
34 Brazilian Journal of Physics, vol. 36, no. 1A, March, 2006

A Simple Theory for Vibration of MRI Gradient Coils
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Vibrations of a string can provide a model for vibrations of MRI coil assemblies. The string model for the
vibrations of MRI coils is presented, and compared with experimental results. Gradient coils exhibit resonant
modes because of the finite coil length,l , and the elasticity of materials that comprise the assembly. The reso-
nance frequencies depend onl and the Young modulus, as well as on the current distribution. Under longitudinal
gradient pulses, anti-symmetrical modes of surface vibration are produced due to the symmetry of current distri-
bution. In contrast, transverse gradient pulses produce coil bending that results in symmetrical vibration modes
of the coil axis. The viscosity of the assembly materials controls the width of the vibrational resonance modes.
Experimental results are in agreement with this simple string model.
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I. INTRODUCTION

The high-intensity acoustic noise produced by fast MRI
techniques, such as echo-planar imaging (EPI), has been a
concern for patient safety and comfort.The sound pressure
level (SPL) of acoustic noise in MRI systems can exceed
100 dB, and may cause anxiety and discomfort in patients
[1]. Acoustic noise can also obscure functional magnetic res-
onance imaging (fMRI) studies. For instance, loud acoustic
noise can produce spurious areas of activation in the auditory
cortex [2-3] or alter the BOLD signal in motor and visual cor-
tices [4-5]. Acoustic noise is a consequence of the vibrations
produced in the coil assembly by the Lorentz interaction be-
tween the static magnetic field,B0, and the time-dependent
currents in gradient wires. The SPL of acoustic noise in MRI
scanners is commonly reduced by the use of acoustic absorb-
ing materials and ear protection (ear plugs and headphones).
In addition, the SPL can be reduced by the development of
“silent” MRI-pulse sequences [6-9] or the design of “quiet”
gradient coils [10-13]. Several experimental studies [14-17]
have demonstrated a clear increase in SPL of acoustic noise
for high-field systems [14], and the existence of acoustic res-
onances [15]. However, the vibrational motion of gradient
assemblies, where the acoustic noise originates, has not been
studied extensively. Therefore, we developed a simple model,
based on the vibrations of an elastic string, to understand the
vibration motion of gradient assemblies. Additionally, we
measured the vibration motion of our gradient coil to test the
model.

II. THEORY

Longitudinal gradients
Since MRI gradient coils are operated in magnetic fields,

a Lorentz force acts on the coil wires during gradient current
pulses. We assume that the main magnetic fieldB0 is along the
z-axis. For a current density,j(φ,z, t), on a cylindrical surface
of radiusa, the magnetic force element,dF, is a radial vector

caused by theφ-component of the current density,jφ(φ,z, t):

dF(φ,z, t) = aB0 jφ(φ,z, t)dφdz (1)

For longitudinal gradient coils,j does not depend onφ, and
as a consequence, the magnetic forcedF(z, t) is axially sym-
metric with respect toB0. Because the current distribution is
anti-symmetrical alongz in longitudinal coils, the magnetic
force is compressing one half of the coil, while expanding
the other half. This results in radial waves that travel along
the coil assembly. The flexible string is a simple and well-
understood system that can be used to model vibrations in lon-
gitudinal gradient coils. In this model, the amplitude of radial
displacements of coil assembly,ζ, due to a driving force per
unit area,f (z0, t), exerted at axial positionz= z0, is given by

ρ
∂2ζ(z, t)

∂t2 +η
∂ζ(z, t)

∂t
−E

∂2ζ(z, t)
∂z2 = f (z0, t)δ(z−z0), (2)

where,ρ, andE, are the mass and Young’s modulus per unit
area of the material used to hold the wires. These elastic prop-
erties of the coil assembly determine the velocity of traveling
waves,c=

√
E/ρ. The resistive force per unit area, opposing

the assembly’s motion, is due to the viscosity of the medium,
η, which gains the energy lost by the “string”. A fraction of
this energy is dissipated into heat, and the remaining fraction
is converted into sound waves in air. For a simple harmonic
current flowing in the coil with frequencyω/2π, and consid-
ering an effective frictional resistance per unit area,2k = η/ρ,
the equation of motion can be written as:

∂2ζ(z, t)
∂t2 +2k

∂ζ(z, t)
∂t

−c2 ∂2ζ(z, t)
∂z2 =

B0 j(z0)δ(z−z0)
ρ

exp(−iωt), (3)

The possible harmonic vibration modes of the “string” are
limited, because the coil length,l , is finite. For instance, if the
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coil is fixed at both ends we require forz= 0 andz= l , and
only a discrete set of vibration frequencies is allowed:

sin

(
ωl
c

)
= 0

(
ω =±πc

l
,±2πc

l
, · · · ,±nπc

l

)
(4)

In general, the motion of the string is a combination of all
different modes, and can be represented by the Fourier series:

ζ(z, t) =
∞

∑
n=1

Ansin(
nπz
l

)exp(−iωt) (5)

The Fourier coefficients,An, can be obtained by substituting
Eq. (5) into Eq. (3), multiplying both sides bysin(nπz

l ), and
integrating overz from 0 to l :

An =
4πaB0 j(z0)dz0

M(ω+ ik−ωn)(ω+ ik +ωn)
sin

(nπz0

l

)
(6)

whereM is the mass of the assembly. To find the response of
the string to a simple harmonic driving force distributed along
the coil, we integrate Eq. (5) overz0 from 0 to l

ζ(z, t) =
4πaB0

M

∞

∑
n−1

Fnsin(nπz
l )exp(−iωt)

(ω+ ik−ωn)(ω+ ik +ωn)
(7)

where the frequencies of normal modes of vibration,ωn/2π,
depend on elastic properties of the coil assembly, and are
given by

ω2
n =

(nπc
l

)2
−k2 (8)

It is apparent that friction dampens free vibrations and
slightly changes the resonance frequencies. The current-form
factor of ordern, Fn, in Eq. (7) is given by,

Fn =
Z l

0
j(z0)sin

(nπz0

l

)
dz0 (9)

and represents the overlap between the current distribution
and a given spatial harmonic of ordern. For standard lon-
gitudinal gradient coils,Fn = 0 for odd values ofn, because
j(z) is anti-symmetric with respect toz= l/2. The response
of the “string” to a current-impulse,j(z)δ(t), in the gradient
coil can be obtained by using the Fourier expansion of delta
function

δ(t) =
1
2π

Z ∞

−∞
exp(−iωt)dω (10)

By integrating Eq. (7) overω, the dampened vibrations of the
coil surface following a single gradient impulse can be written
as

ζ(z, t) =
2πaB0

M
exp(−kt)

∞

∑
n−1

Fnsin(nπz
l )sin(ωnt)
ωn

(11)

It must be noted that Eq. (11) assumes that the viscosity of the
coil assembly is not dependent on the vibration frequency.
Transverse gradients

The string model can also be applied to the study of vi-
brations produced by transverse gradients. However, because
the current density,j(z,φ) = j(z,0)cos(φ), is not axially sym-
metric for transverse gradient coils, transverse gradient pulses
bend the coil. Furthermore, in contrast to the longitudinal
case,Fn = 0 for even values ofn, because the current den-
sity is symmetric with respect toz= l/2 in transverse gradi-
ents. Due to thecos(φ)-dependence of current density in the
x-gradient coil, the coil center vibrates alongx with frequency
ω/2π due to the magnetic torque, which bends the coil. In this
case, the departure from equilibrium of the coil axis,X(z, t),
can also be modeled by the flexible string model. For instance,
bending of the coil due to currents in thex-transverse coils
producesx-transverse waves that travel alongz with velocity
C. Note that we will use upper case characters to distinguish
vibrations of the coil axis from surface vibrations of the coil
assembly.

In analogy to the longitudinal case [Eq. (3)], the equation
of motion as a result of a harmonic current flowing atz= z0
with frequencyω/2π is:

∂2X(z, t)
∂t2 +2K

∂X(z, t)
∂t

−C2 ∂2X(z, t)
∂z2 =

B0I(z0)δ(z−z0)
aρπ

exp(−iωt), (12)

whereI(z0) is the current per unit length flowing in the coil at
axial positionz= z0:

I(z0) = 2a
Z π/2

−π/2
j(z0,φ)dφ =

2a
Z π/2

−π/2
j(z0,0)cos(φ)dφ = 4a j(z0,0) (13)

The response of the string to a simple harmonic driving
force distributed along the coil is given by

X(z, t) =
16aB0

M

∞

∑
n−1

Fnsin(nπz
l )exp(−iωt)

(ω+ iK −Ωn)(ω+ iK +Ωn)
(14)

with

Ω2
n =

(
nπC

l

)2

−K2 (15)

Damped vibrations of the coil axis following a current-
impulse in the transverse gradient coil are given by

X(z, t) =
16aB0

M
exp(−Kt)

∞

∑
n−1

Fnsin(nπz
l )sin(Ωnt)
Ωn

(16)

As an example, Fig. 1(a) shows the amplitude of coil assem-
bly vibrations as a function of frequency, when sine currents
drive the longitudinal and transverse gradient coils (Figs. 1b
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and c). These calculations were performed using Eqs. (7) and
(14), and assumingl = 1 m, c = C = 1600m/s,a = 0.35 m,
k = K = 100 Hz, and using the parameters listed in Fig. 1c.
For the transverse coilz = 0.5 m, while for the longitudinal
coil z = 0.45 m. Figs. 1b and 1c show one octant of the
transverse, and half of the longitudinal coil layout. These
unshielded gradient coils were designed by using the fast-
simulated annealing method [18] to produce 32 and 44 mT/m,
when driven by 300A currents, respectively. The amplitude of
vibrations peaks at discrete frequencies, and does not exceed
50µm (Fig. 1c). It is obvious that longitudinal and transverse
gradient coils produce different normal modes of vibration.
Because the amplitude of sound in air is proportional to the
amplitude of the coil vibrations [17], the linear increase of the
gradient coil forces and vibrations withB0 cause a logarithmic
increase in SPL levels (in dB), in agreement with experimen-
tal results [14]. In addition, Eq. (7) and (14) demonstrate that
the amplitude of vibrations increases with coil radius and de-
creases with coil mass. The relative amplitude of each normal
mode depends on the current distribution.

FIG. 1: (a) Theoretical vibration amplitudes for harmonic driving
currents as a function of frequency for longitudinal and transverse
gradients. (b) Longitudinal coil layout. (c) Transverse coil layout
(one octant).l = 1m, a = 0.35m,c = C = 1600 m/s, andk = K =
100 Hz.

III. METHODS

To measure the mechanical vibrations of a gradient coil,
three contact microphones were placed at different positions

on the inner surface of a whole-body shielded SONATA-
Siemens gradient set. The mass, length and inner radius of
this gradient assembly are 775kg, 1.245 m, and 0.3415 m, re-
spectively. Three K2217 Siemens Cascade Gradient Power
Amplifier (2000 V & 500 A) are used to produce gradient
pulses with 44 mT/m peak amplitude and 0.25 ms rise-time.
This gradient system was operated in a magnetic field ofB0 =
4T and was driven by a Varian INOVA console.

The contact microphones (PZT) consisted of piezoelectric
transducers (Radio Shack, 273-073A), which are ideal for
use at high magnetic fields because they are non-magnetic.
To estimate the frequency response of PZT microphones, we
used a waveform generator to produce PZT-vibrations and
power absorption of PZT microphones was measured as a
function of frequency. These piezoelectric transducers have
a non-uniform frequency response, being more sensitive to
vibrations in the range of 500-3500 Hz. The microphones
were glued on the inner wall of the gradient coil at posi-
tions: (a,0,0),(0,a,0), and(0,−a, l/2) and were labeledx-
PZT, y-PZT andz-PZT (a = 0.3415 m). The output voltages
of the microphones were digitized with a digital oscilloscope
(LECROY 9354TM, 50ms trace, 500kHz-sampling rate, 16-
bits dynamic range, high-impedance) and data analysis (FFT)
was done in Microcal Origin (Microcal Software inc.) on a
Personal Computer.

To measure the impulse response of the coil assembly,
brief rectangular gradient pulses with 250A current amplitude
(22 mT/m) and 500µsec-duration were applied, separately for
each axis [19]. To evaluate the dynamic behavior of the gra-
dient coil and identify potential higher-order normal modes
of vibration, sine- and sinc-shaped gradient pulses were used.
Sine pulses of 500 periods, with variable duration in the range
80-1000 ms, were used to sweep the frequency of the driving
current in the range 500-5000 Hz. With these pulses, PZT sig-
nals demonstrate an approximately 20ms-transient state, fol-
lowed by a steady state, and another final 20ms-transient state
(Fig. 5a). The amplitude of vibrations was measured in steady
state conditions. Alternatively, sinc-pulses with 300 periods
and 50ms duration were used to excite all high-order vibra-
tion modes by a single waveform, by taking advantage of the
flat, 6kHz-bandwidth spectral density of the sinc-pulses. In
this case, signal acquisition was triggered at the maximum of
the gradient pulse (Fig. 5b). The driving current was 30A for
sine-, and 125A for sinc-gradient pulses

IV. RESULTS

Longitudinal impulse-response
Figure 2 shows damped oscillations of PZT-signals caused

by a gradient pulse in the longitudinal gradient coil. The fric-
tional resistance of the coil assembly,2k = 160 Hz, was ob-
tained from Eq. (11) by fitting a mono-exponential decay to
the envelope of the PZT signal. Thex- andy-PZT signals are
smaller than thez-PZT signal due to the anti-symmetrical dis-
tribution of magnetic force in the longitudinal gradient.

Figure 3 shows the corresponding spectral densities ob-
tained by Fourier transformation of PZT-signals. The peaks
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FIG. 2: Experimental vibration of coil assembly caused by a current-
impulse in theGz coil, as a function of time. Gradient amplitude 22
mT/m, pulse duration 0.5 ms. Dashed lines represent the exponential
decay of damped oscillations.

FIG. 3: Fourier amplitudes of PZT signals from FIG.2.

in spectral density represent resonant vibration modes of the
coil assembly. The exponential decay of signals in Fig.2 result
in Lorentzian-shaped peaks of 40Hz full width half maximum
(FWHM), in agreement with Eq. (11).

The z-PZT spectral density has significant amplitude only
in the range between 900-1400 Hz, and peaks at 1007, 1090,

and 1235 Hz (Fig. 3, bottom). These resonant modes, which
correspond ton = 2, have different resonance frequencies be-
cause of the complex structure of the coil assembly. Higher
vibration-modes were not observed in this experiment, prob-
ably due to the limited bandwidth (∼ 2kHz) of the gradient
pulses. Using Eq. (8) andl = 1.25 m, the velocity of travel-
ing waves for these resonant modes were calculated to bec =
1260, 1360, and, 1540 m/s.

Transverse impulse-response
Figure 4 shows the spectral density of PZT signals follow-

ing a brief gradient pulse on thex-gradient channel. While the
resultingx-PZT spectrum shows resonance frequencies at 720
and 1220 Hz, they-PZT andz-PZT channels only exhibit the
720 Hz resonance. The even resonance mode (1220Hz) of the
x-channel suggests that, due to imperfections of coil ends fix-
ation, thex-transverse gradient can produce vibrations of the
coil assembly’s surface aty= 0 but not atx= 0 in accord with
a current distribution alongφ in this gradient channel.

Our model suggests that the 720Hz resonance represents
the fundamental mode (n = 1) of axis-vibration due to coil
bending. The velocity of traveling waves for these axis-
vibrations was calculated to bec = 1800 m/s, using Eqs. (8)
and (15).

FIG. 4: Fourier amplitudes of coil vibration caused by a current-
impulse in theGx coil. Gradient amplitude 22 mT/m, pulse duration
0.5ms.

Dynamic-response experiment
Figure 5c shows the spectral density of thex-PZT-signal

when theGx-coil is driven by sine-shaped (solid line) and
sinc-shaped (dotted line) currents. Both methods show the
same set of resonant modes.

When the gradient coilsGx, and Gy apply the driving
force, the amplitude of vibrations peaks at similar frequen-
cies, due to their similar current distribution. In contrast, the
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FIG. 5: (a)x-PZT signal caused by a 500-period sine-shaped pulse
in the Gx-gradient coil. Gradient amplitude = 2.5 mT/m, pulse du-
ration = 400 ms (n = 1250Hz). (b)x-PZT signal caused by a 300-
period sinc-shaped pulse in theGx-gradient coil. Maximum gradient
amplitude = 10 mT/m, pulse duration = 50 ms. (c) Amplitude of vi-
brations in the assembly due to sine-gradient pulses (solid line) and
sinc-gradient pulses (dashed line) in theGx coil, as a function of fre-
quency.

FIG. 6: Frequency of resonant modes caused by sinc-shaped pulses
in the Gx-, Gy- andGz-gradient coils as a function ofn. Solid and
dashed lines are linear fits that represent Eqs. (8) and (15), fork <<
ωn, andK << Ωn.

Gz-spectrum peaks at different frequencies thanGx- andGy-
spectra. This is due to the underlying difference in the current
distributions and in the velocity of traveling waves forζ- and
X-vibrations. Unfortunately, we were unable to make a com-
parison between theory and experiment for the amplitudes of
vibration, because for this particular gradient coil set the cur-
rent distributions were unavailable to us. Such an analysis
would be further complicated by the non-uniform frequency
response of PZT microphones. Using the results of the im-
pulse response experiment and Eqs. (8) and (15), high-order
resonant modes were identified. Fig. 6 plots, for each gradient,
the resonance frequency as a function ofn. Transverse gradi-
ents produce odd normal modes of axis-vibration, while the
longitudinal gradient produces even normal modes of surface-
vibration, in agreement with the string model. Nevertheless,
then = 2 resonant mode of surface-vibration is also produced
by transverse gradients, probably due to unbalanced fixations
of coil ends. The slope of these data was used to determine
the velocity of traveling waves to bec= 1500 forζ-vibrations
andC = 1733 m/s forX-vibrations.

V. CONCLUSION

Acoustic noise in MRI scanners is a consequence of the vi-
brations of the gradient coil assembly. We developed a simple
model for the gradient coil vibrations, in which the coil as-
sembly is represented by an elastic string that is acted upon
by a distributed Lorentz force. The string model makes a
few simple predictions regarding coil vibrations. First, the
amplitude of vibrations is predicted to be proportional to the
magnetic field strength, in agreement with previous measure-
ments. Second, lighter coils or coils with larger radius should
present large vibrations amplitudes. Furthermore, the string
model predicts that the frequencies of normal vibration modes
are determined by the coil length and the elastic properties
of the materials in the assembly. The decay of vibrations af-
ter a gradient pulse is a consequence of dissipative processes
that depend on the viscosity of the materials in the assembly.
As a result, the width of resonance modes increases linearly
with the viscosity of the assembly. Finally, as a consequence
of the symmetry of current distributions, it is predicted that
longitudinal coils produce anti-symmetrical modes of vibra-
tions, while transverse coils produce symmetrical modes of
vibrations. Again, these theoretical predictions are in general
agreement with experimentally observed vibration modes. Ul-
timately, the knowledge gained from this study should be
helpful in reducing acoustic noise in MRI scanners.



D. Tomasi and T. Ernst 39

[1] S. A. Counter, A. Olofsson, H. F. Grahn, and E. Borg, J. Magn.
Reson. Imaging7, 606 (1997).

[2] P. A. Bandettini, A. Jesmanowicz, J. Van Kylen, R. M. Birn,
and J. S. Hyde, Magn. Reson. Med.39, 410 (1998).

[3] G. F. Eden, J. E. Joseph, H. E. Brown, C. P. Brown, and T. A.
Zeffiro, Magn. Reson. Med.41, 13 (1999).

[4] Z-H Cho, S-C Chung, D-W Lim, E. K. Wong, Magn. Reson.
Med.39, 331 (1998).

[5] M. R. Elliott, R. W. Bowtell, and P. G. Morris, Magn. Reson.
Med.41, 1230 (1999).

[6] Y. Yang, A. Engelien, W. Engelien, S. Xu, E. Stern, and D. A.
Silbersweig, Magn. Reson. Med43, 185 (2000).

[7] J. Hennig, and M. Hodapp, BURST imaging. MAGMA1, 39
(1993).

[8] F. Hennel, F. Girard, and T. Loenneker, Magn. Reson. Med.42,
6 (1999).

[9] F. Hennel J. Magn. Reson. Imaging13, 960 (2001).
[10] Z. H. Cho, S. T. Chung, J. Y. Chung, S. H. Park, J. S. Kim, C.

H. Moon, and I. K. Hong, Magn. Reson. Med.39, 317 (1998).
[11] P. Mansfield, B. L. W. Chapman, R. Bowtell, P. Glover, R.

Coxon, and P. R. Harvey, Magn. Reson. Med.33, 276 (1995).
[12] P. Mansfield, and B. Haywood MAGMA8 (Suppl), 55 (1999).
[13] P. Mansfield, B. Haywood, and R. Coxon, Magn. Reson. Med.

46, 807 (2001).
[14] D. L. Price, J. P. De Wilde, A. M. Papadaki, J. S. Curran, and

R. I. Kitney J. Magn. Reson. Imaging13, 288 (2001).
[15] Y. Wu, B. A. Chronik, C. Bowen, C. K. Mechefske, and B. K.

Rutt, Magn. Reson. Med.44, 532 (2000).
[16] R. A. Hedeen, and W. A. Edelstein, Magn. Reson. Med.37, 7

(1997).
[17] P. Mansfield, P. M. Glover, J. Beaumont, Magn. Reson. Med.

39, 539 (1998).
[18] D. Tomasi, Magn. Reson. Med.45, 505 (2001).
[19] D. Tomasi, and T. Ernst J. Magn. Reson. Imaging18, 128

(2003).


