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Dirac-Fock calculations have been performed using a segmented contraction of Gaussian basis sets
entirely generated from the Dirac-Fock Hamiltonian. Both Dirac-Fock-Coulomb and Dirac-Fock-
Breit self-consistent �eld calculations have been performed for Ar (Z=18), Ge (Z=32), Sn (Z=50),
Xe (Z=54) and Hg (Z=80). It is found that contractions of large exponent bases of s and p symmetry
species have little e�ect on the total and orbital energies for light atoms (Ar and Ge) and a large
e�ect for intermediate (Sn and Xe) and heavy (Hg) atoms.

I Introduction

Recently, we have developed the closed-shell genera-

tor coordinate Dirac-Fock (GCDF) method [1,2] and

applied it to perform Dirac-Fock-Coulomb (DFC) and

Dirac- Fock-Breit (DFB) calculations on relativistic

closed-shell atoms [1-5]. Here we would like to call

attention for the fact that the GCDF method repre-

sents an algorithm capable of generating Gaussian-type

functions (GTF) exponents directly from the relativis-

tic environment [a Dirac-Fock (DF) code], whereas the

usual procedure in previous relativistic calculations was

to employ GTF exponents obtained from the nonrel-

ativistic environment [a Hartree-Fock (HF) code], by

optimization or another technique, exactly as �rst per-

formed by Matsuoka and Huzinaga [6].

Thus, due to the recent progress in the DF methods,

the problem of how to contract atomic Gaussian basis

sets for use in these calculations becomes relevant. The

general and the segmented contraction schemes [7-11]

have been used in relativistic calculations. Matsuoka

[7] and Ishikawa et al. [8-10] have described some seg-

mented schemes to contract Gaussian basis sets they

employed in relativistic atomic calculations In these pa-

pers, Matsuoka and Ishikawa worked with Gaussian ba-

sis sets that originally were generated to perform non-

relativistic calculations (with a HF code).

In this work, we report a DFC and DFB self-

consistent �eld (SCF) calculations for Ar, Ge, Sn, Xe

and Hg using a segmented contraction methodology for

Gaussian basis sets developed recently by Jorge and da

Silva [12], in order to ascertain how contraction of the

basis set a�ects DF energy results.

II Results and discussion

To perform the DFC and DFB calculations for Ar, Ge,

Sn, Xe and Hg, we have used our accurate universal

Gaussian basis sets (UGBSs) [1,3], developed with the

characteristic of being entirely generated from the DF

Hamiltonian. This point is very important as all previ-

ous studies on segmented contraction of GTF for rela-

tivistic calculations were done with GTF obtained from

the HF Hamiltonian [7-11]. Therefore in this work,

the e�ects of a segmented contraction on DF energies

are studied with Gaussian basis sets entirely generated

from the DF Hamiltonian. The �nite nucleus model

of uniform proton-charge [13] with nuclear radius equal

to R = 2:2677� 10�5A1=3 (A is the atomic mass num-

ber) was used in our calculations. The speed of light

was taken to be 137.0370 a.u. while the nonrelativis-

tic limit was evaluated with c = 104 a.u.. Beside this,

we recall that the radial small component functions are

generated from the radial large component functions by

using the restricted kinetic balance condition [ 13,14].

The procedure used by us to generate the segmented

contraction schemes for each atom studied is the same

used recently by Jorge and da Silva [12]. First for

each atom under study, we tested the best nonrela-

tivistic contraction scheme (the scheme that provides

the best HF energy). Then, verifying that these con-

traction schemes provided a very poor DFC energy for

the heavier atoms Sn. Xe and Hg (although providing
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a reasonable one for the light atoms Ar and Ge), we

decided to change the strategy and start searching for

the best relativistic contraction scheme. Here, for each

atom (Ar, Ge, Sn, Xe and Hg), we calculated the con-

traction coe�cients for nonrelativistic orbitals and used

them to evaluate the DFC energy. This procedure was

repeated until �nding a contraction scheme that pro-

vided a satisfactory DFC energy. At the end, we used

the same set of exponents (and of the contraction coef-

�cients, when is the case) to perform the corresponding

DFB calculations. Here, we would like to call atten-

tion to the fact that all contraction schemes showed in

Table I (for Ar, Ge, Sn, Xe and Hg) are relativistic

contraction schemes.

Table I shows the relativistic segmented contraction

schemes adopted for the Ar, Ge, Sn, Xe and Hg. The

UGBSs used here can be found elsewhere [1,3]. and

they consist of 32s24p for Ar [3], 32s30p20d for Ge, Sn

and Xe [1], and 32s30p20d14f for Hg [1]. From Table I,

one can clearly see that for the light atoms (Ar and Ge)

the core region can be contracted without restrictions,

i.e., the contraction of large exponents (exponents that

describe the core region) for the s and p symmetries

has little e�ect on the total DFC energy, while the va-

lence region (small exponents) can not be contracted

strongly, as they have a large e�ect on the total DFC

energy. By other hand, the valence region exponents

only allow a very slight contraction. This behavior for

the valence region is also true not only for the s and p

symmetries of intermediate and heavy atoms, but also

for the d and f symmetries of all atoms studied.

The relativistic contraction scheme for the core re-

gion changes completely when one tries to contract a

GTF for heavier atoms (from Sn on). From Table I one

can see that the segmented contraction scheme for the s

and p symmetries for the core region of Sn, Xe and Hg

is not the same as of Ar and Ge, since we can not con-

tract the large exponents of the s and p symmetries so

easily as we do for Ar and Ge. In fact, the exibility of

contracting the large exponents for s and p symmetries

decreases when the atomic number Z increases (Z=18

for Ar, Z=32 for Ge, Z=50 for Sn, Z=54 for Xe, and

Z=80 for Hg). For d and f symmetries this restriction

is not so imperative, as we can see from Table 1, where

the contraction of the large exponents of the d and f

symmetries without severe restrictions is evident.

In Tables II, III and IV, EDFC and EDFB denote the

DFC and DFB energies, respectively. ENR denotes the

energy taken at the nonrelativistic limit. Also shown

are the energy di�erences between the DFC and non-

relativistic SCF energies �ENR�DFC, i.e., the lowering

of the total HF energy due to relativistic e�ects. Be-

side this, it is shown the variational Breit interaction

energies, EB, which is the level shift in the total SCF

energy due to the inclusion of the Breit term in the
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SCF process, and is computed as the ditference, EDFB

- EDFC.

Table II contains the DFC and DFB anergies for

Ar (Z=18), Ge (Z=32), Sn (Z=50), Xe (Z=54) and

Hg (Z=80) computed with the UGBSs [1,3] in uncon-

tracted (see the third column) and contracted (see the

fourth column) form. For Ar, Ge, Sn, Xe and Hg the

di�ference between the DFC energies obtained with the

relativistic contracted and uncontracted basis sets are

0.000147, 0.00665, 0.07103, 0.06655 and 0.9859 hartree,

respectively. As the DFC energies obtained with the

uncontracted basis sets are approximately equal to or

lightly lower than the corresponding values obtained

with the numerical DF calculations [15] (see �fth col-

umn), the di�erences between the DFC energies ob-

tained with our relativistic contracted basis sets and the

numerical DF calculations are approximately equal to

the di�erences shown above. For Ar, the Breit interac-

tion energies EB calculated with our relativistic uncon-

tracted and with the contracted basis sets are the same.

For Ge, Sn, and Xe the diferences in EB obtained from

these two basis sets are of the order of 10�4 hartree, and

for Hg this di�erence increases to 10�2 hartree. From

Table II, we can also see that the di�erences between

the relativistic energy lowering, �ENR�DFC; obtained

with our uncontracted and with the contracted basis

sets for the light (Ar and Ge), intermediate (Sn and

Xe) and heavy (Hg) atoms are lower than 3:6 � 10�3,

4:6� 10�2, and 8:7� 10�1 hartree, respectively.

Tables III and IV display the orbital and the total

DF energies of Ge and Sn, respectively, computed by

employing the uncontracted and contracted basis sets

given by us and in Aerts's thesis [18]. From these Ta-

bles, we can see that the orbitals energies obtained us-

ing the relativistic uncontracted basis set [1] (see the

second columns) are in general more stable than those

obtained with our relativistic contracted basis sets (see

the third columns). On the other hand, the results

reported by Aerts and Nieuwpoort [18] show that, for

both Ge and Sn, their contraction schemes (see the sev-

enth columns) causes the 1s1=2 energy to shift down-

ward by a signi�cant amount [18]. This shift in the

orbital energy, in turn, forces the total DFC energy to

shift well bellow that obtained with the nonrelativistic

uncontracted basis set causing variational failure. The

Yshikawa et. al. results [8,19] (see the fourth and �fth

columns from Tables III and IV) also are in contradic-

tion to the results reported by Aerts and Nieuwpoort.

For Ge and Sn, our DF calculations employing relativis-

tic contracted basis sets indicate that the 1s1=2 energies

shift upward by 0.002 and 0.003 hartree, respectively,

whereas a signi�cant amount of downward shift (� 0.2

hartree for Ge and � 4.2 hartree for Sn) is evident in

the DF calculation by Aerts and Nieuwpoort [18].

From Tables III and IV we can also see that in non-

relativistic calculations, the total HF energies for Ge

and Sn computed by using the contracted basis sets of

the three approaches are always higher than those ob-

tained by using the uncontracted basis sets, because the

Schroedinger Hamiltonian is bounded from below. In

the DF calculations, the variational failure may read-

ily be understood [11,20] as a consequence of the un-

bounded nature of the relativistic Hamiltonian. This is

especially important for the innershell 1s1=2 and 2p1=2

orbitals if a contracted basis set is employed in the DF

calculations which do not satisfy the restricted kinetic

balance condition [13,14] between the radial large and

radial small component functions.

III Conclusions

The DF energy values reported in this work for Ar

(Z=18), Ge (Z=32), Sn (Z=50), Xe (Z=54) and Hg

(Z=80) show that heavy contractions of large exponent

bases of s and p symmetries have little e�ect on the total

and orbital energies for light atoms, but have large ef-

fect for intermediate and heavy atoms. The large Gaus-

sian function exponents of the d and f symmetries for

light, intermediate and heavy atoms allow a high degree

of contraction. Besides this, our results show that we

are not allowed to perform a strong contraction with

the small Gaussian function exponents for s, p, d and f

symmetries in any case (light, intermediate and heavy

atoms).
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