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Two Vertically Coupled Quantum Rings with Tunneling

L. K. Castelano, G.-Q. Hai,
Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970, Sdo Carlos, SP, Brazil

B. Partoens, and F. M. Peeters
Department of Physics, University of Antwerp, B-2020 Antwerp, Belgium

Received on 8 December, 2005

We study the effect of tunneling on the electronic structure of two vertically coupled quantum rings within the
spin density functional theory. The ground state configurations of the coupled rings are obtained for a system
with 10 electrons as a function of the ring radius and the inter-ring distance. For small ring radius, our results
recover those of coupled quantum dots. For large ring radius, new ground state configurations are found in the

strong tunneling regime.
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I. INTRODUCTION

Recently, few electron self-assembled semiconductor quan-
tum rings have been created in the nanoscopic regime [1].
This quantum structure provides an interesting system to
study the ground state and the excitations in the scattering
free and few-electron limit. Although theoretical studies are
avaliable on single electron properties of such a confined sys-
tem, a detailed study of the electron-electron interaction in the
many electron case are not yet avaliable. Simonin et al. [2]
have shown that, without considering electron-electron inter-
action, a displaced parabolic model is suitable for describing
the confinement potential for a self-assembled semiconductor
quantum ring. Very recently, Granados et al.[3] have shown
that the formation of self-assembled quantum rings in stacked
layers is possible by molecular beam epitaxy in an InGaAs
semiconductor structure.

On the other hand, artificial molecules composed of cou-
pled quantum dots (CQDs) provide an additional degree of
freedom to explore new regimes of molecular physics. In
these systems, interdot coupling depends not only on the elec-
trostatic Coulomb interaction but also on the quantum tun-
neling between them. Tunneling strength between the cou-
pled quantum dots can be controlled to a high precision in
semiconductor growth and pattern processes. Recently, new
molecular phases have been predicted and confirmed in few-
electron vertically coupled quantum dots in the intermediate
coupling regime [4, 5]. It was confirmed that the exchange-
correlation effects in the electron-electron interaction is essen-
tial to understand the new artificial molecular structures. We
expect that two coupled quantum rings (CQRs) form a new
type of artificial molecule where the ring radius can be a new
parameter providing one more degree of freedom to modulate
and control the electronic structure of the artificial ring shaped
“molecule”. Furthermore, due to the peculiar properties of
nanoscopic rings in a magnetic field e.g. the Aharonov-Bohm
effect, one can expect curious properties of quantum states in
such artificial molecules formed by coupled quantum rings in
the presence and in the absence of an external magnetic field.

II. THEORETICAL MODEL

Within the spin density functional theory, we study the
ground state of few-electron two vertically coupled quantum
rings. The two vertically coupled quantum rings are de-
scribed by the displaced parabolic potential model V(r) =
Sm* @3 (r—r)? in the xy-plane, where r = (x,y) = (1,0), @ is
the confinement frequency and ry is the radius of the ring. The
two stacked rings are coupled in the z direction described by
two coupled quantum wells with a finite barrier. The quantum
wells are assumed to be W = 120 A wide with Vy = 250 meV
the height of the barrier between them. For these parame-
ters we find the following expression for the energy splitting
A =22.86 exp[—d(A)/13.455] meV between the two lowest
levels in the coupled quantum wells separated by a distance d
[4].

We use the Kohn-Sham orbitals Wpue(r) =
exp(—im0)d,ums(r)Z(z) to express the density and ground
state energy. The Kohn-Sham equation in spin density
functional theory for the CQRs is given by
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where ¢ =7 or | being the z component of the electron spin.
The total density in the rings is p(r) = X5 Y05, [Ommo ()| Be-
cause we are adopting two identical rings, the density in each
ring is half this total density [6]. In the calculation, we approx-
imate the density in the z direction by d functions. This ap-
proximation has been used earlier by Partoens and Peeters[4]
for two coupled quantum dots and will not change our results
qualitatively. The intra-ring and inter-ring Hartree potentials
are given by
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respectively, with the inter-ring distance d = |d|. The
exchange-correlation energy functional within the local den-
sity approximation is given by E. = 2n p(r)e.[p!,p].
where the Tanatar-Ceperley [7] functional for g, [p',p!] was
used. The ground state energy of the coupled rings is obtained
from
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We expand the eigenfunctions ¢,,s(r) in the Fock-Darwin[8,
9] basis to solve the Kohn-Sham equation.

We consider only the two lowest levels of the quantum
wells that connect the two quantum rings in the z direction.
They are the symmetric bonding level and the antisymmetric
antibonding level. The contribution from excited states due to
confinement in the z direction is neglected because the con-
finement in the z direction is much stronger than that in the
plane. Therefore the motion in the z direction may be assumed
to be decoupled from the in-plane motion and the Kohn-Sham
equation can be solved separately. In the limits of small and
large inter-ring distance d, the results for a single quantum
ring are recovered.
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III. NUMERICAL RESULTS AND DISCUSSIONS

First of all, we calculate the energy spectrum of a single
quantum ring without electron-electron interaction. The con-
finement potential of the ring is taken as V(r) = Im*@}(r —
r0)? with zero thickness in the z direction. The single electron
states can be obtained numerically by diagonalizing the matrix
Hamiltonian in the well known Fock-Darwin basis. Figure 1
shows the energy levels €, ,, as a function of the ring radius

in unit ag = +/h/m*@ with the radial quantum number n =
0,1,2,..., and the angular quantum number m = 0,£1,42, ...

In comparison with the quantum dot (9 = 0) results, an
important difference in the single particle picture of a quan-
tum ring is that a finite ring radius lifts the degeneracy of the
states €9 +> and €1 9. With increasing the ring radius, the en-
ergy difference €9 — €9 4> increases and tends to a constant
for large rop. This indicates that, in the absence of external
fields, the ground state electronic structure of a quantum ring
can be distinctly different from that of a quantum dot. This
effect becomes apparent only for a system with 9 electrons or
more when the energy levels € ¢ and €y 1> become occupied.
This is also true for two coupled quantum rings. Notice that
the low lying energy levels exhibit a minimum as a function of
the ring radius for the m = 0 orbitals. The reason is that, when
the ring radius increases, a transition from the quantum dot
to a quantum ring takes place. This effect can be understood
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FIG. 1: Electron energy levels €, ,, in a single quantum ring as a
function of the ring radius without electron-electron interaction.
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FIG. 2: The ground state energy for CQRs with 10 electrons as a
function of ring radius for a fixed tunneling energy A = 3.31 meV
and hwo =5 meV. The inset indicates a single particle picture repre-
sentation for each phase. The left (right) panel of the inset represents
the bonding (antibonding) levels.

qualitatively by looking at the potential height m*(o%r% /2 in
the center of the ring.

In this work, we study theoretically the ground state con-
figurations of two coupled quantum rings with 10 electrons.
For two coupled quantum rings including electron-electron in-
teraction, the ground state configurations can be labelled by
three quantum numbers (S;,M,,I;): total spin S, total angu-
lar momentum M, and the isospin quantum number I,. The
isospin quantum number is defined by the difference between
the number of electrons in the bonding state and in the anti-
bonding state divided by 2.

We consider two coupled quantum rings of confinement
energy hmy = 5 meV. The ground state energy and the cor-
responding electronic configuration of the system are deter-
mined by comparing the total energies for different possible
configurations. The ground state configurations or phases are
found for different inter-ring distance (tunneling strength) and
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FIG. 3: (a) Total electron density distribution and (b) spin polarized
electron density distribution for the CQRs with different ring radius
ro =0, 0.5, 0.7 and 2.0 ay.

ring radii. In Fig. 2, we plot the ground state energy of the
coupled quantum rings as a function of the ring radius for
a fixed inter-ring distance d = 26 A. Such an inter-ring dis-
tance corresponds to a tunneling energy A = 3.31 meV. We
found four distinct configurations (phases) for this tunneling
strength. They are the configurations: (S;,M;,I;) = (1,0,3),
(2,0,4), (1,2,4) and (0,0,5). The phase transitions occur at
ro = 0.32,0.58, and 0.83 ag. The insets in the figure indicate a
single particle picture representation for each phase. The left
and right panels of the inset, which are separated by the verti-
cal dotted line, represent the bonding and antibonding levels,
respectively. The phase (1,0,3), for ryp < 0.32, is consistent
with the result obtained for two coupled quantum dots [4].
With increasing ry, more electrons from the antibonding state
transfer to the bonding state. We also notice that, the existence
of the (2,0,4) phase is a result of exchange effects. Although
the single particle energy € is smaller than €; ¢ as shown in
Fig. 1, the 9" electron in the bonding state occupies the state
(1,0) until this energy difference overcomes the exchange en-
ergy. For larger ring radius, all the electrons transfer to the
bonding states. Fig. 3 illustrates (a) the total electron density
and (b) the spin polarized electron density distributions for
these four different phases. We identify two new phases orig-
inating from the quantum ring electronic structures as shown
above. They are the (1,2,4) and (0,0,5) phases which have
not been found for the case of vertically coupled dots. The
convergency of the single particle levels € ,, (for m=0, £1,...)
at large ring radius leads to the appearance of the two new
phases.

Now, we investigate the effects of the inter-ring distance on
the ground state phases for fixed ring radius. Fig. 4 shows
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FIG. 4: Ground state energy for the CQRs as a function of the inter-
ring distance for different ring radii (a) ro =0.5 ag (b) rg =2.0 ap.

the dependence of the ground state energy and phases of the
coupled quantum rings on the inter-ring distance. For a small
ring radius rg = 0.5 ap, as shown in Fig. 4(a), the ground
state configurations are very similar to those of the coupled
quantum dots. For larger ring radius of ryp =2.0 ag in Fig. 4(b),
at small inter-ring distance (large tunneling energy A), all the
electrons are in the bonding states. With increasing inter-ring
distance, the energy A decreases. When it becomes smaller
than the energy difference between the bonding levels (Zmy
in the single particle picture) the electron jumps to the lowest
antibonding state and the ground state of the CQRs changes.
Comparing the two figures, one can see that the same phases
are found for CQDs and CQRs at large d. However, for small
d, two new phases are found for the CQRs.

IV. CONCLUSIONS

We have studied the ground state configurations of two ver-
tically coupled quantum rings with tunneling between them.
Within the spin density functional theory, the ground state en-
ergies and configurations are obtained for the system with 10
electrons as a function of the ring radius and the inter-ring
distance. Our results indicate that two new phases, i.e., the
(1,2,4) and (0,0,5) phases, show up in the strong tunneling
regime for large ring radius.
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