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Dynamic Modeling of Overload in Scale Free Networks
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We introduce a simple dynamic model to investigate the fragmentation of transport networks. The transport
properties like as the size of largest connected cluster, the length of the minimum paths and the optimal paths
between a pair of nodes of the network were evaluated upon continuously increasing the load on the system.
We use two load insertion strategies: an uniform random distribution of loads and a Cohen-like immunization
strategy (one node is selected with a uniform probability p and one of its first neighbours, randomly selected,
receives the load). Both strategies may be classified as local strategies but the resulting effects are qualitatively
different. Evaluating the physical quantities as a function of time we observe that for the random distribution
strategy there is a crossover from a fully connected cluster to a non-connected state in the sense that all links
become unavailable. On the other hand, following the Cohen-like strategy we found a sudden change in transport
properties which is may be interpreted as a percolation-like transition induced by the cumulative process of load.
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I. INTRODUCTION

Many real complex networks show heterogeneous struc-
tures with power-law degree distribution P(k) ∝ k−γ, where
k is the number of links of a randomly chosen node in the
network and γ is the scaling exponent [1, 2]. This algebraic
distribution means that, in contrast to random networks, the
probability for a node to possess a large number of links is
not exponentially small [3, 4]. Due the ubiquity of scale-free
networks in natural and manmade systems problems related
to the security of these networks and their resilience have at-
tracted a great interest. A myriad of important aspects con-
cernig complex networks including epidemics, disturbances in
power transmission systems, effects of network growth, cas-
cading failures triggered by intentional attacks, avalanche size
distributions and congestion instabilities have been discussed
in the literature [4]-[9].

Recently the load concept was introduced to address the
pattern of transport but considering both links and nodes as
identical in terms of their functional roles in the network
[1, 10]. Aiming to take into account the heterogeneity of
elements such studies have been generalized by introducing
weights to the links [11–13] and the congestion effects in
transport networks may be taken into account by investigat-
ing the weight of a link as a function of its cumulative load
(called cost function)[13–15]. Using simple models of load
distribution the congestion effects could be described as func-
tion of time. In this scope we investigate the fragmentation
phenomenon in a free-scale transport network computing how
the nodes become unavailable due the overload of their links.
Our work differs on the previous in the sense that the overload
of the links is triggered by dynamic processes of continuous
increase of load. The transport properties like as the size of
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largest connected cluster, the length of the minimum paths and
the optimal paths between a pair of nodes which are usually
used to define the efficience of the network were evaluated as
a function of time.

This paper is organized as follow. In Section II we intro-
duce our model motivated by studies of percolation models
defined on complex networks and introduce the load insertion
strategies. Section III describes the details of the investigated
properties and discuss the results of the simulation taking into
account the different strategies designed in the Section II. The
Section IV summarizes the work taking a brief overview of
the main results.

II. THE DYNAMIC PERCOLATION MODEL

Since the recognition that many technological, biological
and social real systems could be mathematically represented
by complex networks models the percolation tools have been
applied to investigated their large scale connectivity proper-
ties like the resilience and robustness [1, 4, 5]. In these works
the real system is modeled as a graph (or a mathematical net-
work) in which the vertices or sites represent the elements and
the edges represent their interactions. Such kind of investi-
gation have contributed to improve our knowledge about the
structure of complex systems and have provide useful clues
to design efficient management strategies of real networks. In
percolation works each site of the network can be considered
inactive (or removed from the network) with a probability p
or active (remain in the network) with a probability (1− p).
Upon increasing p in the interval [0,1] exists a value of p for
which the network is broken into a huge number of small con-
nected clusters, that is, the network is disrupted like as a per-
colation transition. Such value of p may be referred as the
percolation threshold pc.

The removal probability p may be uniform or a function
of some property of the network, defining different removal
strategies. Many removal strategies of sites have been applied
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in scale-free networks producing a variety of interesting re-
sults [1, 4]. Among the strategies the random removal [1]
(sites are removed with a uniform probability independent of
its state or the state of its neighbouring) is the simplest one.
It is a local removal strategy which aims to mimic sporadic
failures on nodes of a network. On the other hand, the target
removal strategy [1] may be classified as a global one because
it requires the knowledge of the connectivity of all sites since
the highest connected sites are sequentially removed (in de-
creasing order) until a fraction p of the whole system be re-
moved. Such strategy intend to describe coordinate attacks
to the network. The ideas of the percolation theory may be
also used to design strategies aiming to protect the networks
against external attacks and to propose efficient immunization
strategies against epidemics [7, 8]. In the context of epidemics
Cohen et al [11] proposed an efficient immunization strategy
based on the immunization of acquaintances that, being local,
exhibits properties of a global one.

Although much attention has been payed to the investiga-
tion of percolation properties of complex structures the major
part of such studies focus static properties of the networks,
that is, the behaviour of the system properties when a fraction
p of their elements are simultaneously removed. However,
systems subject to fluctuation of load could reach its limiting
capacity though cumulative processes of individual failures
(of nodes or links) which could not be characterized neither
as sporadic failures nor as external attacks. Interesting cases
are the communication networks. In a coarse grained approx-
imation the transport capacity of a communication network
is limited by two factors: link capacity (bandwidth) and node
processing power (in the case of communication networks, the
outer latency quantified by the packet insertion rate at which
jamming may occurs). Such kind of system have been in-
vestigated using weighted networks [12–14] but also in these
cases, the associated weigths are static quantities disregarding
that dynamic features should be taken into account in order to
describe changes in the transport properties occurring while
the system is running [16, 17]. In this work we introduce a
model in which the weigth associated to the links change in
time and apply percolation tools to investigate it. Due their fi-
nite capacity (or bandwidth) the links may become overloaded
and the transport through them is interrupted. The overload of
links isolate finite clusters of sites and the system undergoes a
percolation-like transition. In contrast to standard model used
in previuos works, in our model the remotion of sites is not
(necessarily) simultaneous and is time dependent.

Let us begin describing the details of our dynamic model
defined on a scale-free network. For simplicity we consider a
scale free network of mean connectivity < k >= 4 constructed
following the Barabási-Albert (BA) prescription [2]. To each
link connecting a pair of sites we assign a maximum capacity
of load management (or bandwidth) Lmax = 1 and an initial
load L0 in the interval [0.5,1] while the sites have infinite ca-
pacity (the minimal initial load was fixed to be L0 = 0.5 since,
in real networks, the links are designed to assure some mini-
mal capacity of load transport). A site of the network selected
and an additional load β is attributed to it. This load is distrib-
uted among its links proportionally to the avaliable capacity

of the links, i.e, links with greater individual load receive a
smaller part of additional load. For a site j of connectivity k j
the load ∆Li attributed to each one of its links i is calculated,
for each time step, as

∆Li = z−1 β (1−Li) (1)

where Li is the load of the link i at time t and z is a normal-
ization constant calculated in a such way that

k j

∑
i=1

∆Li = β. (2)

If the load attributed to a link exceeds its capacity (Li >
Lmax) the link becomes overloaded. In this case the link be-
comes unavailable to new loads and its contribution to the net-
works transport properties is null. It could happen that a site
is connected to the network only through overloaded links.
In this case it becomes totally unattainable from any other
site and may be considered as a removed site. We should
stress that there is a second kind of unattainable sites. A clus-
ter of sites could be locally connected through internal non-
overloaded links but this cluster may be totally isolated from
the whole network. So, depending on the total inserted load
the network may be broken in many isolated clusters similar to
those observed in percolation. Sites belonging to percolation
clusters could yet be selected to receive load until becoming
removed (we will refer as removed sites to those having all
links overloaded).

One can define different load introduction strategies by
choosing different functions to the probability p. Here we
follow two strategies: (a) an uniform random distribution of
loads (the sites selected to receive tthe load are randomly cho-
sen with a uniform probability p) and (b) a Cohen-like im-
munization strategy [11](one node is selected with a uniform
probability p and one of its first neighbours, randomly se-
lected with uniform probability, receives the load). The next
section describes the details of the simulation as well as the
obtained results for both strategies.

III. SIMULATION AND RESULTS

We investigate the behaviour of the connectivity properties
of scale free networks under continuous load insertion. Tradi-
tionally in percolation studies in scale free networks the quan-
tities evaluated are the fraction of sites belonging to the giant
connected cluster (S) and the length of minimum paths (lmin)
connecting a pair of sites. In a finite system the giant clus-
ter may be identified as the number of sites belonging to the
largest connected cluster while the minimum paths are eval-
uated counting the minimum number of links connecting a
pair of sites i and j and, in general the minimum paths could
be used to estimate the efficience of the network in transport
information [13]. In static percolation, upon increasing the
network dilution the length of minimum paths increases and
the network efficience diminishes. For p > pc the network
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FIG. 1: Size of largest connected cluster, length of minimum paths
and optimum paths as a funtion of time for the random insertion strat-
egy.

is globally disconnected and the efficience vanishes. The in-
crease of lmin occurs because the distance between a pair of
nearest neighbours is unity and independent of the load of the
link. However in communication systems it is possible to find
a set of paths with the same minimum length but they could
not be equivalent in exchange information. It could be more
efficient exchange information along the path with the mini-
mum total load [13], which is called optimum (or best) path.
The optimum path could be defined as follows: at a time t each
link has a weigth bn,m(t) representing the load between a pair
of nearest neighbours n e m. The optimum path bi, j(t) will
be that which minimizes the sum of weigths along all min-
imum paths connecting the pair of sites (i, j). This quantity
could be useful in the investigation of systems under increas-
ing and redistribution of loads since such alternative computa-
tion could represent better the efficience of a communication
network since the links may manage a finite load without en-
danger (significantly) the network’s efficience. So, besides
the size of the largest clusters and the length of the minimum
paths we also evaluated the optimum paths.

A. Random Insertion Estrategy

Maybe the random insertion estrategy is the simplest one.
In this case the fraction p of sites of the network is randomly
selected to receive an additional load β which is distributed
among its links following the Equation 1. One time step is
completed when all selected sites are consulted. Fig. 1 shows
the behaviour of the size of the largest connected cluster, min-
imum and optimum paths (normalized by their corresponding
values at t = 0) as a function of time steps.

At t = 0 the network is fully connected and the density of
sites in the largest connected cluster is S/S0 = 1. At low val-

ues of time the sites remain in the network since the load dis-
tribution does not imply in remotion of sites. However, while
the total load increases with the time steps the sites are con-
tinuously removed from the network due the overload of their
links and the size of largest cluster diminishes approaching a
finite value, i.e., S/S0 → 0 for large t. It important to stress
that the random insertion of load affect mainly the low con-
nected sites since they have a few links to distribute the in-
serted load β. Moreover, as the low connected sites have a
small contribution to the maintenance of the overall connec-
tivity, the network remains connected in despite of being pro-
gressively diluted and a crossover to a disconnected state is
observed. Let us now describe the time behaviour of the min-
imum (and optimum) paths are calculated on the largest con-
nected cluster. In this case it is verified that while S/S0 = 1 the
lmin remains constant since the set of paths does not change.
As the time goes on the network becomes more and more di-
luted and the size largest connected cluster diminishes, the
corresponding mean distance between a pair of sites is re-
duced and also the length of minimum paths. At a first sight
this is in contrast with all the previous results obtained in sta-
tic percolation but we should stress that, in our model, the
effect of dilution by overload of links is quite different. In-
deed such process should hold similarities with a static bond
percolation model in which the bonds of low connected sites
are preferentially removed. In static site percolation the re-
motion of a site i implies on the simultaneous remotion of
all (ki) links connected to it and all the paths passing through
the site i are interrupted. If the site selected to removal is a
highly connected one, alternative routes of same length could
not possible and the length of the minimum paths increases
despite of the reduction of the size of the largest cluster. In
our model the behaviour is qualitatively different. If the load
is attributed to a highly connected site i, the distribution of
the load among its links and the occasional overload of some
links could not be sufficient to isolate i (which could remain
connected to the network through some non-overloaded links)
but some low-connected nearest neighbours of i could have
their links overloaded and become isolated. So, the size of
the largest connected cluster diminishes but the length of the
minimum paths crossing i could not increase (indeed, the av-
erage of lmin could decrease since the size of the largest clus-
ter diminishes). For the optimum paths the behaviour is quite
different. At short times bmin increases reflecting the distribu-
tion of the additional load inserted among the sites of the net-
work. Since the insertion is random each link has its weigth
updated to a larger value and the total weigth of the paths in-
creases. For intermediary time scales the size of the largest
cluster and shortest distance between a pair of sites decrease
but the weigth of the optimum path increases since the capac-
ity of manage some load without become overloaded counter-
balances the reduction of cluster size. However, due the lim-
ited capacity of the individual links (Lmax = 1) the increase
of bmin is limited. Moreover if the weigths links of the high-
est connected sites reach the unity that sites are isolated and
the lengths of paths increase and the optimum paths exhibits
a maximum value. At long times the size of the largest clus-
ter undergoes a quick reduction and the length of the paths is
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FIG. 2: Size of largest connected cluster, length of minimum paths
and optimum paths as a funtion of time for the Cohen-like strategy.

also reduced since the high connected sites remaining in the
network begin to be isolated.

B. Cohen-like Insertion Strategy

In this section we investigate an insertion strategy based on
the acquaintance immunization strategy introduced by Cohen
et al. In each Monte Carlo step (or time) a fraction p of the
nodes is randomly chosen. Once a site i is chosen the set of its
ki first neighbours (its acquaintances) is identified. The load is
inserted in a site j ∈ ki (chosen at random with uniform prob-
ability) and distributed among the links of j, i.e., one of the
sites in the acquaintances receives the additional load. Follow-
ing this scheme each site could be chosen once in each Monte
Carlo step (each one with probability p) but may be ”indicated
to receive the load” more than once since they could belong to
the neighbouring of many sites.

Fig. 2 is a representative sample of the system behaviour
for p = 0.20 and β = 0.20. The results are qualitatively differ-
ent from that of observed to the random insertion case. Here,
at short times the network remains totally connected and the
largest connected cluster coincides with the network’s size.
A sudden change to an insignificant fraction of the network’s
size around a step t is observed indicating that the network
is broken in a large number of small connected clusters. The
abrupt change in the size of largest cluster takes place since
the sites of higher connectivity are preferentially selected to
receive the additional load. Due the heterogeneous properties
of the network the high connected sites should be in the neigh-
borhood of many low-connected ones and may receive load
more than once at each Monte Carlo step since they can be ”in-
dicated to receive the load” by different low-connected sites.
As a consequence the links of the most connected sites tend
to become overloaded first. While the links have available
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FIG. 3: Fragmentation time as a function of p for different values of
β.

bandwidth to support the load without becoming overloaded,
the network is not diluted. Upon increasing the time the con-
tinuous load accumulation induces the overload of links and
the consequent removal of high connected sites. It is sur-
prising that the remotion of the high connected sites takes
place almost simultaneously, or at least, in a very short time
interval. We could argue that when t approaches a specific
value tc (tc being a function of p and β) the most connected
sites have their links overloaded and are removed. Such be-
haviour is similar to a percolation transition and we can say
that the system undergoes a percolation-like transition. Our
percolation-like argument is corroborated by the behaviour of
the minimum and optimum paths. While the network remains
connected the length of the minimum paths remains constant
while the optimum paths increase reflecting the growth of total
load on the system. Upon increasing the time the continuous
load accumulation induces the overload of links and the con-
sequent removal of high connected sites belonging to the min-
imum paths and longer alternative routes connecting the pairs
of sites must be found. When t approaches tc the network
approaches its maximum dilution (remaining connected) and
lmin has a peak. Besides, the total load along the optimum
paths increases continuously and shows a fast change near tc
reflecting the sudden increase of the paths occurring when the
network breaks up into small clusters.

It is interesting to note that the continuous insertion of load
carries out to a transition similar to a simultaneous removal of
a fraction f of sites following the standard strategy of Cohen.
Aiming to analize this point we evalute the fraction f of to-
tally isolated sites at the disruption time tc for different sets of
(p,β). Although tc is a function of p and β (as showed in the
Fig. 3), we got that f is a constant taking the value f ∼= 0.55
for all sets (p,β). It means that independently of the site se-
lection probability or the strength of inserted load the network
will be broken when a fixed fraction of sites are totally re-
moved. The total inserted load may correspond to a massive
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attack to the network continuously inserting a little quantity
of load in a high quantity of sites as well as a localized at-
tack targeting preferentially few high connected sites with a
high load. Both attacks will affect the transport properties of
the network the only difference being the time taken until the
damage is maximum.

IV. SUMMARY

We investigate a simple dynamic model aiming to describe
disruption phenomenon in transport network. In our model
the transport properties like the size of largest connected clus-
ter, the length of the minimum paths and the optimal paths
between a pair of nodes were evaluated upon increasing the
load on the system. We perform Monte Carlo simulations us-
ing two load insertion strategies: uniform random insertion
of loads and (b) a Cohen-like immunization strategy. Both
strategies may be classified as local strategies but the result-
ing effects are qualitatively different. Evaluating the physical

quantities as a function of time we observe that for the random
strategy there is a crossover from a fully connected cluster to a
non-connected state in the sense that all links become unavail-
able. On the other hand, by following the Cohen-like strategy
we found a sudden change in transport properties which is
may be interpreted as a percolation-like transition induced by
the cumulative process of load along the time.

Finally, we would like to stress that our results is similar
to that of the recent work of Zhang et. al.[17]. They inves-
tigated a model in which each node generates R/N packets,
where N is the size of the network and R is a parameter tuning
the generation rate and such packets are exchanged between
a pair of sites through the minimum paths. By evaluating the
transport properties they found a phase transition between the
free flow and the congestion state driven by the packets gener-
ation rate R. Moreover, the trasmission efficiency is enhanced
deleting the links connected to sites of large betweeness since
they are overloaded first. Such conclusion is quite similiar to
ours, although in the Zhang’s work the model is different.
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