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Phase Space Solutions in Scalar-Tensor Cosmological Models
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An analysis of the solutions for the field equations of generalized scalar-tensor theories of gravitation is
performed through the study of the geometry of the phase space and the stability of the solutions, with special
interest in the Brans-Dicke model. Particularly, we believe to be possible to find suitable forms of the Brans-
Dicke parametet and potential V of the scalar field, using the dynamical systems approach, in such a way that
they can be fitted in the present observed scenario of the Universe.

I. SCALAR-TENSOR THEORIES OF GRAVITATION
In a homogeneous and isotropic space, described by the
Friedmann-Lematre-Robertson-Walker metric

dr?
Kr?

ds? = —dt® + a?(t) L +r2(d6? + sir? 9d¢2)] @

whereais the scale factor and is the spatial curvature index,

gravitation can be described by an action of the kind FIG. 1: Upper sheet of the of the phase space for a modekwitt.0
1 z (o) (Brans-Dicke), corresponding to the positive sign in eq. (7) [2]. The
s=— d'/=g {(pr —gabDachb(pr((p)} +8"  (2) “hole” in the surface indicates the region forbidden for the orbits of
16m ® the solutions.

whereS" is the action of usual matteg is the determinant
of the metric tensomp is a coupling function (which we will
eventually assume to be a constant, known as Brans-Dicke
parameter) an¥l (@) is the potential of the scalar fielg[2].

From (2), we obtain for the field equations:

ll. THE CASE FOR V = im2¢? ANDK =0

In the referred paper [2], the author proceeds to show the
phase space allowed for the orbits of solutions for these field

® Vv K 8mpm equations in several cases with different potentials and para-
H?=—H ($> + B ($) 6((1)) -+ %, () metersw. For example, in the case of vacuum, flat space
a (K = 0) and potentiaV/ = 3mP¢?, equation (3) was rearranged
o, _ as (makingn= 1)
_ _w(e @ : o1
=3 ((p) 2H ((p) W —6H@p-+ (5 — 6HP)9=0, ©)
1 dv dw 2 which has the solutions
20201 30 {‘pdcp Nt @ } . -
K 8 o (H,0) = = [3HQ+ 1/3(2w+ 3)H2¢ — Zo? (7)
- w+2 m me 4 (pi( 7(p) ¢ .
The assumption of flat space is required in order to reduce the
- 34 1 dw). 1 o av dimensionality of the phase space.
o+ T 2w+ 3 do T 2043 - (pd—(er We want to analyze qualitatively the geometry of the phase
8m(p™ — 3P™)] ) space(H, @, ), expecting to infer the form of the functions

() andV (@) to fit better the available data on the structure

whereH = a/a is the Hubble parameter apd® andP™ are  of the Universe.
the energy density and the pressure of the material fluid. The phase space for this situation is composed of a 2-d sur-

As usual, we parameterize the equation of state for the fluifiace with two sheets, related to the lower and upper signs
asP™ = (y— 1)p™ with y a constant chosen to indicate a va- in eq. (7). Figures 1-3 show the phase space for the choice
riety of fluids that are predominantly responsible for the en-w= 10.
ergy density of the Universe. We can see that through the en- The fixed points for this dynamical system, obtained mak-
ergy conservation equatigt" + 3H (p™ +P™) = Owe obtain ing H = @ = 0, are de Sitter solutions, given bylp =
p™ = po/a®, with pg a constant. ++/@/12, with constanHy andgp.
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Now, equations (8) and (9) form the system for which the fixed
points are the solutiortdy = +/8Mo /3¢5 +/\/6 .

Of special interest is the search for the most adequate func-
tionsw(@) andV (@), that may be more complicated than what
was assumed until here.

FIG. 2: Lower sheet of the phase space, now corresponding to the
negative sign in eq. (7).

FIG. 4: Complete phase space for a Brans-Dicke model with a cos-
mological constanf\ = 1, energy densitypg = 2 and constant para-
meterw = 5000Q showing two sheets linked by the boundary of the
forbidden region, as in the precedent case.

FIG. 3: The complete phase space composed of the upper and lower
sheets linked to each other at the boundary of the forbidden region.

IV. CONCLUSIONS
lll. THE CASE FOR V =A@AND K =0

Following other works ([3]-[3]) which give a complete  The method of analyzing the geometry of the phase space
analysis of the phase space for Brans-Dicke model with a CO;ave proved to be a useful tool in the search for the solutions
mological constant\ (simply makingV (¢) = A@in the ac- o the field equations of generalized gravity models. Our aim
tion), we can illustrate the situation in which has a very s to achieve a complete analysis of the simple model pre-
large value ang/ = 0. Therefore, the energy density of the sented before (including the stability of the solutions, via Lya-
fluid is a constanpo. It should be emphasized that recent pynov's direct method [1], in order to investigate further its
observational and simulation results seem to favor a scenarigiraction basin and to apply more sophisticated functions to
very similar to this one ([6],[11]-[14]). The solutions in this j;
case are written as

Pe(H0) = {3H(pi \/OH?@ — i (A — 6H2) + 16mpq] . (8)

With this solutions, we are able to show the phase space for
a particular choice of constams w andpo.

We proceed to find the dynamical equations system for this
simple model, as done before.

NamingA the expression under the root in eq.(8), we can

write the equation foH: V. ACKNOWLEDGMENTS
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