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We present femtoscopic results from hydrodynamics-inspired thermal models with single freeze-out. Non-
identical particle femtoscopy is studied and compared to results of identical particle correlations. Special em-
phasis is put on shifts between average space-time emission points of non-identical particles of different masses.
They are found to be sensitive to both the spatial shift coming from radial flow, as well as average emission time
difference coming from the resonance decays. The Therminator Monte-Carlo program was chosen for this
study because it realistically models both of these effects. In order to analyze the results we present and test the
methodology of non-identical particle correlations.
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I. INTRODUCTION

The single freeze-out approach [1–3] originates from ther-
mal models of heavy-ion collisions. It is based on thermal fits
to particle yields and yield ratios, which are known to work
well for RHIC collisions. These ratios are not sensitive to the
underlying geometry of the collision, which is what is mea-
sured by femtoscopy. The form of the freeze-out geometry
must be postulated and should give the overall volume of the
system, which is reflected in the absolute yields of particles,
as well as the detailed shape of the emission region probed
by two-particle correlations. We have postulated such a form
of the freeze-out hypersurface which is motivated by hydrody-
namics. It has been used to calculate femtoscopic observables,
both for identical [4] and non-identical particles. The latter
are especially interesting and are the focus of this work. They
have been recently measured at SPS and RHIC [5–7]. There
have been very few theoretical predictions for these observ-
ables [5, 8]. They contain a crucial and unique piece of infor-
mation - the difference between the average emission points
of two particle types [9–13]. If the particles have different
masses, we expect a spatial shift coming from the collective
flow of matter. If the particles are of different type, we also
expect a very different pattern of emission times, since many
particles come from strong decays of resonances. Both of
these shifts are interconnected in the measured average emis-
sion point difference. Disentangling them is not a trivial task.
Single freeze-out models with resonances are perfectly suited
for it, as they include realistic modeling of both effects.

II. FEMTOSCOPY DEFINITIONS

In this work we will analyze correlation functions between
non-identical particles. The femtoscopic correlation function
is usually defined as:

C(q,K) =
PC

2 (q,K)
P0

2 (q,K)
(1)

where PC
2 is the probability to observe two femtoscopically

correlated particles at relative momentum q. P0
2 is the prob-

ability where the correlation between particles does not have

the femtoscopic component. K is the average momentum of
the pair. In heavy-ion experiments PC

2 is usually constructed
from pairs coming from the same event, while P0

2 is con-
structed from pairs where each particle comes from a different
event. The events are as close to each other in global charac-
teristics as possible.

In theoretical models one should, in principle, generate par-
ticles in such a way that they are already correlated due to
their mutual and many-particle interactions. That is however
usually computationally not possible. One then makes an as-
sumption that the interaction between particles can be sepa-
rated from the generation process and we write the most gen-
eral form of the correlation function that can be used by mod-
els:

C(q,K) =
∫

S1,2(r∗,q,K) |Ψ(q,r∗)|2 d4r∗∫
S1,2(r∗,q,K)d4r∗

(2)

where r∗ is the pair separation in the pair rest frame (PRF) and
S1,2(r∗,q,K) is the pair separation distribution defined as:

S1,2(r∗,q,K) =
∫

S1(x1,p1)S2(r∗ −x2,p2) (3)

δ(r∗ −x1 +x2) d4x1d4x2

and S(x,p) is the single-particle emission function provided
by the model. For identical particles S1 ≡ S2 and S1,2(r∗) is
symmetric by definition, for non-identical particles it is not so
and S1,2(r∗) is usually asymmetric. It is an important point
which will be discussed later. We also note that the ordering
of particles in the pair is important: S1,2(r) ≡ S2,1(−r). The
Ψ function will be discussed in the next chapter.

A. Wave-function of the pair

In Eq. 2 the amplitude Ψ descibes the change in the proba-
bility to detect a pair of particles when they interact with each
other. Generally, this (Bethe-Salpeter) amplitude depends on
both spatial (r∗) and time (t∗) separation of the particle emit-
ters in PRF. Usually, it can be approximated by the equal-time
(t∗ = 0) solution Ψ−k∗(r∗) of the scattering problem viewed
in the opposite time direction (hence the −k∗ subscript).
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In this work we consider pairs of charged non-identical
mesons and baryons. In this case the origin of femtoscopic
correlations are Coulomb and strong interactions. However,
for pion-kaon and pion-proton systems, as well as for same-
charge kaon-proton system, the strong interaction is much
weaker than Coulomb interaction at small k∗. For the opposite
charge kaon-proton system, there is a significant strong inter-
action potential, which is interesting in it’s own right, how-
ever its detailed study is beyond the scope of this paper. The
strong interaction is not essential for our study, so we restrict
our study to Coulomb interaction in same-charged pion-kaon,
pion-proton and kaon-proton systems. Then:∣∣Ψ(q,r∗)QC∣∣2

= AC|F(−iη,1, iξ)|2 (4)

where k∗ is half of pair relative momentum in PRF, AC is the
Gamow factor, F is the confluent hypergeometric function,
η = 1/k∗ac, ac is the pair Bohr radius and ξ = k∗r∗ + k∗r∗.
Please note that the wave-function is calculated in the PRF. ac
is 248.5 f m, 222.6 f m and 83.6 f m for pion-kaon, pion-proton
and kaon-proton pair respectively.

III. NON-IDENTICAL PARTICLE CORRELATIONS

The correlation between a pair of non-identical particles
arises from Coulomb and/or strong interaction. We will con-
centrate on the Coulomb interaction, but our conclusions hold
for strong interactions as well. We will discuss the specifics
of the correlations for pairs of unlike particles, emphasizing
the differences and similarities to traditional identical particle
femtoscopy.

The correlation term (4) is calculated in the pair rest frame
and depends on the relative momentum k∗, relative position r∗
and the angle θ∗ between the two. It needs to be emphasized
that the low relative momentum in the pair rest frame, corre-
sponds to close velocities, but not momenta, in the laboratory
frame. This is in contrast to identical particle interferometry.
This also means that particles from very different momentum
ranges are correlated, e.g. pion with velocity 0.7 has a mo-
mentum of 0.137GeV , a close-velocity kaon has a momentum
of 0.484GeV and a proton: 0.919GeV . In experiment this of-
ten poses a problem, as one needs to have a large momentum
acceptance to measure close-velocity pairs.

Looking in detail at the hypergeometric function F from
(4):

F = 1+ r∗(1+ cosθ∗)/aC + ... (5)

one notices an important feature of |Ψ|2, namely that it is not
symmetric with respect to the sign of cosθ∗. For same sign
particles Ac is less than 1.0 and F is above 1.0, but since the
correlation effect must be negative, Ac |F |2 < 1. For a given
k∗ and r∗ one can have two cases: in one cosθ∗ < 0, for the
other cosθ∗ > 0. The former will have a larger correlation ef-
fect (since F is smaller and cannot overcome Ac) and the latter
will have a smaller correlation effect. This asymmetry in the
correlation effect can be understood with the help of a simple
picture: negative cosθ∗ means that k∗ and r∗ are anti-aligned,

which means that at first the particles will fly towards each
other before they fly away, spending more time close together
and thus developing a larger correlation. A positive cosθ∗
means they will fly away immediately, having no time to in-
teract. This asymmetry is an intrinsic property of the Coulomb
interaction and is also present for identical particles. However
in that case the wave-function symmetrization requires one to
add a second term to (4) which has the same asymmetry with
the opposite sign, so that the overall asymmetry is zero, as it
must be.

If we were somehow able to divide pairs in two groups -
one in which 〈cosθ∗〉 > 0 and the other in which 〈cosθ∗〉 < 0
one would obtain two different correlation functions, out of
which the latter would show a stronger correlation effect. Ob-
viously we cannot select pairs based on the θ∗ angle, as it is
not measured. However we do have one angle on which we
can select - the angle Ψ between pair velocity v and pair rel-
ative momentum k∗. In the transverse plane cosΨ > 0 means
that k∗out > 0. We also notice that in the transverse plane

Ψ = θ∗ +φ, (6)

where φ is the angle between the pair velocity v and the rel-
ative position r∗. This angle is not measured as accurately.
One can also show that when one averages over all possible
positions of r∗ one can write [14]

sign〈cosΨ〉 = sign〈cosθ∗〉sign〈cosφ〉 . (7)

One can then propose a measurement: to divide pairs into two
groups, one with k∗out > 0 ≡ cosΨ > 0 and the other with
k∗out < 0 ≡ cosΨ < 0. Then one constructs two correlation
functions C+ and C− from the two groups. If one observes
that |C+−1|/|C−−1.0|> 1.0 it can only happen if 〈cosφ〉< 0
as can be seen from Eq. (7). In other words this can happen
only if the average emission points of two particle species are,
on the average, separated in the direction of the pair velocity,
and this separation is anti-aligned with the velocity. By the
same reasoning, if |C+ − 1|/|C− − 1.0| < 1.0 this separation
is aligned with the pair velocity. Let us restate the conclusion
of this paragraph: using the fact that the correlation effect is
asymmetric with respect to the sign of cos(θ∗) and the mea-
sured angle Ψ, we can tell whether an average emission po-
sition of two different particle species is the same or not, and
if it is not, is the difference is the same or opposite to the di-
rection of pair velocity v. More quantitative analysis shows,
that the double ratio C+/C− is also monotonously dependent
on the value of this shift between particles, so the magnitude
of the shift can be inferred from it. This is a unique feature of
non-identical particle correlations, as such information cannot
be obtained from any other measurement.

A simple formula can be written for the behavior of the
double-ratio at low k∗[11]:

lim
k∗→0

C+/C− = 1+2〈r∗i 〉/aC (8)

which also illustrates the sensitivity of the double ratio to the
mean shift between emission points. It is however difficult
to use this formula in the experiment, as the low k∗ region
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usually suffers from low statistics and two-track separation
problems.

The above consideration has been performed for the pair
rest frame. Experimentally, however, one would like to learn
something about the source itself, which requires the knowl-
edge of the source in its rest frame. In symmetrical collisions
in collider experiments (which is what we will consider later
in the manuscript) we can assume that the source frame co-
incides with the laboratory frame. One can write a simple
formula for the relative separation in pair rest frame r∗ as a
function of the pair separation in the source frame r:

r∗out = γt(rout −βt∆tL)
r∗side = rside

r∗long = γl(rlong −βl∆t)

∆tL = γl(∆t −βlrlong) (9)

where the long direction is defined as the one parallel to the
velocity of the colliding nuclei, out as parallel to the pair
velocity in the transverse direction, and side as perpendic-
ular to the other two. The pair velocities are βl = pl/E,

γl = 1/
√

1−β2
l , βt = p⊥/m⊥, γt = 1/

√
1−β2

t . One can see
that the average shift in r∗out may mean non-zero average spa-
tial shift rout , non-zero average emission time difference ∆t or
a combination of the two.

IV. THERMINATOR

The Therminator program [15] is the numerical implemen-
tation of the single freeze-out model [1–3]. It includes all
particles listed by the Particle Data Group [16]. We use the
version of the model based on the blast-wave type parame-
trization, which is hydrodynamics-inspired [8]. Therefore
our model includes the effects of radial flow, which is appar-
ent, e.g., in the mT dependence of the pion “HBT radii” [4].
This is an important feature, as the space-momentum corre-
lation coming from radial flow is one of the origins of emis-
sion asymmetries between various particle species. The emis-
sion function is changed slightly from the version described
in [15]. A quasi-linear velocity profile as a function of ρ is
added. The freeze-out hypersurface is then defined as:

τ̃ = τ = const, vr = tanhα⊥ =
ρ/ρmax

vT +ρ/ρmax
(10)

where τ, ρmax and vT are parameters of the model. The quasi-
linear velocity profile has the desired features - it is zero for
ρ = 0, is almost linear for reasonable values of vT , and cannot
go higher than 1.0. The emission function is then:

dN
dydϕp⊥d p⊥dα‖dφρdρ

=
τ

(2π)3 m⊥ cosh(α‖ − y)× (11)

{
exp

[
β

m⊥ cosh(α‖ − y)− p⊥vr cos(ϕ−φ)√
1− v2

r
−βµ

]
±1

}
,

where (ρ,φ) is the transverse emission point in radial coordi-
nates, α‖ is the space-time rapidity of the emission point, y

is the particle rapidity, (pT ,ϕ) is the particle’s transverse mo-
mentum in radial coordinates, and mT is its transverse mass.
The inverse temperature β and µ, the particle-specific chemi-
cal potentials, are also parameters of the model.

The fit to STAR Collaboration data [17] has been performed
with this model and the following values of the parameters
were found to best reproduce the observed pion and kaon
spectra in central AuAu collisions: τ = 8.55 fm, ρmax = 8.92
fm, a = −0.5, vT = 1.41. The negative value of the a para-
meter means that the freeze-out hypersurface has a negative
slope (an anti-correlation) in the ρ− t plane, or in other words
the freeze-out occurs outside-in [4]. The thermodynamic pa-
rameters T and µ were the same as in [4]. The velocity profile
for these parameters is shown in Fig. 1. The average velocity
is 0.31.

maxρ/ρ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rv

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIG. 1: Radial velocity profile for the parameters used in this study.

emission time [fm]
0 10 20 30 40 50

em
is

si
o

n
 p

ro
b

ab
ili

ty
 P

(t
)

-510

-410

-310

-210

-110

FIG. 2: (Color online) Probability to emit a pion (green triangles),
kaon (blue squares) and proton (red circles) as a function of time.

TABLE I: Average emission times from Therminator

Particle species Average emission time

pion 12.3 f m/c

kaon 10.7 f m/c

proton 7.9 f m/c



920 Adam Kisiel

The simulation proceeds as follows. First, using a Monte-
Carlo integration procedure as a particle generator, all parti-
cles (stable and unstable) are generated according to the emis-
sion function (11). Each particle is given an emission point
on the freeze-out hypersurface and a momentum. Then, all
unstable particles decay after some random time dependent
on their width. They propagate to the decay point, and this
point is then taken as the space-time origin of the daughter
particles. Two- and three-particle decays are implemented.
The process is repeated for cascade decays, until only stable
particles remain. While each particle has its emission point
either on the freeze-out hypersurface (we call such particles
primordial) or at the decay point of the heavier resonance, the
full history of decays can be reconstructed from the output
files. This treatment of resonance propagation and decay is
of crucial importance for non-identical particle correlations.
It introduces delays in emission time, which are different for
different particle species. It depends on the number of res-
onances that decay into the particle of interest, their widths
and velocities. An illustration can be seen on Fig. 2. The
Monte-Carlo procedure we used is the most efficient way of
studying it, more precise results can only be obtained by us-
ing a full-fledged hadronic rescattering model. In our work
hadronic rescattering is not taken into account, which is one
of the simplifications assumed in the single freeze-out model.

A. Calculating the correlation function

It is possible to use Eq. 2 to obtain the model correlation
function. The integral is calculated numerically. One takes
particles generated by Therminator. Then one combines them
into pairs and creates two histograms - in one of them one
stores the |Ψ|2 of the pair (4), in the other - unity for each pair.
The result of the division of the two histograms is the average
correlation effect in each bin, which is the correlation func-
tion per Eq. (2). This is the so-called “two-particle weight”
method of calculating the correlation function from models.
It is the only one which takes into account the two-particle
Coulomb interaction exactly, a feature which is necessary for
our study. In this procedure each pair is treated separately, as
one goes to the pair rest frame (different for each pair) as the
calculation of the Ψ is done most naturally in this system.

V. ASYMMETRY ANALYSIS

In section III it was shown that non-identical particle cor-
relations are sensitive to the shifts between average emission
points of different particle species. However, we have not dis-
cussed if and how such asymmetries could arise. In Fig. 3
the average emission points of pions, kaons and protons from
THERMINATOR where shown for pairs which have similar
velocity, pointing horizontally to the right. One sees that the
average emission points of pions, kaons and protons is not the
same in the out direction, while it is 0 for the side direction for
all of them. One can also see that the average size of the emis-
sion region is decreasing with particle mass, a known effect of
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FIG. 3: (Color online) Distribution of emission points of pions (up-
per plots), kaons (center plots) and protons (lower plots) versus pair-
wise out and side directions. Left and right side are emission points
of the same particle from different system, but for the same pair ve-
locity range (for pions: left - πK, right - πp, for kaons: left - πK,
right - K p, for protons: left - πp, right - K p.

radial flow, usually referred to as “mT scaling” of HBT radii.
The shift that we observe is also a direct but distinctly dif-
ferent consequence of radial flow present in our simulation.
The mt dependence of the average emission point has been
discussed in detail in [5] and the formula for the longitudinal
boost-invariant hydrodynamic model (similar to the one used
in this work) has been given:

〈x〉 = r0
β0βt

β2
0 +T/mt

(12)

where r0 is the radius of the system, βt is the transverse veloc-
ity of the particle and β0 is the parameter of the model char-
acterizing the strength of flow. One can understand it by the
following argument. Pions and protons of the same velocity
have very different momenta. By inspecting Eq. (11) one
observes that the correlation between the space-momentum
emission point direction φ and the momentum direction ϕ is
controlled by the factor: exp(βp⊥ cos(ϕ−φ)). So the higher
the momentum, the stronger the correlation. The temperature
1/β is of course identical for both particle species. Therefore,
in a close-velocity pair, the proton emission direction will be
much more correlated with its momentum direction. And the
momentum, due to radial flow, is always pointing “outward”,
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so the emission points will tend to be concentrated near the
edge of the system, in the direction of emission. For pions on
the other hand, there is almost no correlation between the two
directions, so they are emitted from the whole source. The ef-
fect is clearly seen in the figure, as a difference between mean
emission points in the “out” direction:

rπp
out = xπ

out − xp
out (13)

This is the spatial shift between particles in the source frame.
Measuring it is the main goal of non-identical particle fem-
toscopy. Observing such a shift in the experiment would be
direct evidence of the collective behavior of matter, which is
one of the necessary conditions to claim the discovery of the
quark-gluon plasma.

One must remember that the asymmetries measured in the
correlation function are averaged over the source. Therefore,
the connection between a shift in the laboratory frame and in
the pair rest frame is:

〈r∗out〉 = 〈γ(rout −β∆t)〉 (14)

TABLE II: Average space shifts from Therminator

βt of the pair rπK rπp rK p

0.35 - 0.5 -1.9 fm -2.5 fm -0.6 fm
0.5 - 0.65 -2.4 fm -3.4 fm -0.9 fm
0.65 - 0.8 -2.9 fm -3.9 fm -1.1 fm
0.8 - 0.95 -3.0 fm -4.3 fm -1.2 fm

TABLE III: Average time shifts from Therminator

βt of the pair ∆tπK ∆tπp ∆tK p

0.35 - 0.5 3.8 fm/c 6.2 fm/c 2.3 fm/c
0.5 - 0.65 3.6 fm/c 5.7 fm/c 2.1 fm/c
0.65 - 0.8 3.2 fm/c 5.1 fm/c 1.9 fm/c
0.8 - 0.95 2.6 fm/c 4.2 fm/c 1.5 fm/c

From Eq. (9) one sees that the measurable shift r∗out is a
combination of the spatial shift rout , and the emission time
shift ∆t. The former effect is of special interest and has been
studied in detail in [8]. However, the effect of time differ-
ence has not been adequately studied so far. The Therminator
model has been chosen to perform this task, because it in-
cludes both effects in the same calculation in a self-consistent
way. Fig. 2 shows the probability to emit a pion, a kaon or
a proton at a given time. One sees that the average emission
times of this particle species, listed in Tab. I, are different in
the laboratory frame. This will affect the observed asymme-
tries.

In Fig. 4 one can see the components of the emission asym-
metries in the laboratory frame, obtained directly from the
emission functions S1,2. The time and space components for
all considered systems are compared. They are of the same or-
der for all systems. The overall asymmetry is the combination
of the two.
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FIG. 4: (Color online) Components of the average shift between
particle species in the laboratory frame. The dotted line is the space
component, the dash-dotted line is the time component, and the
dashed line is the full asymmetry. Red circles are for the πK sys-
tem, blue triangles are for πp, green squares are for K p.

A. Obtaining femtoscopic information

The correlation function for non-identical particles is given
by Eq. (2). In order to obtain femtoscopic information from
the experimental correlation function one needs to perform a
fit procedure. In traditional HBT measurement the integral
analog to Eq. (2) can be performed analytically to obtain a
simple fit function. It is not possible for the general case of
non-identical particles, where the following procedure must
be applied. Usually it is assumed that the emission function
factorizes into space and momentum components. A form of
the spatial emission function is then postulated:

S(r) ≈ exp

(
− (rout −µout)2 + r2

side + r2
long

2R2

)
(15)

defined in the laboratory frame. Then, the momenta of pairs
of particles are taken from experiment. Their emission points
are randomly generated according to (15), with some assumed
values of source parameters: the gaussian source radius R
and the shift in the outwards direction µout . For each pair
the weight is then calculated according to (4), and the aver-
age of the weights over all pairs as a function of k∗ is con-
structed. This is a theoretical correlation function according
to (2). This function can be compared via a χ2 test to the
experimental correlation function being fitted. By varying pa-
rameters R and µout a function can be found which best de-
scribes the input one. Parameters of the source which produce
this function are taken as the best-fit values. In this way femto-
scopic information is obtained from the non-identical particle
correlation function. In this work the model correlation func-
tions calculated according to Eq. 2 were treated as “pseudo-
experimental” ones. A dedicated program [14, 18] has been
used to perform a fit on them in a manner as closely resem-
bling the experimental situation as possible. It was a direct
test of the methodology of non-identical particle correlations.
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B. Sum rule for shifts between different particle species

If we have three different particle species, we have three
average emission point shifts that we can measure: µπK , µπp

and µK p. However, if we take the same group of e.g. pions
for π−K correlations and π− p correlations (and similarly
the same group of kaons and protons), we might expect that a
simple sum rule holds:

µπp = µπK +µK p (16)

and only two of the shifts are independent.
Non-identical particles are correlated if they have close ve-

locities. If we select pairs of particles with some pair velocity,
we expect that the correlated particles themselves also have
velocities in this range. Therefore if we compare pions that
form the π−K correlation in the pair βt range between 0.5
and 0.65, and pions from the π− p correlation in the same
pair βt range we may assume that these are the same pions
(providing that we construct the correlation functions from the
same events). That shows that pair βt is the correct variable to
select on, when studying momentum dependence of the fem-
toscopic parameters from non-identical particle correlations.
It also shows that we should indeed expect the sum rule (16)
to hold separately in each βt bin.

C. Two-particle versus single particle sizes

The size of the two-particle source is a combination of the
individual single-particle source sizes:

σπK =
√

σ2
π +σ2

K

σπp =
√

σ2
π +σ2

p

σK p =
√

σ2
K +σ2

p (17)

where σ is a width of a gaussian fitted to the corresponding
emission function (either single- or two-particle). One can
immediately see that the sizes are not independent, similar to
the shifts. One can also use the combination of the measured
two-particle source sizes to obtain the single particle sizes:

σπ =

√
σ2

πK +σ2
πp −σ2

K p

2

σK =

√
σ2

πK −σ2
πp +σ2

K p

2

σp =

√
−σ2

πK +σ2
πp +σ2

K p

2
(18)

They can then be compared to single-particle source sizes
obtained from regular identical particle interferometry to see
whether the size of the system is described self-consistently.
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FIG. 5: (Color online) Correlation functions for pion-kaon (red),
pion-proton (yellow) and kaon-proton (blue) for pairs with velocity
between 0.5 and 0.65. The lines are fits to the correlation function.

VI. RESULTS AND DISCUSSION

The analysis of the correlation functions for pion-kaon,
pion-proton and kaon-proton systems has been performed
based on the Therminator model and the two particle weight
method, described in the previous paragraphs. Examples of
the obtained correlation functions are shown in Fig. 5. As ex-
pected for like-sign pairs they go below unity at low k∗. The
correlation effect is the smallest for pion-kaon and largest for
kaon-proton due to the difference in the Bohr radii of the pairs.
It is a fortunate coincidence, as for kaon-proton one expects
to have the smallest statistics in the experiment, but due to a
large correlation effect the measurement should be doable for
a data sample similar to the one in which pion-kaon measure-
ment is possible.
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FIG. 6: (Color online) Double ratios for pion-kaon (red), pion-
proton (yellow) and kaon-proton (blue) for pairs with velocity be-
tween 0.5 and 0.65. The lines are double ratios calculated from the
fits to the correlation function.

In Fig. 6 examples of the asymmetry measurement - the
double ratios C+/C− for pion-kaon, pion-proton and kaon-
proton systems, are shown. One can see a significant sig-
nal, which indicates that the correlation functions are indeed
sensitive to the asymmetries described in the previous para-
graph. In our analysis we have adopted a convention in which
a lighter particle is always taken as first in the pair. All the
double ratios go below unity, which means that, on average,
particles which are lighter are emitted closer to the center of
the system or later (or both). This is exactly consistent with
the qualitative picture of spatial shifts coming from radial flow
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shown in Fig. 3, and with emission time differences coming
from resonance decays, shown in Fig. 2 and Tab. III.

The correlation functions have been fitted using the numer-
ical Monte-Carlo procedure described in Sect. IV. Fig. 5
shows the resulting best-fit functions as solid lines. The fit
is performed simultaneously to the positive k∗out and negative
k∗out part of the correlation function. The lines in Fig. 6 are
simply the two parts of the fit function from Fig. 5 divided by
each other, they are not fit independently.
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FIG. 7: (Color online) Parameters of the non-identical particle
sources from fits. In the upper panel source size is shown, in the
lower - shift between mean emission points in the direction of pair
transverse momentum. Red circles are for pion-kaon, blue squares
for pion-proton, green triangles for kaon-proton. Dashed lines are
input overall asymmetries from Fig. 4.

The results of the fit are shown in Fig. 7. We find that
the size of the emitting system decreases with pair velocity
for all considered pair types. This is consistent with the “mT
scaling” of the HBT radii observed in the identical particle
femtoscopy calculations. The shifts between various particle
species have an expected ordering - the larger the mass dif-
ference, the larger the shift. This means that for all observed
systems the lighter particle is emitted, on the average, closer
to the center and/or later than the heavier one. It also means
that time differences do not change the qualitative behavior
of the observed asymmetries. However, consulting Tab. III
and Fig. 4, one can see that they do contribute to the ob-
served asymmetry. The dashed lines in Fig. 7 show the overall
asymmetry from Fig. 4 as predicted directly from the emission
functions S1,2(r) from the model. The agreement in absolute
values and in the general trends between them and the final fit
values is within 1.0 f m.

This is of crucial importance for the experiment. It means
that by performing an advanced fit of all three combinations
of non-identical particle correlation functions one can indeed
infer the properties of the underlying two-particle emission
functions, and therefore obtain a new, unique piece of infor-
mation about the dynamics of the collision.
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FIG. 8: (Color online) Test of the sum rule of mean shifts between
various particle types.

One can also test the validity of the sum rule (16). The test
using the fit values from Fig. 7 is shown in Fig. 8. One can
see that the rule is valid for smaller pair velocity and holds
only approximately for larger velocities. This should be com-
pared to results in Tab. II, where the shifts obtained from the
separation distributions themselves follow the sum rule with
the accuracy of 0.1 f m. Also, one can expect deviations on
the order of the differences between the input and fitted val-
ues of the shift shown in Fig. 7. One can see that within these
systematic limits the agreement is acceptable. This is another
important conclusion for the experiment. If shifts between all
three combinations are measured in the comparable pair ve-
locity window one expects the sum rule for the shifts (16) to
hold. It can be used as a quality check on the data.
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FIG. 9: (Color online) Single particle source sizes obtained from
non-identical particle correlation fits, according to (18). Red circles
are pions sizes, blue squares - kaon, green triangles - proton. Open
circles are sizes obtained from identical-particle π correlations.

One can also use the fitted two-particle radii for all systems
to obtain the single particle radii according to (18). The re-
sults are shown in Fig. 9. The radii are reasonable and exhibit
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the expected “mT scaling” for all particle species. Therefore
an experiment can extract the information not only about the
asymmetries of emission but also about the size of the system.
The comparison between the size estimates obtained from
non-identical particle correlations and “HBT radii” obtained
from identical pion interferometry was done. Both sizes for
pions are consistent with each other. One must remember that
in the case of Therminator model, the obtained source func-
tions exhibit large long-range non-gaussian tails [4]. On the
other hand, both identical and non-identical femtoscopic sizes
were obtained assuming a perfect gaussian source. Both of
these measures can be sensitive to long-range tails in a differ-
ent way, so the comparison must be done with caution.

VII. SUMMARY

We have presented the first complete set of calculations of
non-identical particle correlations from the single freeze-out
models with complete treatment of resonances. Non-identical
particle femtoscopy method was shown to be sensitive to both
the size and emission asymmetries in the system. The ob-
served effects have been shown to be under control both quali-
tatively and quantitatively. The method to extract femtoscopic
information from such correlation functions have been pre-
sented and employed to the “pseudo-experimental” functions
obtained from the model. The results of the fit have been
shown to be in agreement with the characteristics of the input

source. Several consistency checks on the experimental data
have been proposed and their validity tested. A method to
test the consistency of identical and non-identical femtoscopy
results has also been proposed.

The femtoscopic analysis of non-identical particle correla-
tions has shown that the emission asymmetries between pions,
kaons and protons are expected to occur in heavy-ion colli-
sions. Spatial asymmetry coming from radial flow was ob-
served. Time asymmetry coming from resonance propagation
and decay was also estimated and found to be on the order of
the space asymmetry in the laboratory frame and in the same
direction for all tested systems. Therefore a realistic and self-
consistent estimate of the two effects has been given for the
first time. Consistency between identical and non-identical
femtoscopic sizes was tested and found to be within 1.0 fm.

Predictions for both the size of the system as well as emis-
sion asymmetry have been given for central AuAu collisions
for pion-kaon, pion-proton and kaon-proton correlations.
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