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We find high overtones of the Dirac quasi-normal (QN) spectrum of a Schwarzschild black hole (Sbh), by
Leaver’s method. At high overtones, the spacing of the imaginary part of the QN spectrum is equidistant
(Imwn11 —Imowyn = 1/8M, whereM is the black hole mass). This can also be analytically obtained by means
of a Born approximation. At high overtones, the real pambg@oes to zero. Finally, we comment this result in
the context of Hod’s conjecture on highly damped QNMs and the area spectrum of (quantum) black holes.

Introduction. (gravitational) asymptotic, highly damped modes was known
_ _ ~ [10], namely,Rew = 0.04371231~1. Hod expressed this as

Quasinormal Mode$QNMs) are an important characteris- Regy — (In3)/8mM (in units G = ¢ = 1). Such a result was
tic of a black hole. They dominate the late-time response Ofater analytically obtained by Mot and Neitzke, who showed
a black hole to external perturbations, being independent ogyat it is valid also for asymptotic QNMs due to a scalar per-
the way of its excitation. They provide the “fingerprints” of & yrbation [11]. After the works of Dreyer [6] and, specially,
black hole, feasible to be seen in the detection of gravitationahat of Motl and Neitzke [11], Hod's proposal atracted atten-
waves (for a review, see [1]). Furthermore, the importance ofion and a plenthora of works appeared in the literature, ad-
black holes QN spectra is not limited by the observational asgressing the issue of the area spectrum of quantum black holes
pects of gravitational waves. In fact, QNMs of black holes ingng QNMs (for reviews, see [7]). Nevertheless, most works
Anti-de-Sitter (AdS) spaces have an interpretation in the dughaye been mainly concerned on QNMs due to perturbations
Conformal Field Theory (CFT) which “lives” on the (confor- ¢ integer-spin fields only (gravitational, electromagnetic, and
mal) boundary of the space [2]. So, QNMs of black holesscajar). Although perturbations of half-spin fields were con-
in AdS spaces provide a test of tAeS/CFT correspondence sjdered by some authors, they were limitedae overtones
[3]. For de-Sitter (dS) space-times, there is also a similar repy the time we published our results in [12] (see references
sult, since QNMs due to scalar perturbations in the bulk of aRherein). Motivated by this, we investigated thigh overtone

empty dS space correspond to decaiyng modes in a dual Chjehavior of the QN spectrum of the Dirac perturbations of a
on the boundary [4], what gives support in favor of the exis-gpp [12].

tence of a dS/CFT correspondence. Since (A)dS/CFT corre- pirac perturbations of a Schwarzschild black hole.
spondences are considered as realizations dfitlegraphic  The Dirac equation in a curved space is given by [13]
Principle [5], QNMs play some hole in the description of Y2 (y + M) + M) W = 0, wheremis the mass of the Dirac
quantum aspects of gravity. Furthermore, there was also Id, el are tetrads, defined through the metgig,, by g =
suggestion that thesymptotic, highly damped QNM§black h — diag(—1,1,1,1) is the Minkowski met-
holes are connected with a free-parameter that appears in tHébeﬁq?’ w erer]ab g T

. 1 \Y .
ensuing area spectrum of Loop Quantum Gravity (LQG). Thid'C: I'y iS thespin conectiongiven by, = VY eleni b, _
parameter must be fixed in order that LQG can reproduce thwherey* are the Dirac matrices ara,; i denotes the covari-
Bekenstein-Hawking entropy [6]. This stimulated consider-2nt derivative o, [13]. In the background of a Sbh, \évhose
able interest in the study of QNMs of black holes in flat, dsm‘;’t”C in spherical-like coordinates s = —f(r)dt* +
and AdS backgrounds (for reviews, see [7]). The idea that% +r2(d@? + sirf8d¢?), wheref(r) = 1— (2M/r) andM
the QNMs of a black hole might fix the spacing of its quan-is the black hole mass, the equation for the time-independent
tum area spectrum was suggested by Hod [8], who, based gserturbation of a massless Dirac field can be reduced to the
Bohr’s gorrespondence principle, propose_d thatréed part  \ave-like equation [13(1172‘2 +Q)27V(x)) W(x) = 0, where
of the highly damped QNMs a Sbh could fix the spacing of , dx ,
its area spectrum. Hod's work relies on Bekenstein's heurisX 1S defined bydx=dr/f(r) andV (x) is [14]
tic result that the area spectrum of a stationary quantum black
hole would be given by, = yi -n, withn= 1,2, ..., where V(r(x)) =Va(r) = |y £(r) Mig ) G
h =13 (in units G = ¢ = 1) andy, a dimensioless constant, r2=drV r2
is the spacing of the spectrum (for a review, see [9]). Hod
then proposed that if we consider that the mass (energy) ofherep = +(j + %), with j =4+ % ¢ being the multipole
a (quantum) Sbh undergoes a variatlii = ARew, where  index. SinceV. are supersymetric potentialsthey have
Rewis the real part of the asymptotic, highly damped QNMs,the same associated spectrum of QNMs [14]. So we can
the area spacing can be fixedys 4In3. At the time of choose, for instancey, to make our analysis. In terms
Hod'’s work, only an expression obtained numerically for theof x, V(x) = V(r(x)) goes to zero at both boundaries, i.e.,
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V(x — +0) — 0. Choosing the phase'®, the QNMs  Rewn ~ 0;Imwn 1 — Imwn ~ —i/8M, asn — «. This for-

satisfy the boundary conditiong(x) ~ €%, for x — oo, mula for the spacing of the imaginary part can be reproduced
corresponding tgourely in-going waves at the black hole following Ref.[16], where the spacing was derived by deter-
event horizon and purely out-going waves at infinity mining the poles of the scattering amplitude in the fist Born

approximation, in the case of integer-spin perturbations of a
Determination of the QNMs. In [12] we have determined Sbh. For highly damped modes we can use the Born approxi-
the QNMs by means of Leaver's method [15], which resortsmation, whefe the scattering amplitude is given by the formula
to the Fbenius method to express the solution of the per{16] Sk) = f2V(x)e#dx. Using Eq.(1) forV(x), we
turbation equation in terms of the radial variableLeaver's  foundS(k) ~ combinations of (4ikM) andl" ((1/2) +4ikM) .
method consists in expressing the solutions of the perturfhe poles of the amplitude occur whéty2) + 4iMk = —n,
bation equation, in terms af, by a power series, with the or 4iMk = —n (n > 0 and is integer), i.ek, =in/8M is the
boundary conditions for QNMs translated into a convergencapacing for the imaginary part of the highly damped QNMs.
condition to the series, which can be expressed as an equation
involving infinite continued fractions. The coefficients of the

A X ) . Concluding Remarks. In [12], we have studied thieighly
expansion are determined via a recurrence relation whos&am ed regimef the Dirac QN spectrum of a Sbh. The spac-
coefficients will be functions ofo. Then the QN frequencies P 9 P ' P

; ing of the imaginary part were found to be twice less than that
will correspond to those values @b such that the power . - :
. . for integer-spin fields. As was shown both numerically and
series converges at= o [15]. Then, following [15], we can ) . )
T ; .. analytically in [17], the real part of the highly damped QNMs
choosayi(x) = e'®*u(x), whereu(r) has a regular singularity o . .
. AP . for scalar and gravitational perturbations of a Sbh asymptoti-
at the event horizon and is finitexat— o, such that the series
_ 25 ¢ n/2 o cally approaches a constant, equalltd3) /8mM (G =c = 1),
u(r) = f(r)*yn_oanf(r)"< converges at = . From these ; . .
- ) . Wwhereas for electromagnetic perturbations, it goes to zero
and the wave-like equation, a three-term recurrence relatio

can be obtained and when is a QN frequency, the ratio ELS]' For the highly damped QNMs of Dirac pgrturbations,
of the coefficients of the series finite and can be found ‘o have found thaew also goes to zero. According to Hod's

through continued fractions [15], such that we are left Withconjgcture [8], this would simply imply aull value for the
9 ) X : ; spacing of the area spectrum of a Sbh. Thus the black hole
an implicit equation forw, in terms of inverted continued

fractions. The QNMs are the roots of an inverted continuedg?otl;]lg r:]iaﬁ a:j;gqntgl;%ul\ls |v|aée§oZzer%;uhrgi/esénjsi\:g?s;??/gﬁjgt
fraction (for details, see [12]).High overtones. The main gnly b

; . . . for all kinds of perturbing fields in the case of a Sbh, the sim-
difference from what we know on the high damping regime . . : o
) . ) i e plest spherical four-dimensional black hole solution, it seems
for perturbations of fields of integer spin (scalar, gravitational o .
S - - the role of QNMs on the area quantization of black holes is
and electromagnetic) is that now the spacing in imaginary :
) : g . . puzzling.
part is noti/4M, as it takes place for integer-spin pertur-
bations, buti/8M. It can be seen numerically that highly = Acknowledgements.K. H. C.-B. and R. K. are grateful to

damped QNMs display the following asymptotic behaviour: FAPESP (Brazil).
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