Acessibilidade / Reportar erro

Phenomenological Model for the metal-insulator transition in two dimensions

The resistivity measured in two-dimensional MOSFET geometry is modeled by considering that the resistivity is a function of the temperature and the areal density of charges (electrons or holes). The logistics differential equation is proposed for the behaviour of the resistivity as a function of temperature, so that the two phases are obtained in a natural manner. At low temperatures, the Drude model behaviour is assumed for the resistivity as a function of density. Two characteristics then follow in a natural manner: The existance of a characteristic temperature for resistivity as a function of temperature, and the symmetry relationship. If the magnetic field is incorporated into the Drude model, reasonable results are obtained for the qualitative behaviour of resistivity for weak fields.

metal-insulator transition; logistics equation


Sociedade Brasileira de Física Caixa Postal 66328, 05315-970 São Paulo SP - Brazil, Tel.: +55 11 3091-6922, Fax: (55 11) 3816-2063 - São Paulo - SP - Brazil
E-mail: sbfisica@sbfisica.org.br