αβ) gives

2Γγ
(µβ)Γ

β
(γν)−Γγ

(µν)Γ
σ
(γσ)

+2Γγ
(αβ)g

(ασ)
∂Γβ

(σγ)

∂g(µν) −Γγ
(αβ)g

(αβ)
∂Γσ

(σγ)

∂g(µν) = 0 . (A2)

Differentiating (3.1) with respect togµν leads to

Γα
(µν) +g(βσ)

∂Γα
(βσ)

∂g(µν) = 0 . (A3)

Using these relations a little calculation yields (3.11). For
(3.12) the same procedure is used. If we differentiate (2.3)
with respect togµν,ρ and contract withΓγ

(αβ) we obtain

Γρ
(µν) +Γγ

(αβ)(2g(ασ)
∂Γβ

(αγ)

∂gµν,ρ
−g(αβ)

∂Γσ
(σγ)

∂gµν,ρ
) = 0 .

Differentiation of (3.1) with respect togµν,ρ yields

1
2
(δρ

µδα
ν +δα

µδρ
ν)+g(βσ)

Γα
(βσ)

gµν,ρ
= 0 .

Using these two relations we obtain (3.12).

APPENDIX. B: PROOF OF EQUATIONS (3.26), (3.29) AND
(3.31)

From (3.10) and (2.6) the expression inside the brackets in
(3.23) is given by

Uαβgσβ +Uβαgβσ−δσ
αUβγg

βγ

= κ(Tαβgσβ +Tβαgβσ)−2Γ[α,β]g
[σβ]

+δσ
α(Γ[β,γ]g

[βγ] +2Λ
√−g) . (B1)

With this and the relations

√−g,α =
1
2

gµνgµν
,α (B2)

and

(2Γ[α,β]g
[σβ]),σ =−Γ[β,σ],αg[σβ]−8πΓ[α,β]S

β , (B3)
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where we have used (2.4) for the last term, we obtain

κ(Tαβgσβ +Tβαgβσ),σ +κT̄βγg
βγ

,α +8πΓ[α,β]S
β = 0 . (B4)

Next we use (2.19) in the first term and write the second one
as,

T̄βγg
βγ

,α = Tβγ
√−ggβγ

,α =
√−gTρσgργgβσgβγ

,α . (B5)

Noting thatgργgβγ
,α =−gργ,αgβγ we obtain

κ(gαβTσβ +gβαTβσ),σ−κTρσgρσ,α +8πΓ[α,β]S
β = 0 . (B6)

Performing theσ−differentiation leads directly to equation
(3.26).

Taking (B1) into (3.24) leads directly to (3.29).
Using (B1) in the third identity (3.25) gives

κ(Tλ
ρ + tλ

ρ) = Bλ
ρσ,σ (B7)

where

Bλ
ρσ =−L ′σλβg(ρβ) +

1
2

L ′σβγg
(βγ)δρ

λ . (B8)

With the help of (3.12) we obtain

Bλ
ρσ = Γσ

(λβ)g
(ρβ)− 1

2
(Γµ

(µλ)g
(σρ) +Γµ

(µα)g
(αρ)δσ

λ)

−1
2

δρ
λ(Γ

σ
(µν)g

(µν)−Γµ
(µν)g

(σν)) . (B9)

To calculate the first term on the right-hand side of this rela-
tion we use (2.10) and make use of (2.12) to write

1
2
(ln

s
g
),γ = (ln

√−g),γ−Γµ
(µγ) . (B10)

In this way we obtain

Γσ
(αλ)g

(αρ) =
1

2
√−g

g(σγ)g(αρ) (sαγλ +sλγ,α−sαβ,λ
)

+
1
2

(
g(σγ)δρ

λ−g(σρ)δγ
λ−g(γρ)δσ

λ

)
(ln
√−g),γ−Γµ

(µγ)) .

(B11)
When this is substituted into (B8) we immediately see the
cancellation of all the terms involvingΓµ

(µγ). The next step
is to perform a convenient differentiation by parts of the
three terms coming from the first part of the right-hand
side of (B11). For the first one we writeg(αρ)sαγ,λ =√−g,λ δρ

λ − g(αρ),γ sαγ, for the second oneg(σγ)g(αρ)sλγ,α =
(δσ

λ
√−gg(αρ)),α−(g(σγ)g(αρ)),α sλγ and a similar decomposi-

tion for the third on. After using (3.1) we arrive at

Bλ
ρσ =

1
2
√−g

sλα(g(ρα)g(σβ)−g(σα)g(ρβ)),β

+
1
2
(δλ

σg(ρα)
,α−g(ρσ)

,λ) . (B12)

When this is substituted into (B7) the divergence of the last
term drops out and, therefore, that equation can be written as
in (3.31).

APPENDIX. C: PROOF OF EQUATIONS (4.5) AND (4.6)

In the weak field linear approximation we set

gαβ = ηαβ +hαβ , (C1)

where ηαβ =diag(1,−1,−1,−1) and | hαβ |¿ 1. Thence,
g[αβ] = h[αβ] and gαβ = ηαβ − hβα wherehβα = ηβµηανhµν.

Theng[αβ] = ηαβ + h[αβ]. Thence, to lowest order (2.4) and
(2.8) become

Γ(1)
[α,β] +Λh[αβ] = κT

(0)
[αβ] (C2)

and

h[αβ]
,β = 4πSα . (C3)

Taking the divergence of (C2), using (C3) and choosing the

gauge∂βΓ(1)
β = 0 leads to the relation

1
2

∂β∂βΓ(1)
α +4πΛSα = κ∂βT

(0)
[αβ] . (C4)

In the time-independent regime we are interested in this gives

∇2Γ(1)
α = 8πΛSα +2κ∂iT

(0)
[αi] , (C5)

with solution

Γ(1)
α (r) =− 1

4π

Z (8πΛSα +2κ∂iT
(0)
[αi])(ŕ)

| r − ŕ | d3x́. (C6)

Far away we have

Γ(1)
α (r) =−2Λ

r

Z
Sα(ŕ)d3x́− κ

2πr

Z
∂iT

(0)
[αi](ŕ)d

3x́+O(
1
r2 ) .

(C7)
The second integral can be converted into a surface integral
surrounding the localized source around the origin and van-
ishes. Therefore,

Γ(1)
α (r) =−2Λ

r

Z
Sα(ŕ)d3x́+O(

1
r2 ) . (C8)

For α = 0 the integral is equal to the fermionic chargeF .
For α = i the integral is null because in the time independent
regime the equation of continuity reduces to∂iSi = 0 : then
∂i(x jSi) = Sj and, by going to a surface integral of the first
term, the integral of the current indeed vanishes. Thence (C8)
leads to (4.5). Next, we needh[αβ] far away from the sources
which, according to Eq. (C2), is given by

h[αβ] =− 1
Λ

Γ(1)
[α,β] . (C9)

From the previous result we find for the0i andi j components

h[0i] =− F
r2

xi

r
+O(

1
r3 ) ; h[i j ] = O(

1
r3 ) , (C10)

which are the content of (4.6).
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APPENDIX. D: THE LINEAR APPROXIMATION OF (2.1)

In the weak field linear approximation we have (C1). Then

g(αβ) = ηαβ−h(αβ) (D1)

and its inverse issαβ = ηαβ + h(αβ). The last term in (2.10)
involving the determinants is of the second order because
g = −1−ηαβhαβ = −1−ηαβh(αβ) = s, to first order.. From
here we see that, to the order considered,Γσ

αβ reduces to
the Christoffel symbol. ThereforeUαβ becomes the first-
order Ricci tensor and we are in the same situation as in GR.
Thence, in harmonic coordinates,(hαβ−ηαβh/2), β = 0, the
field equation (2.1) reduces to

−hαβ,
σ

σ +2Ληαβ = 2κT̄(0)
αβ . (D2)

For time independent fields and noting that∇2r2 = 6 this
equation gives

∇2(hαβ +
1
3

Λr2ηαβ) = 2κ(T(0)
αβ −

1
2

ηαβηµνT(0)
µν ), (D3)

where according to (2.19) the zeroth-order down and upper-

indices stress are related byT(0)
αβ = ηαµηβνT(0)µν. To the order

considered onlyT(0)
00 = ρ, the mass density, is to survive on the

right-hand side. Thence, for the00component,

∇2(h00+
1
3

Λr2) = κρ. (D4)

From here follows

h00+
1
3

Λr2 =−2GM
r

+O(
1
r2 ). (D5)

For thei0 component (D3) givesh0i = 0 and for thei j com-
ponent the result is

hi j − 1
3

Λr2δi j =−2GM
r

δi j +O(
1
r2 ). (D6)

Therefore, the non-null metric components are

g00 = 1− 2GM
r

− 1
3

Λr2 +O(
1
r2 ) (D7)

and

gi j =−δi j (1+
2GM

r
− 1

3
Λr2)+O(

1
r2 ) (D8)

involving theΛ term as in GR, as stated in the text.
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