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The role of Tsallis' non-extensive Information Measure within an �a la Jaynes Information-Theory-
based formulation of Statistical Mechanics is discussed in rather detailed fashion.

I Introduction

In spite of its great success, the Statistical Mechan-

ics paradigm based on the Boltzmann-Gibbs entropy

measure seems to be inadequate to deal with many

interesting physical scenarios [1, 2, 3]. Astronomical

self-gravitating systems constitute an important illus-

trative example of these di�culties [4]. A considerable

e�ort has been devoted by astrophysicists to develop a

thermostatistical description of self-gravitating systems

along the lines of standard Statistical Mechanics. The

failure of those attemps was due to the nonextensivity

e�ects associated with the long range of the gravita-

tional interaction [4].

Ten years ago Tsallis proposed a generalization of

the celebrated Boltzmann-Gibbs (BG) entropic mea-

sure [5]. The new entropy functional introduced by

Tsallis [5] along with its associated generalized thermo-

statistics [6, 7] is nowadays being hailed as the possible

basis of a theorethical framework aproppriate to deal

with nonextensive settings [8, 9, 10]. This entropy has

the form

Sq =
1

q � 1

�
1�

Z
f(x)q dx

�
: (1)

where x is a dimensionless state-variable, f corresponds

to the probability distribution and the entropic in-

dex q is any real number. This entropy recovers the

standard Boltzmann-Gibbs entropy S = �
R
f ln fdx

in the limit q ! 1. Sq is nonextensive such that

Sq(A+B) = Sq(A)+Sq (B)+(1�q)Sq(A)Sq(B), where

A and B are two systems independent in the sense that

f(A+B) = f(A)f(B). It is clear that q can be seen as

measuring the degree of nonextensivity.

Many relevant mathematical properties of the stan-

dard thermostatistics are preserved by Tsallis' formal-

ism or admit natural generalizations [8-14]. Tsallis' pro-

posal was shown to be consistent both with Jaynes' In-

formation Theory formulation of statistical mechanics

[15], and with the dynamical thermostatting approach

to statistical ensembles [16].

The recent application of Tsallis' theory to an in-

creasing number of physical problems is begining to

provide a picture of the kind of scenarios where the

new formalism is useful. Self-gravitating systems con-

stituted the �rst physical problem discussed within the

nonextensive thermostatistics [17]. That early applica-

tion, in turn, inspired Boghosian's treatment of the two

dimensional pure electron plasma, yielding the �rst ex-

perimental con�rmation of Tsallis theory [18]. A possi-

ble solution of the solar neutrino puzzle based on Tsallis

thermostatistics has been advanced [19]. Some cosmo-

logical implications of Tsallis proposal have also been

worked out [20]. The behaviour of dissipative low di-

mensional chaotic systems [21], as well as self organized

critical systems [22] have been discussed in connection

with the new approach. Tsallis entropy has also been

advanced as the basis of a thermostatistical foundation

�This work is dedicated to the memory of Prof. E. T. Jaynes, who passed away on 30 April 1998.
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of L�evy 
ights and distributions [23]. Tsallis nonexten-

sive statistical formalism proved to be a useful frame-

work for the analysis of many interesting properties of

nonlinear Fokker-Planck equations [24-29]. It has been

shown that Tsallis maximum entropy (MaxEnt) distri-

butions can also arise naturally as stationary solutions

of linear Fokker-Planck equations [30].

Tsallis bold attempt to develope a complete thermo-

statistical formalism on the basis of a nonlogarithmic

entropy functional has raised many interesting issues

related both to the mathematical structure and physi-

cal implications of general thermostatistical formalisms

[31, 32]. Tsallis pioneering work has stimulated the

exploration of the properties of other generalized or al-

ternative information measures [33, 34]. On the other

hand, it has been recently realized that some important

features are shared by extended families of thermosta-

tistical formalism [31, 32].

Tsallis' theory can be elegantly formulated in terms

of Jaynes' Information Theory (IT) approach to Statis-

tical Mechanics. It is our purpose here that of review-

ing this type of formulation, that helps placing Tsallis'

thermostatistics in an adequate context.

II Basic ideas of Jaynes' IT ap-

proach

III The maximum entropy probability
distribution

Information Theory (IT) [35] provides one with a pow-

erful inference methodology in order to describe general

properties of arbitrary systems on the basis of scarce in-

formation. Indeed, it purports to yield the least-biased

description that can be devised on the basis of some

speci�c data, in any possible situation. Within a Sta-

tistical Mechanics'context Jaynes [36-39] was able to

employ IT ideas so as to reformulate and generalize

the basic foundations of the �eld, in what constituted

a rather spectacular advance. The essential ideas un-

derlying Jaynes' IT-based methodology [36-39] can best

be introduced with reference to the following, quite gen-

eral environment. Let Ar ; (r = 1; � � � ;M ) be a set of

(real) random variables that characterize some system

S of interest. These variables adopt the (possible) val-

ues Ar(i) with (properly normalized) probabilities p(i),

where i = 1; � � � ; N enumerates the possible \states"

of S. Assume now that our \experimental" informa-

tion concerning S is limited to the set of mean val-

ues("expectation" values)

< Ar >� ar =
X
i

p(i)Ar(i); r = 1; � � � ;M; (2)

The question to be answered is the following one: what

can we assert concerning the (unknown) probability

distribution fp(i)g? As, in general, M < N (indeed,

in most realistic situations we have M << N ), many

di�erent distributions fp(i)g are compatible with the

information supply (2). However, IT claims that the

BEST (or least-biased) one is precisely that which max-

imizes the Thermodynamical entropy [36-39]). We see

that in order to �nd this purportedly "one and only"

fp(i)g we face an extremalization problem of the La-

grange sort, in which one extremalizes a given func-

tional S, subject to a set of constraints, i.e., Eqs. (2)

(our \input" or \prior" knowledge) supplemented by

the normalization condition

< A0 >� a0 =
X
i

p(i) = 1: (3)

As we deal with M + 1 constraints we must introduce

an equal number of Lagrange multipliers, that we shall

denote by �0 � 1; �r; (r = 1; � � � ;M ) and freely ex-

tremalize

Q = �
X
i

p(i) ln p(i)�(�0�1) < A0 > �
MX
r=1

�r < Ar >;

(4)

that is, we set

�p(i)Q = �
X
i

(�p(i))fln p(i) + �0 +
MX
r=1

�rAr(i)g = 0;

(5)

for any arbitrary �p(i), which entails that

ln p(i) = ��0 �
MX
r=1

�rAr(i); (6)

so that, on the basis of the prior information (Eqs. (2)

and (3) we infer the distribution fp(i)g of the typical

exponential (which guarantees the essential positivity

requirement on the distribution) appearance

p(i) = expf��0 �
MX
r=1

�rAr(i)g: (7)
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We introduce now the useful abbreviation

Trf [Ar] �
X
i

f [Ar(i)]; (8)

for any (analytical) function f of the Ar(i). For exam-

ple, we have

< Ar >= TrpAr : (9)

We de�ne now the \partition" function

Z = Tr exp

"
�

MX
r=1

�rAr

#
; (10)

which, on account of (3) leads immediately to

Z = exp(�0); (11)

i.e.,

�0 = lnZ; (12)

a pair of relationships that will be frequently encoun-

tered herefrom. The �rst derivative of (12) yields

@�0
@�s

=
@ lnZ

@�s

= �ZTrfAs exp[�
X
r

�rAr ]g

= �Tr[pAs]

= � < As >; (13)

which, when properly interpreted, solves our variational

problem, as we now proceed to show. Notice that, in

(8), �r; r = 1; � � � ;M are the only variables. Conse-

quently, Z is a function of these M Lagrange multipli-

ers. So is then �0, in view of (12)

�0 � �0(�1; : : : ; �M ): (14)

We should then regard (14) as a set of (coupled) highly

non-linear equations in the M variables �r , with the

input-information (the < Ar >) on the r.h.s. When

solved, this system provides us with Z and the Maxi-

mum Entropy fp(i)g.

IIII The main properties of the Maxi-
mum Entropy Probability (MEP)
distribution

Our maximum entropy (or maximum ignorance) ac-

quires the aspect

S = �
X
i

p(i) ln p(i) =
MX
r=0

�r < Ar >; (15)

On the basis of (12) and (15) we readily ascertain that

�0 and S are related by means of a quite general Leg-

endre transform [36, 37, 38, 39]

�0 � lnZ = S �
MX
r=1

�r < Ar >; (16)

which clearly tells us that, as Z is a function of the Leg-

endre multipliers, S must be a function of the mean val-

ues. This mathematical result is consistent with Shan-

non's interpretation of S as a missing information func-

tion, that is, S measures our ignorance once the < Ar >

are given. In addition to (14) we write then

S = S(a1; : : : ; aM): (17)

We can de�ne also a generalized \free energy" by select-

ing a special Lagrange multiplier, say �s, and writing

Fs = � lnZ=�s (18)

= < As > �
X
r 6=s

��r
�s

< Ar > �
S

�s
(19)

= < As > �
X
r 6=s

�r < Ar > �TsS; (20)

with

�r =
��r
�s

; Ts = ��1s ; (21)

positive, maximizingS is tantamount to minimizingFs.

From (15) we also obtain

@S

@ < Ar >
= �r ; (22)

the relation \conjugate" to (14). See also that

@ < Av >

@�s
= �

@2 lnZ

@�v@�s
=

@ < As >

@�v
; (23)

and that

@p(i)

@�s
= p(i)[< As > �As(i)]; (24)

which leads to

@ < Ar >

@�s
=

@ [
P

i p(i)Ar(i)]

@�s
= < Ar >< As > � < ArAs >

= �h(Ar� < Ar >) (As� < As >)i:(25)

We can also write

@S

@�s
=

X
r

�r
@ < Ar >

@�s

= �
X
r

�r [< ArAs > � < Ar >< As >] ;(26)
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which, in the particular case of having M = 1 special-

izes to

@S

@�1
= ��1[< A2

1 > �(< A1 >)
2]; (27)

so that the derivative of the entropy with respect to �1

gives immediately the dispersion.

III The modi�ed Kinchin ax-

iomatics

One of the salient contributions of Information The-

ory (IT) is that of yielding a recipe for ascertaining

in precise and unambiguous terms the amount of in-

formation (the information measure) that an observer

possesses concerning a given phenomenon when only a

probability distribution (PD) is known. The informa-

tional content of a normalized probability distribution

P (i); (i = 1; : : : ; N ), where the subindex i runs over the

states of the system one is trying to study, is given by

Shannon's information measure (IM) [35]

S = �
NX
i=1

P (i) ln[P (i)]; (28)

where the choice of the logarithm basis is used to �x the

informational units. If the basis is 2 then S is measured

in bits.

In a more formal vein one is led to consider Kinchin

Axioms [40] as providing the conceptual foundations of

Information Theory. Consider a system � composed of

two subsytems (�1; �2). Let Pm
i be a PD associated

to subsystem �m (m = 1; 2). The PD corresponding to

the total system is labelled by two subindexes i; j, one

for each of the subsytems. In general, the two subsys-

tems will be correlated, so that one needs the condi-

tional probability Q(jji) of �nding �2 in state j when

one is sure that the state of �1 is that labelled by i,

and a concomitant conditional IM, expressed in terms

of Q(jji). Kinchin axioms read

1) For a system � described by a PD P (i); i =

1; : : : ; N , the IM is a function only of the P (i)

SfPg = S(P (1); : : : ; P (N )): (29)

2) For such a system SfPg � SfuniformPDg,

where the uniform PD is, of course, Puniform = 1
N
,

for all i.

3) Suppose that, instead of dealing with N states we

confrontN+1 ones, with the proviso that P (N+1) = 0.

Then S does not change.

4) Let � be composed of two subsystems, as ex-

plained above. Then

S(�) = S(�1) +
X
i

P 1
i SfQjig: (30)

These four axioms lead in univocal fashion to Shan-

non's IM (28). To most people, the �rst three axioms

appear self-evident. However, the last one does not

seem to enjoy the same status. One may think that a

more natural phrasing of the fourth axiom would be

4')

SfPg = SfP 1g + SfP 2g; (31)

but the ensuing, modi�ed set of axioms leads not to

just one but to two IM's. One of them is Shannon's.

The other reads

SR;� = (1� �)�1 ln
� NX
i=1

P �
i

�
; ��<; (32)

which is known as R�eny's IM and has found extensive

applications in connection with fractals and Cantor sets

[41].

Jaynes [36] has shown that if one chooses Boltz-

mann's constant as the informational unit and identi-

�es Shannon's IM with the Thermodynamical entropy,

then the whole of Statistical Mechanics can be elegantly

reformulated, without any reference to the notion of en-

semble, by extremalization of Shannon's S, subject to

the constraints posed by the a priori information one

may possess concerning the system of interest (theMax-

imum Entropy Principle (MEP)) [37, 38, 39]. R�eny's

IM [42] cannot be regarded as a physical entropy, as it

does not have a de�nite concavity when expressed as a

function of the pertinent P (i).

Can we think of still an alternative version of the

fourth postulate that will yield an IM of de�nite con-

cavity di�erent from Shannon's one? If we advance the

following axiom [7]

4")
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c

SfPg = SfP 1g + SfP 2g + (1 � q)SfP 1gSfP 2g; q�<; (33)

d

one is led to Tsallis's entropy [1, 2, 3, 7]

Sq = (q � 1)�1
NX
i=1

[P (i) � P (i)q]; (34)

and is related to R�eny's IM Sq(R) in the following fash-

ion

Sq(R) = (1� q)�1 ln
�
1 + (1� q)Sq

�
: (35)

IV Tsallis' generalized statisti-

cal mechanics

Within a classical Gibbsian context, Tsallis [1, 2, 3, 7]

showed that his entropy leads to a Generalized Statis-

tical Mechanics (GSM). Consider a system � with M

possible microscopic con�gurations and let fpig stand

for the probability of �nding the system in the con�g-

uration i. As stated above, the associated Tsallis' IM,

to be regarded herefrom as a physical entropy, reads

Sq =
MX
i=1

(pi � pqi ) (q � 1)�1; (36)

with q a real parameter (we have a di�erent statis-

tics for every possible q�value) and

X
i

pi = 1: (37)

In order to study the limit q ! 1 we write

Sq =
X
i

pi

h
f1� e(q�1) ln pig(q � 1)�1

i
; (38)

and �nd that for q ! 1

S1 � lim
q!1

Sq = �k
X
i

pi lnpi; (39)

i.e., for q = 1 Tsallis' entropy coincides with the Gibbs-

Shannon one.

From its de�nition Sq � 0. Sq vanishes (for all q) in

the case M = 1, and, for M > 1; q > 0; whenever one

of the pi equals unity and the remaining ones, of course,

vanish. A global, absolute maximum of Sq (for all q)

obtains, according to the modi�ed Kinchin's axioms, in

the case of equiprobability, when all pi = 1=M . In such

an instance we have

Sq = k[M1�q � 1](1� q)�1; (40)

that, in the limit q ! 1 leads to the celebrated Boltz-

mann expression

S1 = k lnM: (41)

Tsallis' entropy exhibits a series of notable proper-

ties that reiforce the idea that Sq is indeed a physical

quantity. We list some of them below.

IV .1 Concavity

Let us consider two PD's fpai g and fpbig, where i la-

bels the members of a set of M microstates. For a real

� such that 0 < � < 1 we de�ne an "intermediate"

distribution fpig by recourse to

pi � �pai + (1� �)pbi : (42)

One easily veri�es that

q > 0 ! Sq [p] � �Sq [p
a] + (1� �)Sq [p

b]

q < 0 ! Sq [p] � �Sq [p
a] + (1� �)Sq [p

b] (43)

The functional Sq [pi] is concave for q > 0 and convex

for q < 0 (Sq being constant (= M � 1) for q = 0).
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IV .2 Pseudo-aditivity

Consider two independent systems A and B character-

ized by possessing Ma andMb microstates, respectively

and assume that the corresponding PD's are

A �!
�
pA1 ; p

A
2 ; : : : ; p

A
Ma

	
B �!

�
pB1 ; p

B
2 ; : : : ; p

B
Mb

	
(44)

The total, composite system A [ B (of microstates

given by all possible pairs of A- and de B-microstates

) is described by the PD

pA[Bij = pAi p
B
j ; (45)

and one easily �nds that its associated entropy is

SA[Bq = SAq + SBq + (1� q)SAq SBq : (46)

As a consequence we have

SA[Bq < SAq + SBq ; (q > 1)

SA[Bq > SAq + SBq ; (q < 1)

SA[Bq = SAq + SBq| {z }
extensivity

; (q = 1); (47)

so that, except for q = 1, Tsallis' entropy is a non-

extensive quantity, this being its main di�erence vis-a-

vis the orthodox one.

IV .3 Canonical ensemble

Tsallis found that by extremalization of Sq under the

constraints posed by both normalization and assumed

knowledge of the internal energy, that is

MX
i=1

pi = 1; (48)

MX
i=1

pi "i = U; (49)

one obtains the generalized canonical distribution [15]

p�i =
1

Zq
[1� �(q � 1)"i]

1=(q�1)
; (50)

where

Z�q = [1� �(q � 1)"i]
1=(q�1)

; (51)

is the generalized partition function.

However, more interesting results obtain if one in-

troduces as contraint the generalized internal energy [2]

Uq =
MX
i=1

pqi "i; (52)

which leads to the PD

pi =
1

Zq
[1� �(1 � q)"i]

1=(1�q)
; (53)

with

Zq = [1� �(1 � q)"i]
1=(1�q)

: (54)

Curado and Tsallis [6] found that the whole math-

ematical (Legendre-transform based) structure of ther-

modynamics becomes in this fashion invariant under

a change of the q�value (from unity to any other real

number). Indeed, one �nds, for example, relations of

the form

�
@

@�
[Z1�q

q � 1](1� q)�1 = Uq; (55)

@

@Uq

�
Sq
k

�
= �: (56)

 
Z1�q
q � 1

1� q

!
+ �Uq = Sq ; (57)

identical to their well-known q = 1-counterparts if one

replaces lnZ by

Z1�q
q � 1

1� q
: (58)

One immediately realizes that

(Sq) [Uq]; and

 
Z1�q
q � 1

1� q

!
[�]; (59)

are related by a Legendre transform.
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V Generalized Entropies and

Information Theory

Plastino and Plastino [15] have generalized the work

of ref. [6] by 1) embbeding it within a purely quantal

(Hilbert space) context and 2) using Jaynes' approach

to SM, which allows one to deal with (the IT equivalent

of) any ensemble, accomodating both equilibrium and

o�-equilibrium situations on an equal footing.

The �rst step in that direction is, of course, the con-

struction of a statistical operator (or density operator,

or density matrix) �̂ able to account for all the available

information, on the one hand, and that maximizes Tsal-

lis' entropy, on the other one. The available (a priori

or prior) information can (in general) be casted in the

form of a set of expectation values (EV). Here we need,

however, generalized EV's, in the spirit of Curado and

Tsallis [6] (see above the de�nition of a generalized in-

ternal energy). We assume prior knowledge of M EV's,

corresponding to M operators Ôi,

hÔiiq = Tr(�̂qÔi); i = 1; : : : ;M; (60)

where, we insist, generalized EV's are being employed,

according to the de�nition

hÔiiq = h�̂q�1Ôii; (61)

with an ordinary EV on the r.h.s. Of course, normal-

ization entails

Tr�̂ = 1: (62)

After a bit of algebra, recourse to that Lagrange

multipliers method provides us with the normalized

density operator that reproduces the M known (gen-

eralized) EV's (Cf Eq. (60)) and maximizes Tsallis'

entropy. One �nds [7]

�̂ = Z�1

 
1� (1� q)

X
i

�i Ôi

!1=(1�q)

; (63)

where Z is the partition function

Z = Tr

 
1� (1� q)

X
i

�i Ôi

!1=(1�q)

; (64)

and we have M Lagrange multipliers �i that guarantee

compliance with the M EV-related constraints. How-

ever, a small di�culty remains. The density operator

is a de�nite positive one and, as it stands, this is not

guaranteed by Eq. (63). Consequently, we must require

that the operator

Â = 1� (1 � q)
X
i

�i Ôi; (65)

appearing between the parenthesis in (63) be a posi-

tive de�nite one. This entails that the eigenvalues of

Â must be non-negative quantities. An ad-hoc require-

ment (to be justi�ed below) is then to be introduced at

this point. An heuristic cut-o� is needed. Instead of

(63) we write

�̂ = Z�1
h
Â�

�
Â
�i1=(1�q)

; (66)

with Z given by

Z = Tr
h
Â�

�
Â
�i1=(1�q)

; (67)

and �(x) the step (Heaviside's) function

�(x) =
n
0 for x � 0
1 for x > 0

: (68)

Equations (66-67) should be interpreted as follows.

Let j i > and �i, respectively, the eigenvectors and

eigenvalues of the operator (66), so that (spectral de-

composition)

Â =
X
i

�i < ij : (69)

In this special basis �̂ adopts the appearance

�̂ = Z�1
X
i

f(�i) < i j ; (70)

with f(x) de�ned according to

f(x) =
n
0 for x � 0;
x1=(1�q) for x > 0:

: (71)

Using now the shorthand notation

B̂0 = B̂�
�
B̂
�
; (72)

and

B̂ = Î � (1 � q)
X
i

�iÔi; (73)

the generalized entropy Sq is given by
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Sq =
1

(q � 1)
Tr
�
�̂q
h
�̂1�q � Î

i�
=

1

(q � 1)
Tr
�
�̂q
h
Zq�1B̂0 � Î

i�
=

Zq�1

(q � 1)
Tr
�
�̂q B̂0

�
�
Tr (�̂q)

(q � 1)
: (74)

Obviously, the operators �̂ and Â commute. Thus,

their product can be expressed in the common basis

that diagonalizes them. Assuming this has been done,

a bit of contemplative re
ection should convince one

that

c

�̂q

 
Î � (1� q)

X
i

�i Ôi

!
�

 
Î � (1� q)

X
i

�i Ôi

!
= �̂q

 
Î � (1� q)

X
i

�i Ôi

!
; (75)

d

where, of course, all negative eigenvalues (of Â) have

been conveniently dropped (our cut-o�). With a clear

conscience we can now write

Sq =
Zq�1 � 1

q � 1
Tr (�̂q) + Zq�1

X
i

�i Tr
�
�̂q Ôi

�

=
Zq�1 � 1

q � 1
Tr (�̂q) + Zq�1

X
i

�i hÔiiq: (76)

Now, from the very de�nition of the generalized en-

tropy Sq we have,

Tr (�̂q) = 1 + (1� q)Sq ; (77)

so that (76) and (77) yield the Generalized Euler's The-

orem [15]

Sq = �J +
X
i

�i hÔiiq; (78)

where the Jaynes parameter �J is given by

�j =
Z(1� q)� 1

1� q
: (79)

The parameter (79) plays, within this generalized

context, the role of the logarithm of the partition func-

tion in the orthodox SM.

Generalized EV's hÔiiq, Jaynes parameter �J , and

the Lagrange multipliers �i obey certain strictures that

constitute the heart of a thermodynamical descrip-

tion. Partial derivation of �J with respect to the �i

(i = 1; : : : ;M ) yields (consider here that our primed

operator is B̂0 = 1� (1� q)
P

i �i Ôi)

c

@�J
@�i

= Z�q
@Z

@�i

=
Z�q

1� q
Tr

(h
B̂0
iq=(1�q) @

@�i

 
1� (1 � q)

X
i

�i Ôi

!)

= �Z�q Tr

�h
B̂0
iq=(1�q)

Ôi

�
: (80)

which leads to

@�J
@�i

= �Tr
�
�̂q Ôi

�
= �hÔiiq; (81)

that, together with Euler' theorem, tell us that
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@S

@hÔiiq
=

MX
j=1

(
@�J
@�j

@�j

@hÔiiq
+

@�j

@hÔiiq
hÔjiq

)
+ �i

=
MX
j=1

(
�hÔjiq

@�j

@hÔiiq
+

@�j

@hÔiiq
hÔjiq

)
+ �i; (82)

d

and allows for the very important result [15]

@S

@hÔiiq
= �i: (83)

Equations (81) and (83) constitute the basic IT re-

lations in order to build up quantum SM �a la Jaynes.

In deriving them we reach the result that the whole

of quantum SM is invariant under a change of q (from

unity to any other real number).

The generalized EV's can be shown to obey an

Ehrenfest's theorem [15]. Consider a density operator

D̂(t) (not necessarily of the maximum entropy form)

that evolves (in time) according to Von Neumann' equa-

tion

dD̂

dt
=

1

i~
[Ĥ; D̂]; (84)

where Ĥ is the system's hamiltonian. Let j �i(t) > and

�i be, respectively, the eigenvectors and eigenvalues of

D̂. According to (84) the latter do not depend upon the

time while the j �i(t) > are solutions of Schroedinger's

equation

i~
d

dt
j �i(t) >= Ĥ j �i(t) > : (85)

From the time-independent nature of the �i one

gathers that if

D̂ =
X
i

�i j �i(t) >< �i(t) j; (86)

is a solution of Von Neumann's equation, another such

solution is given by

D̂q =
X
i

�qi j �i(t) >< �i(t) j : (87)

Thus, if D̂q ful�lls Von Neumann's strictures, the

generalized EV's hÔiq will necessarily verify Ehrenfest's

theorem [15]

d

dt
hÔiq =

1

i~
h[Ô; Ĥ]iq: (88)

VI Justifying Tsallis' formalism

Plastino and Plastino [43] have justi�ed the GSM dis-

cussed above with reference to an argument similar to

that employed by Gibbs himself in deriving his canon-

ical ensemble. The idea is to go back to Gibbs' micro-

canonical ensemble (GME).

Consider a system S with energy levels denoted by

"i, weakly interacting with a thermal bath B and as-

sume one describes the "total" system T = S + B by

recourse to the GME when its total energy E lies in the

interval

E0 �� < E < E0 +�; (89)

with

� << E0: (90)

As usual, the energy spectrum of the bath B is regarded

as being of a quasi-continuous character. Plastino and

Plastino [43] traverse a new road, however, in assuming

that B is a �nite system, of �nite energy Eb.

As the total system T is microcanonically described,

the probability pi of �nding S in a state ki > of en-

ergy "i is proportional to the total number � of T -

con�gurations compatible with such a situation. In

view of the quasicontinuous character of the B-energy

spectrum, � will be given by

� = 2��(E0 � "i); (91)

where �(E) represents the number of states (per unit

energy interval) of B in a neighbourhood of E . Thus,



A. Plastino and A. R. Plastino 59

pi
pj

=
�(E0 � "i)

�(E0 � "j)
: (92)

Let us assume that the number of states M (E) of

B with energy smaller ( or equal) than E grows as a

power � of E. Such a growth-law is often encountered.

As examples we mention

a) A set of N independent harmonic oscillators (� =

N ),

b) A set of N free (nonrelativistic) particles con�ned in

a D-dimensional box (� = DN=2),

c) A set of N plane, rigid rotators (� = N=2).

With this last assumption we �nd

�(E) / E��1; (93)

because �(E) is essentially the derivtive of M (E) with

respect to E. Thus

pi
pj

=
(E0 � "i)

��1

(E0 � "j)��1

=
(1� "i=E0)��1

(1� "j=E0)��1
; (94)

so that, after multiplication by the convenient normal-

ization factor Z�1, with

Z =
X
j

�
1�

"j
E0

���1
; (95)

we arrive at

pi = Z�1
�
1�

"i
E0

���1
: (96)

Setting

q =
(�� 2)

(�� 1)
; (97)

and

� =
(�� 1)

E0
; (98)

we obtain Tsallis' canonical distribution

pi = Z�1q [1� �(1 � q)"i]
1=(1�q); (99)

with

Zq =
X
i

[1� �(1 � q)"i]
1=(1�q); (100)

q being, of course, Tsallis' characteristic parameter. In

the limit q ! 1 one recovers Gibbs' conventional ex-

pressions

pi =
1

Z1
e��"i ; (101)

Z1 =
X
i

e��"i : (102)

The physical meaning of the q ! 1 limit deserves

special attention. So as to �x ideas let us consider that

our thermal bath consists of N independent Harmonic

oscillators (� = N ). Eqs. (97)-(98) give

q =
(N � 2)

(N � 1)
; (103)

and

� =
(N � 1)

E0
: (104)

The limit q ! 1 corresponds to that situation char-

acterized by N ! 1 and E0 ! 1, the process pro-

ceeding in such a fashion as to keep constant the energy

per oscillator W = E0=N . Consequently, Tsallis' gen-

eralized canonical distribution describes a systema in

thermal contact with a �nite reservoir. Stricto sensu,

in�nte baths do not exist in nature, so that, in some

sense, Tsallis' distribution can be regarded as the natu-

ral one, Gibbs' being, instead, a convenient mathemat-

ical "idealization".

The interpretation given in [43] to Tsallis GSM al-

lows one to conclude:

1.- The values adopted by Tsallis' parameter q are

determined by the nature of the appropriate thermal

bath

2.- The cut-o� ad-hoc condition needed so as to de-

termine Tsallis' statistical operator appears here in a

natural fashion. The probability pi associated to the

microstate ki > vanishes whenever

�(1 � q)"i � 1; (105)

which is equivalent to the condition

"i � E0: (106)

Obviously, (106) implies pi = 0: the energy of the

system S cannot exceed E0, that of the total system

T = S + B.
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