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Transient Spin Dynamics in Semiconductors
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We investigate the spin-resolved dynamics of spin-polarized carriers injected via a ferromagnetic scanning-
tunnelling-microscope tip (STM tip) into uniformly and non-uniformly n-doped bulk semiconductor – externally
driven by a current source. We propagate the injected spin packets (assumed gaussian in space at t = 0) by
considering a spin hydrodynamic approach based on balance equations directly derived from a spin-dependent
Boltzmann equation. We determine the spin-polarization landscapes (time and position) of the carrier population
(n↑ − n↓)/(n↑ + n↓) and the current density ( j↑ − j↓)/( j↑ + j↓). While in the uniformly-doped system the
carrier spin-polarization has a slow decay, in the non-uniformly doped system it shows a drastic fall down in the
interface. In contrast the current spin-polarization exhibits an enhancement for both of the systems particularly
in the interface.
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I. INTRODUCTION

The dynamics of photogenerated carriers in semiconduc-
tors and their heterostructures is a mature subject. A variety
of interesting time-dependent phenomena have been investi-
gated over the past decade or so: coupled plasmon-phonon
dynamics, coherent phonon oscillations, terahertz emission
from bulk systems pumped with ultrashort laser pulses, etc.
Strictly speaking, the complex carrier dynamics of a semi-
conductor system following pump excitation should require
a full-blow non-equilibrium calculation (e.g., via the Keldysh
formalism) – particularly if one is interested in the quantum-
coherent effects of the transient dynamics of electrons, holes,
and phonons. Other approaches in terms of the semiclassical
Boltzmann equation can provide a suitable description for dif-
fusive transport dynamics. A hydrodynamic approach based
on the moments of the Boltzmann equation – i.e., the continu-
ity equations for the particle and the current densities – is yet
another possibility. Recently, this simpler approach has been
used to successfully describe the terahertz carrier-phonon dy-
namics and the corresponding electromagnetic emission from
bulk semiconductors [1].

Motivated by the recent realization of ferromagnetic STM
tip injection [2], we investigate in this work the transient dy-
namics of spin-polarized electron packets STM-tip injected
into a n−doped GaAs semiconductor, Fig. 1. We solve
the particle- and current-density continuity equations – equa-
tions involving the first and the second moments of the spin-
resolved Boltzmann equation – coupled to Poisson’s equa-
tion describing the internal electric field profile. Spin-flip and
momentum-relaxation processes are taken into account within
the average relaxation-time approximation [3]. Our spin-
resolved hydrodynamic description goes beyond the usual
drift-diffusion type approaches [4], [5], [6], [7] in that we fully
account for the temporal evolution of the current densities.
For STM tip injection into a uniformly doped n-GaAs system
and into a n/n+ GaAs junction driven by a current source, we
find the spin-polarization landscapes for carrier and current
densities.
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FIG. 1: Schematic of the ferromagnetic STM-tip spin injection into
a inhomogeneous n/n+ GaAs, externally driven by a current source
J0. We also consider injection into uniformly n-doped bulk GaAs
(not shown). The injection profile is assumed gaussian in space at
δt ≤ 0.1ps. By numerically propagating our continuity equations,
we determine the spin-resolved carrier and current densities and the
corresponding spin-polarization landscapes [Figs. 2(a)-(d)].

II. SPIN HYDRODYNAMIC EQUATIONS

The starting point of our approach is the spin-dependent
Boltzmann equation governing the evolution of the semiclas-
sical distribution function f σ(r,k, t) of the carriers with spin
component σ =↑,↓ (σ̄ =↓,↑) in a bulk semiconductor. The
number of the carriers with spin component σ in a volume
drdk about the phase-space point (r,k) is f σ(r,k, t)d3rd3k.
Following the usual hydrodynamic approach [8], we derive
one-dimensional continuity equations for the spin-dependent
carrier nσ(x, t) = ∑k f σ

k and the current densities Jσ(x, t) =
∑k f σ

k kx from the corresponding moments of the spin Boltz-
mann equation [9]. Within the average relaxation time ap-
proximation and by assuming thermal equilibrium with a con-
stant temperature T , we are able to close the hierarchy of the
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coupled moments thus obtaining the finite set of equations
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where q = −e is the electron charge and m∗
e is the electron

effective mass, which describes the evolution of our system.
The three distinct average relaxation times in Eqs. (1) and (2)
denote (i) the spin-dependent momentum relaxation time τσ,
(ii) the intrinsic carrier spin-flip time τs f describing the equi-
libration of the spin populations, and (iii) the current-density
spin-flip time τ∗s f representing the tendency of equalization
of the two spin-channel current densities through momentum
scattering with spin flip [10]. The total carrier and current den-
sities are n = nσ +nσ̄ and J = Jσ + Jσ̄. We have added a gen-
eration term Gσ(x, t) (gaussian in space and a delta function
in time) to the continuity equation (1), representing the injec-
tion of spin-oriented carriers (e.g., via ferromagnetic STM tip
or optical generation with circularly polarized light). In the
case of non-magnetic semiconductors τσ → τ and we recover
the spinless continuity equations of Ref.[1] by adding the two
spin resolved components in Eq. (1).

III. POISSON’S EQUATION

The internal electric field E(x, t) is calculated via,

∂E(x, t)
∂x

=
q

ε0ε∞
[nσ(x, t)+nσ̄(x, t)−nd(x)] (3)

where ε0 is the vacuum permeability constant, ε∞ is the di-
electric constant, nd(x) is ionized donor concentration.

IV. NUMERICAL CALCULATION

We develop numerical calculations via finite-differences
discretization. By propagating the resulting discretized equa-
tions in time and space via explicit schemes (Lax method)
[11], we calculate the carrier- and current-density profiles and
from these we determine the corresponding spin-polarization
landscapes, Figs. 2(a)-(d). In our simulations we use nd(x) =
1017cm−3(0 ≤ x ≤ 1µm) (n GaAs bulk case) and nd(x) =
1017cm−3(0µm≤ x≤ 0.5µm),5×017cm−3(0.5µm < x≤ 1µm)
(n/n+ GaAs junction case) Te = 300 K, an external elec-
tric field E0 = −10 kV/cm, τ = 100 fs [12], τs f = 4 ps [13],
τ∗s f À τs f [14]). The 1D study is performed by assuming that
the important features of the charge transport in the system are
given in the electric field direction.

n_GaAs bulk n�n+_GaAs junction

HJ­-J¯L�HJ­+J¯L HbL

0.2 0.4 0.6 0.8 1x HΜmL
0.25 0.5 0.75 1

t HpsL

0
0.002
0.004
0.006
0.008
0.01

0.2 0.4 0.6 0.8

HJ­-J¯L�HJ­+J¯L HdL

0.2 0.4 0.6 0.8 1x HΜmL
0.25 0.5 0.75 1

t HpsL

0
0.0025
0.005

0.0075
0.01

0.2 0.4 0.6 0.8

Hn­-n¯L�Hn­+n¯L HaL

0.2 0.4 0.6 0.8 1x HΜmL
0.25 0.5 0.75 1

t HpsL

0

0.005

0.01

0.2 0.4 0.6 0.8

Hn­-n¯L�Hn­+n¯L HcL

0.2 0.4 0.6 0.8 1x HΜmL
0.25 0.5 0.75 1

t HpsL

0

0.005

0.01

0.2 0.4 0.6 0.8

FIG. 2: Spin-polarization landscapes of the carrier and current den-
sities for homogeneous (a) and inhomogenous (b) doped GaAs af-
ter propagating a Gaussian-like spin-up polarized pulse of elec-
trons injected in x0 = 0.4µm by a fm-STM tip. While the carrier
spin-polarization (Fig. 2(c)) is lost at interface the current spin-
polarization is enhanced( Fig. 2(d)) through the regions of different
doping levels.

V. RESULTS AND DISCUSSIONS

If we consider a certain distribution of charge concentra-
tion (all the donors are ionized with n↑0 = nd(x)/2 and n↓0 =
nd(x)/2) and a constant applied electric field as initial con-
ditions, we obtain after solving a system of five differential
equations Eqs. (1) with Gσ = 0, (2) and (3) for t À τ that
the total density current as well as the electric field profile
throughout the semiconductor reach a stationary configura-
tion, i.e. J(x, t) = J0 and E(x, t) = E(x). After injecting a
Gaussian-like pulse of spin-polarized electrons in the time in-
terval δt in a region of space of the sample and letting it to
propagate in the bulk we get the transient dynamics of the
spin-carrier and current densities by solving the Eqs. (1), (2)
and (3) with the previous stationary values as initial condi-
tions. With this ingredients we are able to compute the spin-
polarization landscape for carrier and current densities, re-
spectively (nσ−nσ̄)/(nσ +nσ̄) and (Jσ−Jσ̄)/(Jσ +Jσ̄) in the
n-GaAs bulk (Figs. 2(a),(b)) and in the n/n+ GaAs junction
(Fig. 2(c),(d)) cases. From the Figs. 2(a),(d) we observe that
current spin-polarization has a slow rise before a subsequent
decay that does not appear within the drift-diffusion descrip-
tion. It can be understood because of the temporal deriva-
tives of the current density are included in our approach. By
comparing Figs. 2(a) and 2(c) we note a drastic loss of car-
rier spin-polarization through the interface in the n/n+ GaAs
case. In the Fig. 2(c) we see that the polarization of the elec-
tronic pulse is not amplified when it crosses the interface. The
charge accumulation effect near the interface happens how-
ever it take not effect on the spin polarization as it is claimed
in the literature [15]. Besides using the standard definition for
spin-polarization, i.e. (nσ−nσ̄)/(nσ +nσ̄) instead of nσ−nσ̄

like appears in the Ref.[15] we account that the charge back-
ground doping is physically present all-time which is properly
included in the Poisson’s equation in order to keep the self-
consistency of the problem. This fall off in the n+ region
can be explained physically by the presence of more spin-
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carriers from doping than those in the n region. Instead of
this we found that the current spin polarization shows an en-
hancement in the interface due to a constant total background
current Fig. 2d.

VI. SUMMARY AND CONCLUSIONS

We studied the transient dynamics of spin-polarized elec-
tron packets STM-tip injected into homogeneous and inhomo-
geneous n-doped GaAs systems. Our approach shows prop-
erly in the regime of the ultra-fast phenomena the transient
behavior of the spin-polarization for carrier and current den-
sities. In the case of the n/n+ GaAs system it was proved
despite the spin-electron polarized packet is amplified at inter-

face it has not consequences over the carrier spin- polarization
landscape. Instead of this we found that the carrier spin- po-
larization has a drastic fall off within the n/n+ GaAs junction
compared with the homogeneous n- GaAs system due to the
spin carrier background. Furthermore an enhancement in the
current spin-polarization case was observed for both systems
following the dynamics of the spin current densities since that
the spin current background has not influence in this case.
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