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The ambiguities associated with the lack of gauge invariance in the non-perturbative truncations of
Schwinger-Dyson equations (SDEs) are a challenging problem which has not yet been resolved in a deci-
sive fashion. Pursuing this aim, we study dynamical chiral symmetry breaking in quantum electrodynamics
in three space-time dimensions (QED3). We investigate the gauge dependence of the chiral condensate both
in the quenched and the unquenched versions of the theory and emphasize the importance of taking into ac-
count the gauge covariance properties of the fermion propagator as dictated by its Landau-Khalatnikov-Fradkin
transformation (LKFT). We present numerical solutions of the SDE of the fermion propagator which respect
Ward-Green-Takahashi identities (WGTI) and LKFT simultaneously. As a striking consequence, we obtain a
practically gauge independent chiral condensate.
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I. INTRODUCTION

Gauge theories of fundamental interactions have been
highly successful in collating experimental results in the per-
turbative regime. However, not all interesting phenomena can
be understood in this approximation scheme. Confinement
of quarks and gluons and the origin of hadronic masses are
two examples. It is well known that on the distance scale of
the order of hadron size, quarks behave as though their mass
were 300 MeV, much larger than their vanishingly small cur-
rent mass. In the context of covariant gauges, this effect may
be attributed to an interplay of the behaviour of gluon and
ghost propagators in the infrared, [1]. These studies through
Schwinger-Dyson equations (SDEs) have only been carried
out in the Landau gauge. It is well known that if care is not
taken in their truncation, solutions can be gauge dependent.

Let alone the complicated battle ground of non-Abelian the-
ories, the ambiguities associated with the lack of gauge invari-
ance in the non-perturbative truncations of SDEs in Abelian
theories such as QED are also a challenging problem. Among
others isuues, it has ultraviolet divergences. Consequently, a
neater testing ground for the validity of various truncations is
provided by QED3, which is super-renormalizable. However,
a recent study, [2], has revealed that the problem of gauge in-
variance persists even in this seemingly simple scenario.

In addition to being a toy model for SDEs studies, QED3
is an attractive theory in its own right. In condensed matter
physics, for example, it is used in the context of high-Tc su-
perconductors [3], studies which have received a boost from
new experiments [4], and in the recently explored unconven-
tional Quantum Hall Effect in Graphene [5]. Additionally,
in the realm of dynamical generation of fundamental fermion
masses, numerical findings on the lattice, results obtained by
employing SDEs, [6], and alternative methods, [7], have yet to
arrive at a final consensus, and continue to provide a popular
battle ground.

The problem of gauge invariance in QED3 can be
traced back to not employing (or doing so incorrectly) the
gauge identities such as the Ward-Green-Takahashi identi-

ties (WGTI) [8], the Nielsen identities [9] and the Landau-
Khalatnikov-Fradkin transformations (LKFT) [10]. Here we
address this issue in the light of the LKFT, following and ex-
tending the analysis of Ref. [11]. These transformations de-
scribe the specific manner in which Green functions transform
under a variation of gauge. These are non-perturbative in na-
ture, and thus are expected to be very helpful in studies of phe-
nomena realized only non perturbatively, such as dynamical
chiral symmetry breaking. Initial steps were taken in [12] to
apply LKFT directly to the dynamically generated mass func-
tion, whereas the complete numerical implementation of LK-
FTs on solutions to SDEs in various truncation schemes was
performed in [11] to study the gauge dependence of the chiral
condensate in QED3. In this work we extend the analysis to a
wider range of values of the gauge parameter.

The traditional way to study gauge dependence is to make
an ansatz for the fermion-boson vertex which should preserve
the key features of gauge theories, namely, it should satisfy
the WGTI, it should transform gauge covariantly in the way
dictated by its LKFT, it should ensure that the fermion prop-
agator obtained as a solution of the corresponding SDE trans-
forms according to its LKFT, it should be free from (tachionic)
kinematic singularities, it should possess the same CPT trans-
formation properties as the bare vertex and it should reduce
to its Feynman expansion in the weak coupling regime. Some
proposals for the fermion-boson vertex are well known, [13–
20]. Significant progress has been made over the years to
construct reliable truncation schemes to incorporate these fea-
tures (see [21] for a brief review). Since a priori there is no
way to determine whether an ansatz performs better or worse,
the following methodology is useful to test the consistency of
the truncation scheme : One solves the SDE for the fermion
propagator in various gauges changing the value of the gauge
parameter in small steps away from the Landau gauge. One
then measures the improvement when the gauge dependence
of physical observables of interest is reduced as compared to
previously known truncations. This method does not guar-
antee that LKFT for the fermion propagator will be satisfied
gauge by gauge. In Ref. [11] we suggested an alternative ap-
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proach to achieve the same objective. We propose to start
from the solution for the fermion propagator in the Landau
gauge and simply perform an LKFT to find the result in any
other gauge. It is important to note that LKFT does not fix
the fermion propagator in the starting gauge, e.g., the Landau
gauge. If one starts from a flawed starting solution, one does
not expect to arrive at a trustable answer in an arbitrary gauge
through the use of corresponding LKFT. Therefore, it is im-
portant to establish the validity of a vertex ansatz in the start-
ing gauge. Once it has been achieved and owing to the fact
that LKFT preserve WGTI, the advantage of this proposal is
to conserve both the WGTI and LKFT as we move from one
value of the gauge parameter to another. In this contribution,
we present results coming from the computation of the chi-
ral condensate as a function of gauge both for the quenched
and the unquenched cases and find the results to be practically
gauge independent.

We have organized this work as follows : In section II, we
introduce the general features of the phenomenon of dynam-
ical mass generation in QED3 within the context of SDEs in
the Rainbow approximation. In section III, we present the
LKFT for the fermion propagator and the strategy for its im-
plementation in SDEs studies. In Sect. IV we review further
truncation schemes in the light of the LKFT. Finally, we dis-
cuss our results and draw our conclusions in section V.

II. SCHWINGER-DYSON EQUATIONS AND DYNAMICAL
CHIRAL SYMMETRY BREAKING

We know that perturbation theory in QED does not gener-
ate fermion masses dynamically. Non-perturbative methods
have to be employed and SDEs are the natural tool for calcu-
lation in continuum. The first three equations of the infinite
tower of SDEs in QED are depicted in Fig. 1. These corre-
spond to the fermion propagator, the photon propagator and
the fermion-boson vertex, respectively. The fermion propaga-
tor is coupled to the photon propagator and the fermion-boson
vertex, which, through their own SDE, are coupled to the rest
of the infinite tower containing higher point Green functions.

The SDE for the fermion propagator in QED3 is :

S−1(p;ξ) = S−1
0 (p)

+ e2
∫ d3k

(2π)3 Γν(k, p;ξ)S(k;ξ)γµ∆µν(q) , (1)

where q = k − p and e2 is the dimensionful coupling of
QED3. In this expression ∆µν(q) is the photon propagator and
Γµ(k, p;ξ) the full fermion-boson vertex. The most general
form of the (Ecuclidean) fermion propagator is

S(p;ξ) =
F(p;ξ)

i 6 p−M (p;ξ)
(2)

where F is referred to as the fermion wavefunction renormal-
ization and M is the mass function. The photon propagator in
its most general form can be written as

∆µν(q) =
G(q2)

q2

(
δµν− qµqν

q2

)
+ξ

qµqν

q4

≡ ∆T
µν(q)+ξ

qµqν

q4 , (3)

where G is the photon wavefunction renormalization, which
is gauge invariant, and ξ is the usual covariant gauge para-
meter. Finally, the fermion-boson vertex can be written as
Γµ(k, p;ξ) = ∑12

i=1 vi(k, p;ξ)V µ
i , where

V µ
1 = γµ, V µ

2 = kµ, V µ
3 = pµ,

V µ
4 = 6kγµ, V µ

5 = 6kkµ, V µ
6 = 6kpµ,

V µ
7 = 6 pγµ, V µ

8 = 6 pkµ, V µ
9 = 6 ppµ,

V µ
10 = 6k 6 pγµ, V µ

11 = 6k 6 pkµ, V µ
12 = 6k 6 ppµ.

(4)

FIG. 1: SDEs for the fermion propagator, photon propagator and
fermion-boson vertex.

Expression (1) is a matrix equation which can be converted
into system of coupled non-linear scalar integral equations for
M and F after multiplying it, respectively, by 1 and 6 p and tak-
ing trace. A favorite starting point in the quenched version of
QED3, which consists in neglecting fermion loops (G = 1),
is to choose a suitable ansatz for the fermion-boson vertex,
in such a way that the SDE for the fermion propagator can
be solved for the unknowns M and F . Possibly the simplest
choice for the vertex, which allows a neat understanding of the
general features of dynamical chiral symmetry breaking, con-
sists in replacing the fermion-boson vertex by its bare coun-
terpart [15, 22]. This is the so-called Rainbow approximation.
To start with, the bare fermion propagator is considered mass-
less. In this case the unknown functions defining the fermion
propagator are found through the following system of equa-
tions:
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1
F(p;ξ)

= 1− αξ
4π

∫ ∞

0
dk

k2F(k;ξ)
k2 +M 2(k;ξ)

[
1− k2 + p2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣
]
,

M (p;ξ)
F(p;ξ)

=
α(ξ+2)

πp

∫ ∞

0
dk

kF(k;ξ)M (k;ξ)
k2 +M 2(k;ξ)

ln
∣∣∣∣
k + p
k− p

∣∣∣∣,(5)

where α = e2/4π as usual. In the Landau gauge F(p;0) =
1 and thus we have to solve but one equation for the mass
function :

M (p;ξ) =
2α
πp

∫ ∞

0
dk

kM (k;ξ)
k2 +M 2(k;ξ)

ln
∣∣∣∣
k + p
k− p

∣∣∣∣ . (6)

In Fig. 2, we show the profile of the mass function, Refs. [15,
22]. M (p;0) is roughly a constant for low momentum and
fall as 1/p2 as p→ ∞, [22].
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FIG. 2: Mass function from SDE in the Landau gauge in the Rainbow
approximation.

From this solution can can compute the chiral condensate
〈ψ̄ψ〉 = −TrS(x = 0,ξ). When this exerecise is performed in
different gauges, i.e., solving simultaneously the eqs. in (5),
one faces the undesirable fact of the condensate being gauge
dependent, as shown in Fig. 3. One can expect the source of
such gauge dependence the fact that the bare vertex violates
the WGTI

iqµΓµ(k, p;ξ) = S−1(k;ξ)−S−1(p;ξ) . (7)

Nevertheless, this identity is satisfied in the Landau gauge
(as F(p;0) = 1) upto a correction connected with the differ-
ence M (k;0)−M (p;0) of the mass function. This correction
might be expected to be small because M (k;0)∼M (p;0) for
small values of momenta and falls sharply for large momenta.
In other gauges, F(p;ξ) 6= 1 and the above argument does not
apply. Thus, if one insists on sticking to the Rainbow approx-
imation, only the results in the Laundau gauge can be reliable.
However, one could use the LKFT to generate solutions in
other gauges [23]. Below we present the corresponding analy-
sis for the chiral condensate.
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FIG. 3: Gauge dependence of the chiral condensate (in units of
10−3e4) from SDE in the Rainbow approximation.

III. LANDAU-KHALATNIKOV-FRADKIN
TRSNFORMATIONS AND THE FERMION PROPAGATOR

We start by writing the Euclidean coordinate space fermion
propagator in its most general form :

S(x;ξ) ≡ 6xX(x;ξ)+Y (x;ξ) . (8)

Expressions in eqs. (2) and (8) are related through Fourier
transformations :

S(p;ξ) =
∫

d3x eip·xS(x;ξ) ,

S(x;ξ) =
∫ d3 p

(2π)3 e−ip·xS(p;ξ) . (9)

Assuming we know the fermion propagator in Landau gauge
in momentum space, S(p;0), we have the following expres-
sions in coordinate space

X(x;0) =
−i
x2

∫ d3k
(2π)3

F(k;0)
k2 +M 2(k;0)

e−ik·xk · x ,

Y (x;0) = −
∫ d3k

(2π)3
F(k;0)M (k;0)
k2 +M 2(k;0)

e−ik·x . (10)

The LKFT relating the coordinate space fermion propagator
in the Landau gauge to the one in an arbitrary covariant gauge
reads

S(x;ξ) = S(x;0) e−i[∆d(0)−∆d(x)] , (11)
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where

∆d(x) = −iξe2
∫ dd p

(2π)d
e−ip·x

p4 , (12)

d being the number of space-time dimensions. For d = 3,
∆3(0)−∆3(x) =−iαξ/2. Therefore,

S(x;ξ) = S(x;0) e−ax , (13)

with a = αξ/2. After applying LKFT to the expressions in
eq. (10) and Fourier transforming the results back to momen-
tum space, we get

F(p;ξ)
p2 +M 2(p;ξ)

=
a

πp2

∫ ∞

0
dk k2 F(k;0)

k2 +M 2(k;0)
×

[
1

λ−
+

1
λ+ +

1
2kp

ln
∣∣∣∣
λ−

λ+

∣∣∣∣
]
,

F(p;ξ)M (p;ξ)
p2 +M 2(p;ξ)

=
a

πp

∫ ∞

0
dk k

F(k;0)M (k;0)
k2 +M 2(k;0)

×
[

1
λ−

− 1
λ+

]
, (14)

where λ± = a2 +(k± p)2. Thus knowledge of S(p;0) is the in-
put required to obtain the same in an arbitrary covariant gauge.

When we insert the solution for the mass function in the
Landau gauge, eq. (6), into eqs. (14) and compute the chiral

condensate, we find the striking flat curve shown in Fig. 4
(green-dashed), as compared with the SDE solution (red-
solid). Furthermore, with this procedure, we can go as far as
we wish in varying the gauge parameter (here upto ξ = 200),
a hard nut to crack in SDE studies [15, 22].

A linear fit of the gauge dependence of the condensate re-
veals that 〈ψ̄ψ〉 ' 2.30783− 0.000113777ξ, which suggest
that the condensate, scaled by a factor of 10−3, would vanish
for a value of ξv > 20000, provided a good numerical accu-
racy is achieved.

IV. FURTHER TRUNCATIONS

In order to test the procedure outlined above, we review two
further examples of truncation schemes of SDEs.

A. Ball-Chiu Vertex

The Ball-Chiu vertex (BC-vertex), eq. (3.2) in [13] was
constructed to fulfill the WGTI non-perturbatively. In the
quenched truncation, the corresponding SDEs become more
involved. Inserting the BC-vertex in the SDE, the unknown F
and M are found through the system of equations

1
F(p;ξ)

= 1+
α

πp2

∫ ∞

0
dk

k2F(k;ξ)
k2 +M 2(k;ξ)

{
a(k, p)

[
−ξ

(
1− k2 + p2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣
)]

+ b(k, p)

[
2(k2 + p2)

(
1− k2 + p2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣
)
− ξ

(
k2 + p2− (k2− p2)2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣
)]

− c(k, p)

[
2
(

1− k2 + p2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣
)
− ξ

(
1− k2− p2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣
)]}

,

M (p;ξ)
F(p;ξ)

=
α
π

∫ ∞

0
dk

k2F(k;ξ)
k2 +M 2(k;ξ)

{
a(k, p) M (k;ξ)

[
(2+ξ)

1
kp

ln
∣∣∣∣
k + p
k− p

∣∣∣∣
]

+ b(k, p) M (k;ξ)

[
2(k2 + p2)

kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣+ 2(ξ−2)

]

+ c(k, p)

[
(2+ξ)k2 +(2−ξ)p2

2kp
ln

∣∣∣∣
k + p
k− p

∣∣∣∣+ (ξ−2)

]}
, (15)

where

a(k, p) =
1
2

[
1

F(k;ξ)
+

1
F(p;ξ)

]
,

b(k, p) =
1
2

1
(k2− p2)

[
1

F(k;ξ)
− 1

F(p;ξ)

]
,

c(k, p) = − 1
(k2− p2)

[
M (k;ξ)
F(k;ξ)

− M (p;ξ)
F(p;ξ)

]
. (16)

The complexity of this vertex ansatz is reflected in the fact
that there is no covariant gauge where the wavefunction renor-
malization becomes trivial as in the case of the rainbow ap-
proximation. Solutions far away from the Landau gauge are
difficult to construct for this vertex. Nevertheless, if we ap-
ply the LKFT strategy to the solution of the SDE with the
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FIG. 4: Gauge dependence of the chiral condensate (in units of
10−3e4) in the Rainbow approximation: LKFT (green-dashed) vs.
SDE (red-solid).

BC-vertex in the Landau gauge to other gauges and compute
the chiral condensate, we find that this quantity is virtually
gauge independent, as can be seen from Fig. 5 (green-dashed

line), where a comparison against SDE results (red-solid line)
is also shown. Again, a linear fit reveals that the gauge depen-
dence of the condensate is 〈ψ̄ψ〉 ' 3.21685−0.000157548ξ,
leading to a vanishing condensate for ξv > 20000, a behavior
very similar to that of the Rainbow approximation.

B. Unquenched QED3

In this case the SDE for the fermion propagator, eq. (1) has
to be simultaneously solved with the corresponding SDE for
the photon propagator with N f flavors of degenerate fermions :

∆−1
µν (q) = ∆0

µν
−1

(q)

−N f e2
∫ d3k

(2π)3 Tr [γµS(k;ξ)Γν(k,q;ξ)S(q;ξ)] . (17)

This exercise has been carried out in [2] employing a hybrid
choice of the three point interaction. For the fermion propaga-
tor, the well-tested Curtis-Pennington vertex (CP-vertex) [14]
was used, whereas the BC-vertex was implemented in the
SDE of the photon propagator to avoid unwanted divergences.
Unknowns F , M and G are found through the equations :

1
F(p;ξ)

= 1+
α

2π2 p2

∫ d3k
q2

F(k;ξ)
k2 +M 2(k;ξ)

[
G(q)

{
a(k, p)

2q2

(−q4 +(k2− p2)2)−
[

1
F(k;ξ)

− 1
F(p;ξ)

]
Ω(k, p)

2
(k2 + p2−q2)

−
[

b(k, p)(k2 + p2)− c(k, p)M (k;ξ)
2q2

](−q4 +2q2(k2 + p2)− (k2− p2)2)
}

+ ξ

{
a(k, p)

2q2 (q2(k2 + p2)− (k2− p2)2)− b(k, p)
(k2− p2)2

2q2 (k2 + p2−q2)+
c(k, p)

2q2 M (k;ξ)
(
(k2− p2)2−q2(k2− p2)

)
}]

,

M (p;ξ)
F(p;ξ)

=
α

2π2

∫ d3k
q2

F(k;ξ)
k2 +M 2(k;ξ)

[
G(q)

{
2a(k, p)M (k;ξ)− M (k;ξ)

[
1

F(k;ξ)
− 1

F(p;ξ)

]
Ω(k, p)

+
[

2b(k, p)M (k;ξ)+ c(k, p)
2q2

](−q4 +2q2(k2 + p2)− (k2− p2)2)
}

+ ξ

{
a(k, p)M (k;ξ)+b(k, p)M (k;ξ)

(k2− p2)2

q2 +
c(k, p)

2q2 (k2− p2)(k2− p2−q2)

}]
,

1
G(q)

= 1− N f α
2π2

∫
d3k

F(k;ξ)
k2 +M 2(k;ξ)

F(q;ξ)
q2 +M 2(q;ξ)

[
a(k,q)[W1(k, p)+W2(k, p)M (k;ξ)M (q;ξ)]

+ b(k,q)[W3(k, p)+W4(k, p)M (k;ξ)M (q;ξ)]− c(k,q)[W5(k, p)M (q;ξ)+W6(k, p)M (k;ξ)]

}
, (18)

where

Ω(k, p) = − k4− p4

(k2− p2)2 +(M 2(p;ξ)+M 2(k;ξ))
(19)

is the CP transverse factor and the Wi(k, p), i = 1, . . . ,6 are
basic functions of momenta given in Ref. [2],
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FIG. 5: Gauge dependence of the chiral condensate (in units of
10−3e4) for the BC-vertex in quenched QED3: LKFT (green-
dashed) vs. SDE (red-solid).

0

50

100

150

200

0 10 20 30 40 50 60 70

C
on

de
ns

at
e

ξ

SDE Hybrid Nf=2 

LKFT Hybrid Nf=2

0

50

100

150

200

0 0.5 1 1.5 2

C
on

de
ns

at
e

ξ

SDE Hybrid Nf=2 

LKFT Hybrid Nf=2

FIG. 6: Gauge dependence of the chiral condensate (in units of
10−5e4) in unquenched QED3 for N f = 2 in various gauges for the
hybrid CP-BC vertex: LKFT (green-dashed line) vs. SDE (red-solid
line).

ξ N f = 0 N f = 1 N f = 2 N f = 3 N f = 4 N f = 5 N f = 6
0 333 121 13 0.026 ?? 0 0

0.5 340 165 79 39 23 15 11
1 351 202 108 74 55 37 29
2 356 259 189 143 107 92 77

TABLE I: -〈ψ̄ψ〉 from Ref. [2] in units of 10−5e4.

This hybrid choice of the vertex made in [2] yields results
which show a severe gauge dependence for the condensate.

There are even values of N f for which the dynamical break-
down of chiral symmetry takes place in one gauge and not in
another, as can be seen by looking at the entries in Table I we
have taken from [2]. The use of different vertex ansätze in the
coupled equations gives rise to an internal inconsistency.

But LKFT can help in this case as well. Starting from the
solution in the Landau gauge, we can apply the LKFT strat-
egy. In Fig. 6, we plot the condensate value for N f = 2 as
a function of ξ for the two methods. Along the (almost) flat
(green-dashed) line, both the WGTI and the LKFT are sat-
isfied (and the inconsistency stemming from the use of the
hybrid vertex ansatz is minimized), whereas, in the sharply
rising graph (red-solid line), LKFT are violated although the
WGTI continues to hold true. One can thus make a gauge
independent statement that assuming the BC-CP truncation
scheme to be valid in the Landau gauge, the critical number of
flavors would lie in the range 3 < (N f )c < 5. Note that for the
unquenched QED, transverse vertex in principle knows about
the photon propagator, [24]. We suspect that the slight gauge
dependence in Fig. 6 stems from the absence of this depen-
dence in the CP-vertex.

V. DISCUSSION AND CONCLUSIONS

To conclude, the inclusion of the WGTI alone is not suffi-
cient to ensure the gauge independence of the physical observ-
ables associated with the fermion propagator. It is essential to
apply LKFT to the dynamically generated mass function as
advocated in [11, 12]. This is what we achieve in an exact
numerical fashion. The truncations employed correspond to
approximating the fermion-boson interaction by the bare ver-
tex, the BC-vertex and a hybrid choice of the CP-BC vertex.
Numerically, we obtain virtually gauge independent value of
the condensate for a very broad range of values of the covari-
ant gauge parameter for all the above-mentioned cases.

As discussed in Ref. [11], it is important to note that the
LKFT do not generate the soultion in the starting gauge. How-
ever, it is not unnatural to start from the Landau gauge solu-
tion as the starting one as we do not expect the truncations
employed in this work to yield significantly different results
in this gauge. Some more definitive conclusions can only be
drawn after a detailed study of the LKFT for the vertex func-
tion itself. Once we know the result in the Landau gauge,
LKFT will guide us along the path of varying gauge. A nat-
ural extension of this work is to study the gauge covariance of
the quark propagator through the generalized LKFT of QCD.
In analogy with the present work we expect gauge indepen-
dence there too.
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