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Electric Charge Rotating Around a Black Hole
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We consider an electric charge rotating around a Schwarzschild black hole. We compute, using quantum field
theory in curved spacetime at the tree level, the power emitted by the rotating charge minimally coupled to the
Maxwell field. We also compute how much of the radiation emitted by the swirling charge is absorbed by the

black hole.

We are commemorating thefirst centennial of Special Rela-
tivity. Despite how exotic Special and General Relativity may
have appeared at first glance, they have become fundamen-
tal tools for now-a-days precision astrophysics. It is impos-
sible to understand the center of active galaxies, pulsars and
probably gamma ray bursts without evoking objects as black
holes and neutron stars. As astrophysics measurements be-
come more and more accurate, the influence of the spacetime
curvature in particle wave modes will also need to be consid-
ered to explain the experimental data properly. This can be
naturally accomplished in the context of quantum field theory
in curved spacetimes. To illustrate this, we analyze the radia-
tion emitted by an electric charge rotating around a Schwarz-
schild black hole (see Ref. [1] for the emission of scalar ra
diation from a rotating source around a Schwarzschild black
hole). We assume natural units 4 = ¢ = G = 1 and metric
signature (+— ——).

Let us consider the line element of the Schwarzschild
spacetimein the form

ds? = f(r)dt* — f (r)"tdr® — r?d0? — PPsin?0do?, (1)

where f(r) = 1—2M/r and the electromagnetic field de-
scribed by the Lagrangian density in the modified Feynman
gauge

1 1
L=-¢ *ZFquw - EGZ 2
with g = r?sin6, G = V¥A, + K*A, and K* = (0,df /dr,0,0).
The corresponding Euler-Lagrange equations are, thus,
VyF* 4+ VEG — K*G =0, ©)

which can be written in terms of components as

1 1~
?afAt—%), (rzarAt)+ﬁV2Al =0, 4
1., 1. (/% 2 1=
}atA,‘— ?a, |:r28r (r A,) + ﬁV Ar
1. (f\ea:
+?a, (rz ViA, =0, ©)
1., 1) = ~
FRA= 0 oA + [V (Vpda — Vo)

+0, VbAb} 1129, (f) duA, = 0. 6)

Here a and b denote angular variables on the unit 2-sphere 52
with metric 1j,, and inverse metric N4 [with signature (——)],
V is the associated covariant derivative on §2, V4 = n“bvb
and V2 = fj,, VaVP,

We write the complete set of positive-frequency solutions
of Eq. (3) with respect to the Killing field 9, as

AL = G (6,007, >0, (D)

The index ¢ stands for the four different polarizations. The
pure gauge modes, € = G, are the ones which satisfy the gauge

condition G = 0 and can be written asA\®""™ = v, A, where
A isascaar field. The physica mod% e = I, 11, satisfy the
gauge condition and are not pure gauge. The nonphysica
modes, ¢ = NP, do not satisfy the gauge condition. The modes
incoming from the past null infinity 4~ are denoted by n =—
and the modes incoming from the past event horizon H~ are
denoted by n =—. The [ and m are the angular momentum
guantum numbers.
The physical modes can be written as

In
(Inwim) (P(Dl( ) f i
AIJ - <O7 r Ylm7 (l+1)d [ (pml( )]
f d
X aGYInH l(l—|— 1) dr r(p(nl a(DYZ ) (8)
and
ALIInmlm) _ (O 0, r(plln( )Ylm’r(plll)?( )qum) efiwt (9)
with [ > 1 (since the gauge condition G = 0 is not satisfied

for I = 0). The radial part of the physical modes satisfies the
differential equation

(@2=v8) [l 0] s (725 [l )] ) =0 0

where A = |,11 and Vs = fI(I+ 1)/r? is the Schwarzschild
scattering potential. Y;,, and Yal’" are scalar and vector spheri-

cal harmonics [2], respectively.
The conjugate momenta associated with the field modes are
s = _

[F* + ¢ G| (11)

A=Al
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where (i) represents (e,n,,/,m). The modes are then nor-
malized through the generalized Klein-Gordon inner prod-
uct [3] such that

(A(Enwlm)’A(E'n’w’l’m’)) _ Msglénn’Sll’Smm/S ((D - (0/) , (12)

where the matrix M’ is given by

100 0

. [o1 0 o

M*=10600 -1 (13)
00 -1 -1

withe = (1,11,G,NP).
In order to quantize the electromagnetic field, we demand
the equal time commutation relations

[A,I (x,1),Ay (x',1)] = [1:[,1, (x,1), Iy (x,1)] =0, (14

- . o)
Ay (x,0), 1TV (x,1)] = 283 (x—X/) . 15
[Au o) TV (¥, 0)] = =8 (x=x). - (19)
The electromagnetic field operator can be expanded in terms
of the normal modes as
Z (=)
Ag= ),

en,l,m

(@~

do [a(,->A,(,") +al A(”] : (16)
0

where a ;) and &Erl.) are the annihilation and creation operators,
respectively, satisfying
&(Enwlm) , &(S’n'm'l'm’)} = (Mil)gg’ésnn’sll’Smm'S ((D - (Dl) .

17

The Fock space of the physical states |PS) is obtained by im-

posing the Gupta-Bleuler condition [4]. In our case, this cor-

responds to impose @ pwnim) |PS) = 0. The physical states

are obtained by applying any number of creation operators

o - A
1goim)* Elincoim) and 4(NProim) 1O the Boulware vacuum |0)

defined by d@(geim) |0) = 0. The creation operators associated
with pure gauge modes take physical states into nonphysi-

cal ones. Moreover physical states of the form &INanlm) |PS)

have zero norm. Therefore we can take as the representative
elements of the Fock space those states obtained by applying
the creation operators associated with the two physical modes
to the Boulware vacuum. For thisreason wewill be concerned
only with the two physical modes, A = I, 11, in this paper. (A
more detailed discussion of the Gupta-Bleuler quantization of
the electromagnetic field in spherically symmetric and static
spacetimes can be found in Ref. [5].)

The solutions of Eq. (10) are functions whose properties
are not well known. (See Ref. [6] for some properties.) We
can, however, obtain their analytic form (i) in the asymptotic
regions for any frequency and (ii) everywhere if we keep re-
stricted to the low-frequency regime. In order to study the as-
ymptotic behavior of the physical modes we use the Wheeler
coordinate x = r+2MIn(r/2M — 1) and rewrite Eq. (10) as

2
(@~ Vs) lrgl 0]+ 55 [rol 0] =0 (19
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Since the Schwarzschild potential vanishes for r = 2M and
decreases as 1/r2 for r > 2M, the solutions of Eq. (18) can
be approximated in the asymptotic regions by

BM (eimx+RA—>e—iwx) (x < _1)
) ol ol ’
~ 19
ol (1) { BT it (@) (x> 1), 19
and
Br- T(gfe—fﬂix (x< -1),
r(pi‘)f (r) = B%ul ((*Z)H_ thl( ) (wx)
— 1
+RY; z”lu)xhg ) (mx)) (x>1),
(20)

where rg’ (r) and relt:~ (r) are solutionsincoming from H~
and 7, respectively. Here hfl) (x) isaspherical Bessel func-
tion of the third kind [7], B are normalization constants, and
|R2‘J’;\2 and |Tu};l"|2 are the reflexion and transmission coeffi-
cients, respectively, satisfying the usual probability conserva-
tion equation |[R*|* 4 |7%1|* = 1. The normalization con-
stants B are obtained using the generalized Klein-Gordon
inner product defined above (see Ref. [8]).

Let us now find the analytic expressions of the physical
modes in the low-frequency approximation. For this purpose
we rewrite Eg. (10) as

d d(pkn Z

dz [(1_Z2) (cDIIZ( )1 (21)
2 2 2G+HDY] 5,

+ l(l+1)——z+l—mM o1 Qg (2) =0,

wherez =r/M — 1. Inthelow-frequency regime, we write the
two independent solutions of Eq. (21) for/ > 1 as

o @~c e -1 e e
and
o @~c ne- O] e

where P, (z) and Q; (z) are Legendre functions of the first and
second kind [7], respectively, and C&’; are normalization con-
stants, which are obtained by fitting asymptotically Egs. (22)
and (23) with Egs. (19) and (20), respectively [8].

Now let us consider an electric charge with 6 = /2, r =
Rs and angular velocity Q = d¢/dt = const > 0 (as defined
by asymptotic static observers), in uniform circular motion
around a Schwarzschild black hole, described by the current
density

Js(Y) = _qguOS(r—Rs)S(e—n/2)6((p—£2t)u". (24)
Here g isthe coupling constant and
1

W (QRg) = ————
f(Rs) — R3Q2

(1,0,0,Q) (25)
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FIG. 1. The total power Ws emitted by the electric charge rotating
around a Schwarzschild black hole is plotted as a function of the
angular velocity Q as measured by asymptotic static observers. The
solid line represents our numerical result whereas the dashed line
represents our analytic result for low frequencies. The [ summation
in Eq. (28) is performed up to I = 6. MQ ranges from 0 up to 0.068
(associated with the innermost stable circular orbit at Rg = 6M).

is the charge's 4-vel ocny We note that ji is conserved,

V,.js =0, and thus ZdZﬁ, )]S( V) = g for any Cauchy sur-
face X.

Next let us minimally couple the charge to the field through
the Lagrangian £; = /—g j’S’A Then the emission amplitude
at thetreelevel of one photon with polarization € and quantum
numbers (n,,1,m) into the Boulware vacuum is given by

Z
e — i gt /=g Al (26)

It can be shown that 45"/ o § (0 —mQ). Thisimplies that
only photons with frequency wg = mQ are emitted once the
charge has some fixed Q = const. One can also verify that
the pure gauge and nonphysical modes have vanishing emis-
sion amplitudes. Thisis so for the pure gauge modes because
V,.js = 0 and for the nonphysical modes because they have
Zero norm.
The total emitted power is

2222

“dwo |@om T, (2
[OYO) /T, (27)
A=l || n=—,— [=1m=1

where T = 2rd (0) isthetotal time as measured by the asymp-
totic static observers. Using now Egs. (8)-(9) and (24)-(25) we
rewrite Eq. (27) as

o ]
2 2 2 {Wslnmglm+wglnwglnz} (29)

n=«,—[=1m=1

with
Inwolm an2m393 2M 2
W = o U Ry
11+ s
2
|:dR [RS (pmol( )]:| ¥im (1‘5/2,0)|2 (29)
and
n m n 2 m 2
W — 2ng?m@? [Rs ol (Rs)|” Y (r/2,0)| . (30)
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According to General Relativity for a stable circular orbit

around a Schwarzschild black hole we have Rg = (M /92)1/ 3
We usethisrelation to compute numerically the emitted power
given by Egs. (28)-(30) as a function of Q. The numerical
method used hereisanalogousto the one described in Ref. [1].
The result is plotted as the solid line in Fig. 1. The main con-
tribution to the toral emitted power comes from modes with
angular momentum / = m = 1. As a genera rule, (i) the
smaller is the [, the larger is the contribution to the total ra-
diated power, and (ii) for afixed value of [, thelarger isthe m,
the larger is the contribution to the total radiated power.

It isinteresting to note that the magnitude of the total radi-
ated power in the electromagnetic case is approximately twice
the numerical result found previously for a scalar source cou-
pled to amassless Klein-Gordon field [1]. In principle, thisis
not surprising because of the fact that photons have two phys-
ical polarizations. Notwithstanding, it should be emphasized
that the two polarizations contribute quite differently to the
emitted power. For our rotating charge, the contribution from
mode A = Il is negligible when compared with the one from
mode A = |. In order to get a feeling about it, we first re-
call that although the physical modes | have a non-vanishing

radial component in contrast to the physical modes||, our cur-
(enwim)

rent is such that j” = 0. Thus, the radial component A,
of the physical modes do not contribute to the corresponding
interaction amplitude. In addition, since both physical modes

are such that A"™™ — 0, all their contributions to the emit-

ted power come from the angular components of A'F""™).

Now, because ¥, (1/2,0) and ¥/™ (r/2,0) are non vanish-
ing only for even and odd | + m, respectively, the dominant
contribution to the emitted power should come from modes
I, since only they contribute when / =1 (i.e. W'”‘”O11 #0
while ;""" = 0), and for a fixed / only they contribute
when m has the maximum allowed value (i.e. Wi # 0
whiIeWS””“’O' L= 0) (seediscussion in the previous paragraph),
which complies with our quantitative results. Moreover, it is
very interesting to note that because the physical modes | and
11 only contribute to Wg"*"" and Wy when [ 4 m is even
and odd, respectively, this means that only physical modes,
which lead asymptotically to electric fields oscillating at the
orbit plane 6 = /2 dong (d/d0)* contribute to the emitted
power, which is a familiar fact from synchrotron radiation
physics (see, e.g., Ref. [9]).

Next, we use our low-frequency expressions for the physi-
cal modes to obtain an analytic approximation for the emitted
power. The result is plotted as the dashed line in Fig. 1. We
seefrom it that the numerical and analytical results differ sen-
sibly as the charge approaches the black hole but coincide as-
ymptotically, since far away from the hole only low frequency
modes contribute to the emitted power.

Now let us compare the power emitted by the swirling
charge in Schwarzschild spacetime (Ws), with the correspon-
dent power emitted in Minkowski spacetime (W),), the latter
being obtained assuming that the charge is moving in a cir-
cular orbit due to a Newtonian gravitational force around a
central object with the same mass M as the black hole.
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FIG. 2: Theratio Ws /W)y, is plotted as a function of the angular ve-
locity Q. Again we consider contributions of the angular momentum
up to I = 6 in the summations. The maximum value of MQ is0.068.
The solid line corresponds to our numerical result, while the dashed
line corresponds to our analytical |ow-frequency approximation re-
sult.

FIG. 3: The ratio between the asymptotically observed power W;bf
and the emitted power Wy is plotted as a function of the angular ve-
locity Q of the swirling electric charge according to asymptotic static
observers. MQ varies from 0 to 0.068. The summationsin Egs. (31)
and (28) are performed upto / = 6.

The quantization of the electromagnetic field in flat space-
time can be performed analogously to the procedure exhibited
previously by making f = 1. Wethen compare our curved and
flat spacetime results as functions of the physical observables
M and Q as measured by asymptotic static observers. We plot
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the ratio between Ws and Wy, in Fig. 2 obtained from our nu-
merical computations (solid line) and from our low-frequency
analytic approximation (dashed line). In both cases the ratio
tends to the unity as the charge rotates far away from the at-
tractive center, as a consequence of the fact that the Schwarz-
schild spacetime is asymptotically flat. Astherotating charge
approaches the central object, curved and flat spacetime re-
sults differ more significantly. In the innermost relativistic
stable circular orhit, the numerical computation gives that Wy
is 30% smaller than Wy,.

Now, this is interesting to use our quantum field theory
in Schwarzschild spacetime approach to compute what is the
amount of emitted radiation which can be asymptotically ob-
served. Thisisgiven by

w1
W= B NN [Ty oW
A=1I11=1m=1

R [PWg e (31)
Our results are shown in Fig. 3. We see that the black hole
absorbs only a small amount of the emitted radiation. Even
for the innermost stable circular orbit the black hole absorbs
only 3% of the total radiated power.

Thisisinteresting and non trivial to make educated guesses
about what are the most promising situations where the influ-
ence of the spacetime curvature on particle wave modes will
be “essential” to understand the forthcoming observational
data. We believe that black holes provide an excellent back-
ground stage and are, perhaps, the most natural candidates.
Quantum field theory in Schwarzschild spacetime may be-
come to tomorrow astrophysics asimportant as quantum field
theory in Minkowski spacetime isto today particle physics.
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