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Since the proposal of the AdS/CFT correspondence, made by Maldacena and Witten, there has been some
controversy about the definition of conserved Noether charges associated with asymptotic isometries in as-
ymptotically AdS spacetimes, namely, whether they form an anomalous (i.e., a nontrivial central extension)
representation of the Lie algebra of the conformal group in odd bulk dimensions or not. In the present work, we
shall review the derivation of these charges by using covariant phase space techniques, emphasizing the princi-
ple of locality underlying it. We shall also comment on how these issues manifest themselves in the quantum
setting.

I. INTRODUCTION

The issue of defining global conserved charges in General
Relativity is quite a delicate one. The difficulties one finds
stem from the fact that the dynamical problem posed by
Einstein’s equations is a rather sui generisone: It does
not possess a local dynamics in the usual sense of a “time
evolution”, because the very choice of “time” is a local
(gauge) symmetry of the system (Hamiltonian constraint),
and thus the Noether current corresponding to it, which
was supposed to generate the dynamics according to the
usual Hamiltonian recipe, actually vanishes “on shell”. This
stems from the deep physical fact, put forward by Mach and
Einstein, that one needs a material, physical procedure to fix
a local notion of time (namely, to fix a coordinate system),
in a way that the physical laws ruling these procedures are
also local and moreover independent of this choice – namely,
one needs a nonvanishing matter energy-momentum tensor.
This is the physical content of Einstein’s equations. Another,
distinct way of fixing the dynamical interpretation (namely,
the improvement terms to be added to the constraints of the
theory) is to assume that the metric approaches some fixed,
symmetrical background near infinity for which we do know
how to fix such an interpretation.

However, one must be careful with formal computations
regarding the on-shell action – its value for the whole space-
time may be infinite. This divergence inserts a new ambiguity
in the definition of conserved gravitational charges, this
one depending only on the conformal structure of infinity.
Whereas the usual definition gives a family of charges whose
Poisson algebra is a true representation of the algebra of
asymptotic isometries, the potential ambiguity stemming
from the above divergence may lead to an obstruction to
forming a representation[1]. The inception of Maldacena-
Witten AdS-CFT correspondence[2, 3], according to which
the asymptotic boundary behaviour of bulk fields corresponds
to sources for “dual”, boundary conformal fields, has led
on its turn to another, QFT-inspired prescription, according
to which nontrivial (with respect to pure AdS) boundary
behaviour of the bulk metric acts as a source for the dual
energy-momentum tensor, whose renormalization yields a

trace anomaly in even boundary dimensions.

Here, we start from the fact that the variational principle
determining dynamics is inherently local. Namely, one must
keep track of the supports of the functionals – conserved
gravitational charges are quasi-local quantities, and they
must be obtained as suitable limits of local quantities. In this
sense, conserved gravitational currents are indeed localized
at infinity, since local gravitational charges, as we’ve seen,
don’t actually exist (more precisely, they vanish everywhere).
The near-boundary behaviour ends up being affected by the
same kind of ambiguity one faces in the renormalization of
QFT[4]. The result is, however, thatthe anomalous terms
are actually independent of the detailed behaviour of the
bulk metric (they depend only on the conformal class of
the boundary metric[5]), and must be fixed by additional,
physical considerations. The AdS-CFT recipe[1] is one
possible answer.

We review the calculations leading to the above ambiguity
in Section 2 in an unified way by using the covariant phase
space formalism (Peierls bracket[5]). In Section 3, we pro-
pose what we believe to be a QFT counterpart of the action
of gravitational charges, based on first principles– namely,
locality, covariance and causality. By employing a functorial
framework in the spirit of [6], we give a prescription, inspired
by our previous classical calculations, which seem to capture
their essential aspects.

II. COVARIANT PHASE SPACE APPROACH TO
CONSERVED CHARGES

Let M be a n-dimensional manifold, K � M with regular
boundary ∂K. Define

SK [g,Λ] =
Z

K
(R(g)+2Λ)

√−gdnx, (1)

(Ric(g) and R(g) are resp. the Ricci tensor and the scalar
curvature associated with g) the Einstein-Hilbert action with
cosmological constant Λ. For variations δg supported in the
interior of K, we have
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δSK [g,Λ] =
Z

K

(
Ric(g)− 1

2
R(g)g+Λg

)
︸ ︷︷ ︸

.=GΛ
ab

δg
√−gdnx = 0

(2)
at a g satisfying the Eisntein equations Ric(g)− 1/2Rg+

Λg = 0. Now, consider an arbitrary metric (i.e., not nec-
essarily “on shell”), and perform metric variations δgab =
1/2∇(aXb) coming from (infinitesimal) spacetime diffeomor-
phisms Xa. The Bianchi identities imply that:

GΛ
ab∇aXb = ∇b(GΛ

abX
a). (3)

If X if timelike, one can see that Ca(g,X) .= GΛ
abX

b does
not contain second derivatives of the metric in the X direction.
In other words, the Ca(g,X)’s are constraintsof the theory,
expressing its diffeomorphism invariance. Likewise, these
constraints determine the dynamics of any gauge-invariant
quantity – instead of showing it in general, we’ll specialize
to asymptotically AdS (AAdS) spacetimes[7], for which
the “boundary improvement” procedure mentioned in the
Introduction can be implemented rather explicitly.

Let (M̂ , ĝ) be a n-dimensional (n ≥ 4), AAdS
sapcetime with conformal factor Ω, conformal com-
pletion (M ,g

.= Ω2ĝ) and conformal boundary
(I .= ∂M ,q

.= g � I ), with q lying within the confor-
mal class [q] of the Einstein static universe (ESU). We’ll
assume that our AAdS spacetimes satisfy empty space
Einstein equations everywhere and are causally simple (i.e.,
the causal past and future of any compact set are closed),
hence stably causal, as in [8]. This means they can be foliated
by equal-time surfaces (not necessarily Cauchy) by means of
a global time function, say τ. We can suppose that τ can be
smoothly extended to M in such a way that τ � I is also a
global time function.

We shall consider the following setting: Let t1 < t2 ∈ �,
ε ∈ [0,ζ), ζ such that dΩ vanishes nowhere in the collar I ×
[0,ζ), and set Σt = τ−1(t), Σε

t = Σt \Ω−1([0,ε]. The ingoing
and outgoing null hypersurfaces emanating from ∂Σε

ti , i = 1,2
cross resp. in ∆i , ∆o, forming the edges of the Cauchy surfaces
resp. for the regions O , O1. By choosing t1 and t2 sufficiently
close to each other, we can assure that ∆i and ∆o are smooth
(in such a case, O and O1 are regular diamonds) and belong to
the same Cauchy surface for O1. We also set Ω(∆o) ⊂ [ε′,ε′′],
0 < ε′ < ε′′ < ε. Finally, we remark that we can deform the
orbits of τ by suitably redefining the latter, in a way that each
orbit of Σt \ Σε

t under τ belong to some level surface of the
collar above.

We’ll compute all quantities we need from the Einstein-
Hilbert action SKt1 ,t2,ε [ĝ,Λ], where Kt1,t2,ε = ∪t∈[t1,t2]Σε

t � M̂ .
Given an arbitrary vector field Xa, the variation of the action
under Xa (δĝab = 1/2∇(aXb)) reduces to (we’ll omit the vol-
ume elements for simplicity)

δXSKt1 ,t2,ε [ĝ,Λ] = −
Z t2

t1

Z

∂Σε
t

(GΛ
abωaXb+

+ωaθ(ĝ,LXĝ)a)+
Z

Σε
t2
−Σε

t1

(
GΛ

abσaXb +σaθ(ĝ,LXĝ)a

)
(4)

(ωa and σa are the unit ingoing spacelike, resp. fu-
ture directed timelike normals to the timelike, resp. space-
like smooth piecewise components of ∂Kt1,t2,ε). The 1-form
θ(ĝ,δĝ) is Poincaré dual (with respect to the volume element√−ĝ) to the boundary term coming from an arbitrary first
variation δĝ. Consider now the following, arbitrary second
variation, imposing the following conditions on Xa:

• Xa vanishes in a neighborhood N1 of Σt1 ;

• On a neighborhood N2 of Σt2 , disjoint from N1, Xa is
an asymptotic Killing field, i.e., LX(ĝ) decays at least
as fast as εn−2 as ε → 0 (this implies that the integral of
the Lie derivative over ∂Σε

t has a finite limit as ε → 0).

This can be done by multiplying an arbitrary asymptotic
Killing field Xa by a regularized step function. Now here
comes the main point: if δĝ is tangent to a curve of solutions
of the Einstein equations, it’s propagated (in a particular gauge
for the linearized equations) by convolution with the covariant
derivative along the orbits of τ of some fundamental solution
Ecde f associated with the globally hyperbolic region O1, along
the timelike component of the boundary (Duhamel’s princi-
ple). Let us drop the variation of θ for now; we shall now
exploit the presence of the step function and choose the re-
tardedfundamental solution. Putting it all together from (4),
we get:

−δ
Z t2

t1

Z

∂Σε
t

GΛ
abωaXb =

Z t2

t1

Z

∂Σε
t

ωaXb∂tδĝab. (5)

The calculation of the variation of θ is more cumbersome
and we’ll skip it due to lack of space[5]. Antisymmetriza-
tion of the second variation and repetition of the procedure
above leads to the usual expression for the charges, which is
no longer dependent neither on the regularized step function,
nor on t:

Q(X) ∝ lim
ε→0

Z

∂Σε
t

Ω3−nCabcd(ĝ)∇aΩ∇bΩXcσd, (6)

where Cabcd(ĝ) = Cabcd(g) is the Weyl tensor of ĝ. Notice
that the limit is taken by simultaneously taking t1 → t2 and
shrinking the regularized step function to the Heaviside step
function, so that O1 remains globally hyperbolic all the way
– otherwise, the retarded fundamental solution may cease
to exist or no longer be unique. The requirement that the
variation of the charges should act as boundary sources for
linearized gravity around a solution of Einstein’s equations
fix the charges themselves up to dynamically trivial terms.
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More precisely, it fixes their Peierls bracket with compactly
supported, gauge invariant functionals of the on shell met-
ric (local observables). The remaining ambiguity has van-
ishing Peierls bracket with all local observables and depends
on the scaling properties of the local charges w.r.t. Ω as the
limit is taken, as it arises from the ill-defined multiplication
of the limit retarded fundamental solution by a Heaviside step
function. Depending on the asymptotic scaling degree[4], the
needed extension to I defined by fixing the ambiguity may
acquire unavoidable logarithmic terms, violating the expected
scaling behaviour. This happens, for instance, for n odd[1].

III. THE PICTURE FROM LOCAL QUANTUM PHYSICS

The conceptual advantage of employing the Peierls bracket
in the classical calculations above is that it brings the prin-
ciple of locality to the forefront, in a way akin to QFT. One
can emulate the line of reasoning above within local quantum
physics (algebraic QFT[9]) by means of the functorial formal-
ism proposed in [6]. Let M an is the category of strongly
causal, n-dimensional spacetimes (M̂ , ĝ), with arrows defined
by orientation-preserving isometric embeddings with open,
causally convex images, and A lg the category of unital C*-
algebras, whose arrows are unit-preserving C*-morphisms. A
locally covariant quantum theoryis simply a covariant func-
tor A between both categories, i.e., the diagram

(M̂ , ĝ)

A

��

ψ �� (M̂ ′, ĝ′)

A

��

ψ′
�� (M̂ ′′, ĝ′′)

A

��
A(M̂ , ĝ)

Aψ �� A(M̂ ′, ĝ′)
Aψ′

�� A(M̂ ′′, ĝ′′)

commutes. We say that A is causalif the local algebras at
spacelike separated regions commute, and primitively causal

if the embedding of any neighborhood of a Cauchy surface
into its Cauchy development induces an isomorphism of the
respective algebras. In the latter case, one can define retarded
and advanced “scattering morphisms” by suitable metric per-
turbations. The composition of both gives an automorphism
βĝ of A(M̂ , ĝ) (relative Cauchy evolution) whose functional
derivative

i
2
〈Φ, [Tµν(x),πω(A)]Φ〉 .=

δ
δĝµν(x)

〈Φ,πω(βĝ(A))Φ〉 (7)

acts in the same way (i.e., as a densely defined derivation)
as the commutator with the energy-momentum tensor, in the
sense of quadratic forms, on the GNS Hilbert space induced
by a state satisfying the microlocal spectrum condition, en-
dowed with boundary conditions in the following sense: it
approaches an “Rindler-Unruh” type equilibrium state af-
ter a sufficiently long relaxation time – for such states, it’s
meaningful to speak about the implementation of asymptotic
isometries. This derivation on the local algebras shares many
properties of the Peierls bracket, and the splitting of the sec-
ond variation into their retarded and advanced parts is also
subject to renormalization ambiguities, in the same sense as
above.
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