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The Coester Line in Relativistic Mean Field Nuclear Matter
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The Walecka model contains essentially two parameters that are associated with the Lorentz scalar (S) and
vector (V ) interactions. These parameters are related to a two-body interaction consisting of S and V , impos-
ing the condition that the two-body binding energy is fixed. We have obtained a set of different values for the
nuclear matter binding energies (BN ) at equilibrium densities (ρo). We investigated the existence of a linear
correlation between BN and ρo, claimed to be universal for nonrelativistic systems and usually known as the
Coester line, and found an approximate linear correlation only if V − S remains constant. It is shown that the
relativistic content of the model, which is related to the strength of V − S , is responsible for the shift of the
Coester line to the empirical region of nuclear matter saturation.

1 Introduction
Quantum Chromodynamics (QCD) is the fundamental the-
ory of the strong interaction and hence it should be able to
explain possible modifications of hadron properties in the
nuclear medium. However, typical nuclear phenomena at
intermediate and low energies cannot be analitically derived
from QCD, although one hopes that QCD will be solved nu-
merically on the lattice in the near future. Meanwhile, we
are left with the construction of phenomenological models
in order to describe nuclear phenomena and bulk proper-
ties. On these grounds, we can conceive models in which
hadrons are the degrees of freedom of some proposed La-
grangian density. From the Lagrangian, a two-nucleon in-
teraction can be obtained and the parameters of this inter-
action are adjusted to reproduce the two-nucleon bound and
scattering states observables. With this two-nucleon interac-
tion, the many-body problem can be solved via a Brueckner-
Hartree-Fock (BHF) calculation or a Relativistic-Brueckner-
Hartree-Fock (RBHF) [1, 2, 3], if one intends to incorporate
relativistic effects.

Another phenomenological way to treat the many-body
problem has been proposed by Walecka and collaborators
[4, 5]. Their approach is based on a simple renormalizable
field-theoretical model which is often referred to as Quan-
tum Hadrodynamics (QHD). In this model nucleons interact
through the exchange of σ and ω mesons, with the σ provid-
ing medium range attraction and the ω the short-range repul-
sion. This model is usually solved in the mean field approx-
imation (MFA), in which the meson fields are replaced by
their expectation values. The Walecka model has achieved
important goals in the description of hadronic matter such
as, for example, the calculation of some bulk properties of
nuclear matter as well as some properties of finite nuclei. An
interesting result of the model was to show the relativistic

mechanism for nuclear matter saturation: it occurs at a den-
sity (ρo) at which the scalar (S) and the vector (V) potentials
largely cancel each other out. A curious aspect of this model
is that the masses of the scalar and vector mesons ( mσ and
mω), and the coupling constants ( gσ and gω) are eliminated
in the equation of state for infinite nuclear matter in favour of
C2

σ = g2
σM2/m2

σ and C2
ω = g2

ωM2/m2
ω . These dimen-

sionless constants, C2
σ and C2

ω, the only free parameters in
this simple version, are fitted to reproduce the nuclear matter
bulk properties. Besides the relativistic mean field calcula-
tion, the Walecka model has also been used in a more com-
plete treatment, the relativistic Hartree-Fock approximation
[5, 6, 7]. A more sophisticated version of the Walecka model
that includes non-linear self-interactions of the scalar field
has been proposed by Boguta and Bodmer[8]. This non-
linear version of the Walecka model has obtained not only
more reasonable results for the incompressibility and the ef-
fective nucleon mass at nuclear matter saturation density but
also has described various aspects of nuclear structure prop-
erties [9, 10]. This model with a very limited number of
parameters is also able to describe deformed nuclei [11, 12]
and for the first time the anomalous shifts in the isotopic
chains of different nuclei has been explained [13, 14]. As a
consequence of all this work, a new parametrization for this
non-linear version of the Walecka model has been proposed
and gives a very good description not only for the properties
of stable nuclei but also for the nuclei far from the valley of
beta stability [15].

The RBHF and Walecka models treat the many-body
problem in different perspectives. The RBHF approach
starts from a two-nucleon interaction which, in principle,
fits some of the two-nucleon observables and proceeds it-
erating an effective two-nucleon t-matrix up to the point
where convergence is obtained to the nuclear matter satu-
ration. Therefore, depending on the two-nucleon interaction
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used, the nuclear matter binding energy and the saturation
density change. On the other hand, the Walecka model and
some of its variants try first of all to fit directly the observed
nuclear matter binding energy at the experimental density.
The tracing back of the two-nucleon interaction becomes
difficult in this mean field scenario. To understand why, let’s
point out that the two-nucleon interaction that emerges from
the Walecka model in the static approximation is the sum of
two Yukawa potentials, one attractive and the other repul-
sive. The range of these potentials should be controlled by
the masses of the mesons, mσ and mω. However, the mean
field approach in a Hartree perspective shows a dependence
only on the dimensionless constants C2

σ and C2
ω , as already

pointed out, and we loose track of the value of mσ and mω.
Let us recall that, in the mean field picture, this happens
in a medium where each nucleon feels equally an averaged
constant interaction coming from all the other nucleons. If
one intends to have a crude idea about how a mean field
many-body calculation such as the Walecka model may be
connected to a two-body system in the vacuum, one has to
model a two-body interaction in a relativistic perspective.
The simplest interaction should be the sum of two large po-
tentials, a scalar one S and the time component of a vector
one V , each of them with an absolute value of a few hun-
dreds MeV. In infinite nuclear matter, in the framework of
the Walecka model, these two components cancel each other
out to a large extent in the calculation of the binding en-
ergy. The assumption is that the same mechanism applies in
the two-nucleon system to calculate the two-nucleon bind-
ing energy.

Calculations done for the nonrelativistic nuclear matter
BHF model [1], performed with different two-nucleon in-
teractions, all of them fitting the deuteron binding energy
and scattering data, show a correlation between the binding
energy and the corresponding saturation density. This corre-
lation, known as the Coester line, shows that the results ob-
tained using different nucleon-nucleon interactions predict
nuclear matter saturation to be located along a line which
does not include the empirical data [16]. Recent work [17]
based on a relativistic model of the nucleon-nucleon interac-
tion addresses the discussion of whether this same correla-
tion also takes place in a relativistic many-body calculation,
exhibiting thus a kind of universality. We focus on the same
question and, through a simple model, find that such a cor-
relation is indeed present when the quantity V − S is ap-
proximately constant. This last assumption can be justified
since results from different hadronic models suggest that, in
order to reproduce the experimental spin-orbit splittings for
finite nuclei, the V − S quantity should lie in a narrow
band [19]. Moreover we conclude that the relativity within
the model, which is related to the strength of V − S , is
responsible for the shift of the Coester line to the empirical
region of nuclear matter saturation. We see this as an indica-
tion of a Dirac structure for the N-body potential with large
scalar and vector parts.

After having finished this work we became aware of the
appearance of a very recent paper analyzing this same corre-
lation with the Bonn potentials; these involve different types
of meson exchanges, in a relativistic Brueckner approach

[18]. Representing the in-medium on-shell T matrix covari-
antly by five Lorentz invariant amplitudes, this last paper
also arrives at the same conclusion as ours, namely that the
new Coester lines are shifted towards the empirical region
of saturation supporting the Dirac structure of the Nucleus-
Nucleus potential.

Thus we can see that, despite dealing with a simple two-
body model that has only central terms and models nuclear
matter with the simple linear version of the Walecka model,
we have the right physics, which is embeded in the relativis-
tic form of the potential with large scalar and vector parts.

2 The two-body model
We start out with a two-body interaction consisting of a re-
pulsive part ( V ) and an attractive one (S ). For simplicity,
we will take the potentials as constant inside a determined
radius Ro and zero otherwise. The relativistic interaction is
given by the operator U = UR = S + γoV , where γo is
the time component of the Dirac matrix and S is implicitly
multiplied by the identity matrix. We simulate our two-body
system by a one-body Dirac equation in spinorial form,

( Eγo − γ · p − M − U )ψ = 0. (1)

The above equation can be solved for U = γoΣ ( the rel-
ativistic case where Σ is considered as the time component
of a pure attractive vector interaction, hereafter labeled R1 )
or for U = UR ( the relativistic case with scalar and vector
interactions, R2 ). We have solved Eq. (1) for each of these
two potentials and for zero orbital angular momentum in co-
ordinate space for different values of Ro , varying from 1.35
to 1.7 fm, obtaining different values for the two-body bind-
ing energy B2 = E − M . Since we will later establish
a connection with a N-body relativistic Walecka model, we
have already imposed, for the case U = UR , a constraint on
S and V to satisfy the optical relationship required from
the Hugenholtz-van Hove theorem for any relativistic nu-
clear matter model in the mean field approximation [20],

−BN = V +
[
k2

f + (M + S)2
]1/2 − M, (2)

where BN is the nuclear matter binding energy per nucleon,
kf the Fermi momentum at saturation density, and M the
bare nucleon mass. We have identified in the relativistic
model R2 the quantity S + V with the depth of the square
well vector potential Σ . This identification comes often
when one interprets the Walecka model as qualitatively per-
forming a large cancellation between S and V , resulting in
a value close to −70 MeV for Σ . In Fig. (1) we display
our results for the case BN = 16 MeV, kf = 1.3fm−1,
Ro = 1.4 fm, and M = 939 MeV where, for the sake of com-
parison, a nonrelativistic Schroedinger equation calculation
for the nonrelativistic interaction UNR = Σ is included.
The curves show that the solution of the relativistic Dirac
equation with the time component of a pure vector inter-
action changes the nonrelativistic Schroedinger result only
slightly. The binding energy in the former has a value some-
what greater than in the latter. However, the Dirac equation
solved with the relativistic interaction, containing scalar and
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vector parts, changes dramatically the two-body binding in
the opposite direction, i.e. the system becomes less bound.

The results can be understood as follows. The three dis-

tinct cases can be presented through formal dispersion rela-
tion equations in terms of the large component χ of the wave
function,

�

p2χ = 2 M (e − Σ) χ, NR Model (3)

p2χ = 2 M ( e − Σ ) ( 1 +
e − Σ
2M

)χ, R1 Model (4)

p2χ = 2 M (e − Σ ) ( 1 +
e − ∆
2M

) χ, R2 Model (5)

�

where in the R2 model ∆ = V − S , Σ = S + V , and in
Eqs. (7 - 8) e stands for the difference between relativistic
energy and the nucleon rest mass.

The results can be understood as follows. The three dis-

tinct cases can be presented through formal dispersion rela-
tion equations in terms of the large component χ of the wave
function,

�

p2χ = 2 M (e − Σ) χ, NR Model (6)

p2χ = 2 M ( e − Σ ) ( 1 +
e − Σ
2M

) χ, R1 Model (7)

p2χ = 2 M (e − Σ ) ( 1 +
e − ∆
2M

)χ, R2 Model (8)

�

where in the R2 model ∆ = V − S , Σ = S + V , and in
Eqs. (7 - 8) e stands for the difference between relativistic
energy and the nucleon rest mass.

−75.0 −74.0 −73.0 −72.0 −71.0 −70.0 −69.0
Σ (MeV)

0.0

1.0

2.0

3.0

4.0

5.0

B
2 

(M
eV

)

NR
R1
R2

Figure 1. Two-body binding energy B2 as a function of Σ =
V +S for different approaches, Nonrelativistic (NR), Relativistic
Dirac with pure vector interaction (R1) and Relativistic Dirac with
scalar and vector interaction (R2).

All these cases can be cast into an unified formula in

terms of a nucleon effective mass M∗,

p2

2M∗ χ = (e − Σ) χ, (9)

where

M∗ = M, NR Model (10)

M∗ = M ( 1 +
e − Σ
2M

), R1 Model (11)

M∗ = M ( 1 +
e − ∆
2M

). R2 Model (12)

Since Σ and ∆ are negative and positive quantities respec-
tively, Eqs. (10 - 12) suggest that the model R1 (where the
effective mass is larger than M , leading to a smaller kinetic
energy) should in fact lead to a more tightly bound system,
with greater binding energy than model NR, whereas model
R2 (where the effective mass is smaller than M , leading to
a larger kinetic energy) is the case where the system is less
bound. The same information could be inferred if one thinks
in terms of the effective quantities Σ∗ = Σ(1−Σ/2M) and
e∗ = e ( 1−Σ/M) for Eq. (7), and Σ∗ = Σ(1−∆/2M)
and e∗ = e ( 1 − ∆/M) for Eq. (8). In the cases we
are discussing, the binding energy is small compared to the
nucleon rest mass and we have neglected terms of order
e2/2M . Note that for the model R2, not only Σ but also
∆ , appear in Eq. (12). The potential depth Σ and the ra-
dius Ro control the two-body binding energy in Eqs. (10)
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and (11), whereas in Eq. (12) an additional value - ∆ - is
needed, working therefore as a new degree of freedom of
the problem, since for the same Ro , different possible val-
ues of Σ and ∆ are possible, as shown in Fig. 2. The large
difference between the results of the models R1 and R2 is
not surprising, since ∆ is expected to be about ten times
larger than Σ . To stress this point, it is worth mentioning
that the two-body bound state for the R1 model arises when
−Σ R2

o ≥ π2
�

2/4M while for the R2 model the condition
reads −Σ ∆ R2

o ≥ π2
�

2/8 , in units where c = 1 .
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Figure 2. Set of R = Ro, S + V = Σ, and V − S = ∆ values,
with the constraint B2 = 2 MeV , from the R2 model.

3 The N-body model

The N-body model we use for nuclear matter is the linear
Walecka model that now we briefly present. The degrees of
freedom are baryon fields (ψ), scalar meson fields (σ), and

vector meson fields (ω). The Lagrangian density is given by

L = ψ̄iγµ∂µψ − ψ̄Mψ +
1
2
(∂µσ∂µσ − m2

sσ
2)

+ gsσ ¯ψψ −−1
4
FµνFµν +

1
2
m2

vωµωµ − gvψ̄γµψωµ,(13)

where Fµν = ∂µων − ∂νωµ , M is the bare nucleon mass,
and ms and mv are the scalar and vector mesonic masses
respectively. From the above Lagrangian we obtain, through
the Euler-Lagrange formalism, the equations of motion for
the nucleon and mesons fields.

When the meson fields are replaced by the constant clas-
sical fields σo and ωo, we arrive at the mean-field approxi-
mation with the equations

ωo =
gv

m2
v

〈ψ+ψ〉 =
gv

m2
v

ρb, (14)

σo =
gs

m2
σ

〈ψ̄ψ〉 =
gs

m2
σ

ρs, (15)

where ρb and ρs are the vector and scalar densities respec-
tively.

Now we define the scalar ( S ) and the vector ( V ) po-
tentials. This can be done by looking at the Dirac equa-
tion for the models, and rewriting M∗ in the form M∗ =
M − gsσ = M + S . Still from the analysis of the
Dirac equation, V can be defined as a quantity which shifts
the energy, V = gvωo . It is convenient to introduce
the following dimensionless quantities: m∗ = M∗ /M ,
C2

σ = g2
sM2/m2

s , and C2
ω = g2

vM2/m2
v . Using Eqs. (14)

and (15) we can rewrite the scalar and vector potentials in
terms of C2

σ and C2
ω as

S = − C2
σ

M2
ρs , V =

C2
ω

M2
ρb . (16)

The expressions for the energy density and pressure at
zero temperature can be found as usual by the average of the
energy-momentum tensor,

�

E =
C2

ω

2M2
ρ2

B +
M4

2C2
σ

(1 − m∗)2 +
γ

2π2

∫ kf

0

k2dk E∗(k), (17)

and

P =
C2

ω

2M2
ρ2

B − M4

2C2
σ

(1 − m∗)2 +
1
3

γ

2π2

∫ kf

0

k2dk
k2

E∗(k)
, (18)

�

where ρB = (γ/6π2)k3
f , γ = 4 is the degeneracy fac-

tor for symmetric nuclear matter, and E∗(k) = (k2 +
M∗2

)1/2 .
The solution of the model is obtained explicitly through

the minimization of E as a function of m∗. The equation
thus obtained reads

1 − m∗ − γC2
σ

2π2

∫ xf

0

x2dx√
(x2 + m∗2)

= 0 , (19)

where we have introduced the dimensionless variable x =
k
M . This equation has to be solved self consistently and pro-
vides the basis for obtaining all kinds of thermodynamical
quantities in the mean field approach we are using.

The usual procedure to obtain the values of the cou-
pling constants is the following: at the saturation density
ρo the pressure vanishes ( hydrostatic equilibrium ) and at
this same point the Hugenholtz-van Hove theorem allows
us to write down the relation, already built-in in Eq.(2),
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E/ρo = V +
[
k2

f + (M + S)2
]1/2

− M. These two con-

straints can then be used to find the constants C2
σ and C2

ω

by imposing the experimental values for the nuclear matter
binding energy E/ρo − M = −BN = -16 MeV and for the
density ρo = 0.15fm−3 .

We could have used the non-linear version of the
Walecka model discussed in the introduction [15]. This
would have changed the expression for the energy density
and the self consistent Eq. (19); however, the correlation we
are analyzing in this work would still survive, because of the
presence of the large scalar and vector potentials.

4 Results and discussions

To look for the correlation between two-body and N-body
bindings we proceed in the following way. From the two-
body calculation for a fixed two-body binding energy B2 at
a given radius Ro one obtains the scalar ( S ) and the vector
( V ) potentials. In the Walecka model we then use these two
quantities, coming from the two-body calculation, in order
to find the constants C2

σ and C2
ω. Only after we have these

constants do we proceed in the calculation of the N-body
system saturation. Therefore, we will have a set of saturated
( BN , ρo ) pairs for each different ( S , V ) set pairs, which
keeps a fixed B2. We have chosen a fixed B2 = 2 MeV,
allowing variation of Ro from 1.4 fm to 2.1 fm. The set of
(Ro, S , V ) is given by Fig. 2 in a three-dimensional plot.

Within the above procedure we have obtained the set of
( BN , ρo ) values presented in Fig. 3. In principle, there is
no clear correlation between BN and ρo unless one con-
strains the interaction of the two-body system to have the
same range Ro but allowing different values of ∆ , or to
have the same value of ∆ but having different Ro values.
In the first case, the correlation points show a positive slope
for increasing saturation density while in the second one, the
Coester line correlation is present. This correlation has been
shown to exist in nonrelativistic calculations of the nuclear
matter saturation point. Different phenomenological two-
body potentials furnish different ( BN , ρo ) values, which
lead to a rough linear increasing of BN for increasing ρo

also shown in the Fig.3. To trace back the reason why this
happens in the relativistic case, we have rewritten Eq. (2) as

−BN =
k2

f

2M∗ + Σ , (20)

where M∗ = M (1 − BN+∆
2M ). Since BN � ∆ ,

M∗ → M (1 − ∆/2M) and when ∆ becomes constant,
Eq. (20) acquires a nonrelativistic form with an effective nu-
cleon mass. The relativistic information of the model is con-
tained in the strenght of ∆ . The relativistic effect is shown
in Fig. 3, where the Coester line is shifted to the empirical
region of saturation provided ∆ is large. This suggests a
Dirac structure for the potential with large scalar and vector
parts.
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Figure 3. N-body binding energy BN as a function of the density
ρo for different values of ∆. The curves correspond to ∆ = 650
(A), 700 (B), 750 (C), 800 (D), and 850 (E) in MeV. The points
on each line, from left to right, correspond to values of Ro rang-
ing from 1.4 to 2.1, in steps of 0.05 fm. All the points correspond
to ( Ro, S , V ) values leading to B2 = 2 MeV. The straight line
represents the fitting of the nonrelativistic Coester line of ref. 1.

Regarding the role of ∆ in the nuclear data fittings, it
is interesting to point out that recent nuclear matter analysis
with many different quantum-hadrodynamics models show
a correlation between the finite nuclei spin-orbit energy
splitting and the nuclear matter effective nucleon mass m∗
[19]. The spin-orbit energy splitting increases as m∗ de-
creases. To accurately reproduce the empirical splittings, it
is found that one should require m∗ to be between 0.58
and 0.64. From the Hugenholtz-van Hove theorem [20],
we can relate m∗ and ∆ through ∆ = 2M − BN −
M∗ − (k2

f + M∗2
)1/2 . Therefore, a correlation between

the splittings and ∆ also exists, namely the energy splitting
increases with ∆ . Moreover, the phenomenology of finite
nuclei restricts the values of ∆ to lie in a narrow band if
one intends to reproduce good results for spin-orbit splitting.
On the other hand, relativistic results, obtained via Dirac-
Brueckner-Hartree-Fock calculations, using three different
versions (A, B and C) of the Bonn potential, show a roughly
linear BN × ρo correlation [1]. The corresponding nuclear
matter ∆ quantities lie on a narrow range.

In Fig. 4 we present the incompressibility ( K ) as a
function of ρo . Again, the possible correlations follow the
same trend established in Fig. (3). Roughly, K increases
linearly with ρo for fixed ∆ values. When we consider
bigger values for ∆ , K increases, turning the equation of
state stiffer. In Fig. (5), the effective nucleon mass M∗ is
displayed as a function of ρo , also showing the same qual-
itative behavior for the possible correlations in terms of the
two-body Ro and ∆ inputs. As expected by our previous
discussion, when ∆ increases M∗ decreases. In these two
last figures we only want to exhibit the correlations between
the incompressibility and the effective nucleon mass on one
hand and the saturation density on the other. The specific
values of the two first quantities are not important here and
we would certainly get more reasonable results for them at
the nuclear matter saturation density had we used the non-
linear Walecka model [15].
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Figure 4. Incompressibility K as function of the density ρ. ∆ and
Ro are the same as in Fig. 3.
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Figure 5. Nucleon effective mass as a function of the density ρo.
∆ and Ro are the same as in Fig. 3.

5 Conclusions
The plots of the binding energy versus the saturation density
of nuclear matter that are obtained by nonrelativistic calcu-
lations with a large number of different two-nucleon inter-
actions show a correlation that is known as the Coester line.
In a nonrelativistic approach, the Coester line has to be con-
ceived from the phenomenology contained in two-body sys-
tems with a low fixed binding energy interacting via a short
range potential. In terms of our simple two-body model, the
main ingredients are Σ ( the depth of the potential) and the
range Ro. Both suffice to parametrize in a nonrelativistic ap-
proach the two-body problem itself, with a fixed two-body
binding energy.

From a relativistic point of view, we have presented a
discussion about this possible correlation. Our main conclu-
sions can be summarized as follows:

(1) In the relativistic case with scalar and vector interac-
tions, a new degree of freedom ∆ arises and we have seen

that unless ∆ is constant, the correlation contained in the
nonrelativistic Coester line is destroyed.

(2) Since the phenomenology of relativistic finite nuclei
calculations restricts the values of ∆ to lie in a narrow band,
if one intends to reproduce good results for spin-orbit split-
ting, we conjecture that a Coester line would survive in such
models.

(3) For large values of ∆ we show that the relativistic
Coester line is shifted to the empirical region of saturation,
which we see as an indication of a Dirac structure for the
potential with large scalar and vector parts, and also as a
signature of the relativistic content of nuclear matter.

(4) For a fixed value of B2 , the study of BN , K and
M∗ as a function of ρo suggests that they are themselves
correlated.

We have modeled our system in a very simple way,
where the two-body interaction has only the central term.
We are aware that the phenomenological two-nucleon inter-
actions in vacuum, as used by Reid, Paris, Hamada-Jonston,
Bonn and others have not only simple central terms, but in-
clude spin-spin, spin-orbit and tensor force. Their magni-
tudes are different in strength. In particular, the tensor force
is believed to be important for the nuclear matter satura-
tion [21]. However, as already mentioned in our introduc-
tion, a recent paper has analyzed the Coester line for various
Bonn potentials in a relativistic Brueckner approach [18].
Its conclusion is that the new Coester lines are shifted to-
wards the empirical region of saturation, supporting a Dirac
structure for the Nucleus-Nucleus potential. Then we can
conclude that even when we are dealing with a simple two-
body model that has only central terms, we have the domi-
nant aspect of the correct physics. This physics is in fact em-
bedded in the relativistic form of the potential, with scalar
and vector parts, because, in the medium, many pieces of
the interaction are averaged out, while the remaining part is
largely dominated by the scalar and the vector central poten-
tials [22].

To finish, we remark that for the first time a connection
between the Coster line has been proposed as a function of
the ∆ = V − S quantity (see Fig. 3). We have exager-
ated the ∆ interval in this figure to better exhibit how the
relativistic content of the model would manifest itself in the
Coester lines themselves.
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