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Is the Cosmological Particle Production Homogeneous?
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Using a gauge-invariant formalism we find the density contrast equation in a cosmological scenario with par-
ticle production at the expenses of the gravitational field (open system cosmology). First, we find the modes for
the density contrast considering that the particle production process participate of the inhomogeneities forma-
tion, and in a second phase the creation process mimics the inclusion of the a smoothΛ term , in the sense that
it is not affects small deviations from homogeneity. The cosmic background has an accelerated regime, where
an additional pressure due to the creation process is responsible for the cosmic acceleration. We study in this
work if the creation process of particles in the cosmic fluid contributes to the inhomogeneities formation in an
accelerated universe.

I. INTRODUCTION

The mathematical theory of perturbations in homogeneous,
isotropic models has been worked over many times in the lit-
erature [1]-[7]. Nevertheless, troubling questions still remain
about the physical interpretation of density perturbations at
early times when the perturbation is larger than the particle
horizon, which will here mean when the time for light to travel
a characteristic wavelength of the perturbation is larger than
the instantaneous expansion time. These questions are partic-
ularly relevant to attempt to explain the origin of perturbations
which eventually give rise to the structure formation at large
scale.

The study of perturbations of an expanding universe would
appear to be hopelessly gauge dependent. However, J.
Bardeen [2] gave an important contribution to define pertur-
bations that are gauge invariant quantities which were non-
geometrical defined with respect to a particular chart. Ellis
and Bruni [3] gave an alternative approach to gauge invariant
cosmological perturbations with basic variables more closely
related to the physical quantities. They look for variables
which vanish in the background, since the quantities of this
kind are always gauge independents. The gauge invariant key
variable is the comoving fractional spatial gradient of the en-
ergy density. In this study, we use an approach to cosmo-
logical perturbations which is thermodynamically oriented,
gauge-invariant description of scalar cosmological perturba-
tions around a flat homogeneous universe. All basic variables
have their meaning on ‘comoving hyper-surfaces‘, orthogo-
nal to the matter world lines. Thermodynamic perturbations
relations in Minkowski spacetime turn-out to be valid in the
expanding universe, provided all perturbed quantities are re-
placed by their gauge-invariant counterparts. We consider a
background with a cosmic creation of particles at the expenses
of the gravitational field. The creation process redefines the
energy momentum tensor and an additional pressure appear,
the pressure creation. Bulk viscosity and matter creation gen-
erate cosmological models with same physical properties , but
the identity between the two process is not generically valid.
Cosmic dynamics generated by each can be mimicked by the
other one. However, the thermodynamic features are quite
different [8].

We obtain the equation for the evolution of the density con-
trast and the respective modes for OSC. Two different situa-
tions are considered: first, we consider that the produced par-
ticles affect the formation of the inhomogeneities; second, the
creation of particles will be considered smooth, consequently
do not participate of the inhomogeneities production. We de-
fend, in this work, that a coherent model for the universe must
provide a growing mode for the density contrast. Eventhough,
we lived in an accelerated universe.

Using this criterious, we can establish if the process of the
cosmic particle creation is a homogeneous process or not.

II. OPEN SYSTEM THERMODYNAMICS

In the presence of cosmic matter creation, the appropri-
ate analysis is performed in the context of thermodynamics
of open systems [9], that results in a reinterpretation of the
stress energy tensor. Considering adiabatic transformations,
the thermodynamical energy conservation, with a source of
particles, can be written as [9]

d(εV)+PthdV− Ed(nV)
n

= 0, (1)

wheren is the particle density,E = ε+Pth is the enthalpy per
unit volume,Pth is the thermodynamical pressure andε is the
energy density. In such a transformation, the ‘heat’ received
by the system is due entirely to the change of the number of
particles. In the cosmological context, the particle production
is due to the transfer of energy from gravitational field. Hence,
the creation of matter acts as source of internal energy.

We consider the cosmic medium describe by the energy
momentum tensor

Tαβ = εuαuβ +Phαβ , (2)

wherehαβ is the projection tensor anduα is the four-velocity
vector. TheP is the total pressure that includes the thermo-
dynamical pressure and an additional pressure related to the
creation process [9], namely,

P = Pth + P̃. (3)
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The creation process will be considered adiabatic, which here
means that the entropy per particle is constant. Under this con-
dition, the equilibrium entropy per particle does not change as
it does in dissipative process.

The Einstein’s field equations imply the equations of mo-
tion,

hα
βTγβ = 0 (4)

and the energy balance

uαTαβ
;α = 0. (5)

Additionally, according to the second law of thermodynam-
ics (Sα

;α ≥ 0), the only particle number variations admitted are
such that we have particle creation, governing by

ṅ+nθ = Ψ , (6)

whereΨ is the source of particles andθ is the universe expan-
sion.

Using the thermodynamic second law and the Euler equa-
tion

µ=
ε+Pth

n
−Tσ , (7)

we can write the pressure creation as [10]

P̃ =− (ε+Pth)Ψ
nθ

, (8)

whereµ is the chemical potential andσ is the entropy per
particle.

The zeroth order background will be governed by the line
element

ds2 =−dt2 +R(t)2γabdxadxb , (9)

whereγab is the 3 - space metric. Consequently, Einstein’s
field equations reduce to

3(
Ṙ
R

)2 = 8πGε , (10)

2(
Ṙ
R

)· =−8πG(ε+P) , (11)

where the dot denotes the time derivative.
Using the metric (9), the energy balance equation (5) be-

comes

ε̇ =−3
Ṙ
R

(ε+P) . (12)

Taking into account the particle number density and the tem-
perature as are our basic variables we can infer the state equa-
tions

Pth = Pth(n,T) , (13)

ε = ε(n,T) , (14)

σ = σ(n,T) . (15)

Making use of Gibbs relation

nTdσ = dε− ε+Pth

n
dn (16)

and equation (14), a general relation can be written, namely

∂ε
∂n

=
ε+Pth

n
− T

n
∂Pth

∂T
. (17)

Equation for evolution of the temperature is calculated con-
sidering relations (12) and (17), resulting

Ṫ = (
∂ε
∂T

)−1{3Ṙ
R

(P̃+
∂Pth

∂T
T)+Ψ(

ε+Pth

n
− T

n
∂Pth

∂T
)} . (18)

The sound velocity in the cosmic fluid is defined by

v2
s =

∂Pth

∂ε
, (19)

that can be reformulated using equation (17), assuming the
form:

v2
s =

n
ε+Pth

∂Pth

∂n
+

T[ ∂Pth
∂T ]

2

(ε+Pth) ∂ε
∂T

. (20)

Taking into account the relation

Ṗth =
∂Pth

∂n
ṅ+

∂Pth

∂T
Ṫ (21)

and equations (6), (18) and (19), evolution of the pressure
reads

Ṗth =−3
Ṙ
R

(ε+Pth){v2
s +

∂Pth
∂T
∂ε
∂T

P̃
ε+Pth

}Ψ
n

(ε+Pth)

{ v2
s−

∂Pth
∂T
∂ε
∂T

} . (22)

Finally, the time evolution of the particle entropy den-
sity can be found using Gibbs relation and equations (6) and
(18),namely

nTσ̇ =
ε+Pth

n
{3n

Ṙ
R

z−Ψ} , (23)

where

z=− P̃
ε+Pth

=
Ṅ
Nθ

. (24)

We sum up this section writing the time evolution of the parti-
cle density, temperature and pressure in the adiabatic case. It
is done using (6), (18) and (22)

ṅ =−3
Ṙ
R

(1−z) , (25)

Ṫ == 3
Ṙ
R

T(
∂Pth
∂T
∂ε
∂T

) , (26)

Ṗth =−3
Ṙ
R

(ε+P)v2
s . (27)
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III. THE PERTURBED EQUATIONS

The metric perturbations are defined by

δgab = Aδab+B,ab, (28)

δga4 = F,4 , (29)

δg44 = E , (30)

where the quantitiesA,B,F andE are space and time depen-
dent scalars.

From normalization condition,uµuµ = 1, the four velocity
in first order is given by

û4 = û4 =
R2E

2
, (31)

R2ûa +R2F,a = ûa ≡ v,a , (32)

where the hat indicates a perturbed quantity.
Perturbing to first order the equation for the conservation of

particle density(nuα);α = Ψ, results

(
n̂
n
)·+R−2∇v−∇F +

ḟ
2

=
Ψ̂
n
− Ψ

n
(
n̂
n

+
R2E

2
) . (33)

The energy balance and momentum balance equations to
first order are respectively:

˙̂ε+3
Ṙ
R

(ε̂+ P̂)+(R−2∇v+
ḟ
2
−∇F)(ε+P) = 0, (34)

P̂,µ+ Ṗv,µ+(ε+P)v̇,µ−R2 ε+P
2

E,µ = 0. (35)

To complete the set of basic equations we need of the lin-
earized field equations [7]:

Ĝ4
4 = R−2∇A− Ṙ

R
ḟ +2

Ṙ
R

∇F−3Ṙ2E =−ε̂ , (36)

Ĝ4α =−Ȧ,α−RṘE,α− (Ṙ2 +2RR̈)F,α (37)

= −(ε+P)v,α +R2PF,α .

IV. DENSITY CONTRAST EVOLUTION EQUATION

The perturbed variables, introduced in the preceding sec-
tion, change their values under the change of correspondence
between the perturbed world and unperturbed background.
The change of the correspondence is formally expressed in
terms of a coordinate transformation in the perturbed world,
which is called a gauge transformation . In the linear perturba-
tion theory it is necessary only to consider infinitesimal gauge
transformation

x
′α = xα−ξα . (38)

W. Zimdahl shows in his work [5] how to describe cos-
mological perturbations thermodynamically oriented by suit-
able quantities which are invariant under transformations (38),

with an obvious physical meaning and obey reasonable equa-
tions.

The behavior of scalars under transformation (38) are given
by

S
′
(x)−S(x) = ξnS,n . (39)

Therefore, the scalar quantities of the preceding section trans-
form as

A
′
= A+2

Ṙ
R

ξ0 , (40)

B
′
= B+2R−2ξ , (41)

F
′
= F +R−2ξ0 +(R−2ξ),0 , (42)

E
′
= E−2R−2ξ0

0 , (43)

v
′
= v−ξ0 , (44)

n̂
′
= n̂−3

Ṙ
R

nξ0(1−z) , (45)

T̂
′
= T̂−3

Ṙ
R

nξ0T(
∂Pth
∂T
∂ε
∂T

)(1−z) . (46)

The basic gauge invariant variables that we shall take are de-
fined by

s=
n̂
n
−3

Ṙ
R

v(1−z) (47)

and

r =
T̂
T
−3

Ṙ
R

v
∂Pth
∂T
∂ε
∂T

(1−z) . (48)

On the other hand,a gauge invariant gravitational field vari-
able from the point of view of the matter [6] is:

q =
3
2

A+3
Ṙ
R

v. (49)

The gauge invariant description of the system of the per-
turbed equations in the last section can be put in terms of the
variablesq , r ands. So, the energy density and pressure per-
turbations are gauge invariantly characterized by:

ε̂c = ε̂−3
Ṙ
R

v(ε+ P̃) , (50)

P̂c = P̂th−3
Ṙ
R

v(ε+ P̃)v2
s . (51)

Using equation (47), equation (50) assumes the form

ε̂c = (ε+Pth)s+Ta, (52)

where

a =
∂ε
∂T

r− ∂Pth

∂T
s. (53)
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Introducing the gauge invariant variables, the particle num-
ber balance (33) may be written as

ṡ +(1−z)q̇+
3
2

γ
Ṙ
R

ε̂c

ε+Pth
− k2

3ṘR
q (54)

+ 9
Ṙ2

R2 z(1−z)v(1+
γ
2
)−3

Ṙ
R

vż+3
Ṙ
R

zs=
Ψ̂
n

,

whereγ = 1+ Pth
ε . To find the last result it is necessary to use

the perturbed field equations (36), (37), the field equation

(
Ṙ
R

)· =−3
2

H2γ(1−z) , (55)

and assumes the spatial dependenceeik ·r with constant co-
moving wavectork for all first-order quantities.

With auxilious of equation (54) we can change the form of
the energy and pressure balance equations,given by, respec-
tively

(aR3)·TR−3

ε+Pth
+

zk2q

3RṘ
+

ψ̂
n

=−3Hz
P̂th− γ

2 ε̂
ε+Pth

− 3H ˆ̃P
ε+Pth

(56)

and

sv2
s −vż+3Hz(1−z)v(1+v2

s)+
ˆ̃P

ε+Pth
(57)

+
R

3Ṙ
q̇(1−z)+T

∂Pth
∂T
∂ε
∂T

a
ε+Pth

= 0.

Substituting equation (56) into (54) we obtain

ṡ −3Hsv2
s +9H2z(1−z)v(

γ
2
−v2

s)−
3H ˆ̃P

ε+Pth
(58)

− 3HT
ε+Pth

a
∂Pth
∂T
∂ε
∂T

+
3
2

γH
ε̂c

ε+Pth
− k2q

3RṘ
+3Hzs=

Ψ̂
n

.

Using eqs. (54) and (53), results

ṡ −3H
1−z

ε+Pth
(P̂c− γ

2
ε̂c)− (1−z)

k2q

3RṘ
(59)

+ 3Hzs=− T
R3 (R3a)· ,

where the evolution equation fors is put in terms of the
gauge invariant variables, only.

We focus our attention on the adiabatic case, that is equiv-
alent to considera = 0 [5]. So, equation (59) assumes the
form

ṡ−3H(1−z)(v2
s−

γ
2
)s− (1−z)

k2q

3RṘ
+3Hzs= 0, (60)

where the variables is rewritten as

s=
ε̂

ε+Pth
. (61)

A manipulation of equation (59) results

s̈ +{−3
2
{H(1−z)(2v2

s− γ)}+3Hz+(
R̈

Ṙ
(62)

+
Ṙ
R

)+
ż

1−z
}ṡ+{−3

2
{H(1−z)(2v2

s− γ)}·+3(Hz)·

+ {3 Hz
1−z

− 3
2

H(2v2
s− γ)}{(1−z)(

R̈

Ṙ
+

Ṙ
R

)+ ż}

+
k2

R2 v2
s}s−

k2

R2 vż= 0.

The equation (62) furnish the dynamics of the adiabatic per-
turbations in a universe with particle production , where the
particles are formed at the expenses of the gravitational field.
For a universe with null pressure small sound velocity in the
cosmic medium and the absence of the creation process, equa-
tion (62) becomes the usual density contrast equation for the
standard model [4]:

s̈+2Hṡ−4πGεs= 0. (63)

V. IS THE PARTICLE PRODUCTION HOMOGENEOUS?

The particle production in the universe is a global homo-
geneous process or not? We want to give a answer for this
question considering the large scale structure formation and
the recent results of the observation of the supernovas of the
type IA, that indicates an accelerated universe.

Taking into account that the structures existing in the
universe are formed from small perturbations in the past,
more specifically scalar perturbations, a coherent cosmolog-
ical model, with this assumption, must produce a growing
mode for the density contrast. Apart from this, the mode must
grows even in an accelerated scenario for the universe.

In order to measure the effects of particle production in the
expansion of the universe, Lima et al. [8], introduce the di-
mensionless parameterβ = Ψ

3nH .
Combining eqs. (8), (9) and (10), we can write the field

equation

RR̈+∆(Ṙ)2 = 0, (64)

where∆ = 3
2γ(1− β)− 1. Integrating (64), the scale factor

resulting is

R= R0(
t
t0

)
1

1+∆ , (65)

where the subscript0 alludes to the present time.
The deceleration parameter,q = − R̈R

(Ṙ)2 , for the universe
expanding conform the scale factor (5.2) is given byq =
−1+ 3

2γ(1− β). Consequently, a dust universe will be ac-
celerated forβ > 1

3.
Substituting the scale factor (65) in eq. (62), considering

vs << 1 and using long wavelength limit approximation , we
obtain

s̈+C1ṡ+C0s= 0, (66)
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where

C1 =
2(3β+2)
3γ(1−β)t

(67)

and

C0 =−−2
t2 − 4

3γ(β−1)2t2{3β2−1+4β− 4β
γ
} . (68)

Integrating the eq. (66) we obtain the modes

s−(t) = C1t
−1+ 2β

γ(β−1) , (69)

s+(t) = C2t
4

3γ(β−1) +2
, (70)

where the usual modes of the standard model are obtained
for β = 0.

In accord with the second law of thermodynamics (Sα
;α ≥ 0),

only particle production process is possible. Consequently,
β ≥ 0. On the other hand, forβ > 1 the dominant energy
condition is broken. So, in principle, the validity range for
β parameter is0≤ β ≤ 1, and 1

3 ≤ β ≤ 1 assuming that the
universe expansion is accelerated.

Although the decreasing mode can be important in some
circumstances, we shall hereafter mainly deal only with the
increasing mode. It is responsible for the formation of cosmic
structure in the gravitational stability picture. Taking into ac-
count the decreasing mode, the universe would not have been
homogeneous in the past. Besides, for a growing mode that
starts to grow just after the end of radiation era, Peebles argued
that the contribution of decaying solution must be negligible
[18].

The equation (69) is an increasing mode forβ < −1, but,
considering the validity range forβ, the mode (69) is a decay-
ing mode. Otherwise, the mode (70) is a growing mode for
β < 1

3. Resuming, we not have a growing mode for the den-
sity contrast in a acceptable range for the creation parameter
β.

To obtain equation (62), we perturb the source of particles.
Therefore, the creation process is inhomogeneous, in the sense

that the created particles contributes to the inhomogeneities
formation in the universe.

On the other hand, if we consider that the cosmic particle
production do not participate of the inhomogeneities forma-
tion, the particle production mimics, in this sense, the inclu-
sion of a smoothΛ term. Consequently, with null contribu-
tion to the inhomogeneities birth. In this scenario, where the
source of particles is not perturbed, the equation for the den-
sity contrast is given by

s̈+2Hṡ−4πGεs(1+3γ)(1+ γ)s= γ
∇2s

R2(β−1)
. (71)

Taking into account the long wavelength limit approximation
and the scale factor (65), the integration of eq. (71) furnishes

sa(t) = t
3β+1+A

6β−6 , (72)

sb(t) = t
3β+1−A

6β−6 , (73)
whereA =

√
9β2 +25+6β.

The modesa is a decaying mode and the modesb is a grow-
ing mode, for0≤ β ≤ 1. For β = 0 the usual solutions for
the growing and decaying modes of the standard model are
obtained.

In conclusion, we have an growing mode for the density
contrast in an accelerated phase for the universe described by
the OSC model, if the creation process is homogeneous.

Another possibility, is to admit that the era when the small
deviations from the homogeneity occurs, the expansion of the
universe is not accelerated.

Naturally, if the conclusions are dependent of the source
of the particles considered, this is a question for a future
investigation.
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