
Brazilian Journal of Physics, vol. 30, no. 4, December, 2000 783

Heuristic Approach to the Critical Dynamics

of the Ising Model

P.R. Silva and V. B. Kokshenev

Departamento de F��sica, ICEx, Universidade Federal de Minas Gerais,

Caixa Postal 702, CEP 30123-970, Belo Horizonte, Minas Gerais, Brazil

Received on 1 November, 2000

We discuss order-disorder phase transitions of classical and quantum Ising models on the basis of
the Ginzburg-Landau-Wilson free-energy action and a modi�cation of a scaling method proposed by
Thompson. The two-time critical relaxation scenario, driven by thermal and quantum 
uctuations,
respectively, is given in terms of the slow-down critical exponent of the order-parameter excitations.

The classical Ising model (IM) and the quantum

transverse Ising model (TIM) are generically used to

study cooperative phenomena. The three-dimensional

(d = 3) TIM has several applications to real systems[1],

including the description of structural order-disorder

phase transitions observed in ferroelectrics at a crit-

ical temperature Tc. In the d = 1 case, the TIM

with nearest-neighbor interactions exhibits T = 0 long-

range-order for small enough transverse �elds � < �c.

In the current work we propose a new approach to

the problem of the critical dynamics. It is based on a

heuristic method introduced by Thompson [2] and de-

veloped by one of the authors[3]. Thompson's method

is based on the idea that the action, as well as a rele-

vant free energy of the system of many scales of length,

are limited functions. This heuristic method was for-

mulated through a set of assumptions (see prescrip-

tions A,B,C in Ref.[2]) that avoid dealing with the

renormalization-group (RG) equations of motion.

The critical dynamics of a given system is a mani-

festation of its dynamical instability and can be treated

in terms of the collective Goldstone-type soft mode van-

ishing at the transition temperature Tc. More speci�-

cally, order-disorder transitions display a two-time re-

laxation scenario given by relaxation times �� with

� = c (central mode) and � = s (soft mode) for, respec-

tively, di�usive-type relaxation and oscillatory-type be-

havior. These are related to the �nite-time local order-

parameter excitations !� of width �� = Im!�. We dis-

cuss the critical dynamics in terms of the slowing-down

dynamical critical exponents � de�ned as �� _ j"T j
��

with "T = (T � Tc)=Tc as "T goes to zero. We take

� = �z, where � stands for the correlation length expo-

nent and z is the growth-law exponent that distinguishes

di�usion mechanisms.

If we assume a Brownian mechanism, the d-

dimensional classical IM predicts di�usive-type relax-

ation dynamics. Its slowing-down exponent is[3]

�(class)
c = zc� =

(d+ 2)

2(d� 1)
for d � 4 and z = 2 :

(1)

For the real d = 3 case, �c = 5
4 was independently

deduced (see Eq.15 in Ref.[4]) for the quantum TIM by

the Green function method. This corresponds to for the

universal critical behavior of the classical and quantum

Ising models[5] for d > 1.

Besides the critical relaxation dynamics given by the

central mode, we discuss the critical oscillatory behav-

ior. In the continuum representation, the action in-

duced by the time-dependent order parameter and as-

sociated with the free energy can be given by

AT =

Z
Ld

�
1

2
jr	(x)j2 +

"T r(L)

2
j	(x)j2

+
u(L)

4
j	(x)j4 +

M

2
j
@	(x)

@t
j2
�
ddx; (2)

where 	 stands for the scalar �eld conjugate to the or-

der parameter and the integration is performed over

a d-dimensional hypercube of volume Ld. The co-

eÆcients r(L) and u(L) are not critical. The last

term, depending on the e�ective mass M , extends the

Ginzburg-Landau-Wilson free-energy action to include

oscillatory-type kinetic e�ects.
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Based on the ideas of Thompson[2], we assume that

each term in Eq.(2) is of a �nite magnitude. To esti-

mate the critical exponents it is not necessary to eval-

uate with accuracy the terms of the sum. Therefore,

we can simplify our work assuming that any term is of

the order of unity. Adopting this scheme and consider-

ing a stationary motion of the system, 	 = 	0e
i!t, we

have the following estimates for the �rst and the fourth

terms in Eq.(2),

Z
jr	(x)j2ddx s j

Z
(�M!2	2(x))ddxj s 1: (3)

This can be rewritten as hj	j2iLd�2 �

Mhj!j2ihj	j2iLd; where the angle brackets mean the

integration (2). In order to perform the mass scaling,

a characteristic length associated with the quantum

particle behavior is treated as its Compton wavelength,

namely, �c = h=Mc: This yields M / L�1 and, hence,

hj!j2i1=2 / L�1=2: By introducing the soft-mode fre-

quency !s / �"

=2
T and its width �s / �"�s through

the relationship h!i = !s + i�s; as well as the correla-

tion length � / �"�� near the critical temperature, we

have !2s + �2s / �"�T . Using the known Fisher scaling

equation (
 = �(2��)), and the inequality 
 > �=2; we

naturally arrive at the overdamped soft-mode regime,

i.e. �s >> !s, that gives �s = �=2. In combination

with Eq.(1) for the correlation-length critical exponent

�; this provides the slowing-down critical exponent

for the overdamped oscillatory motion of the Ising-like

system[5],

�(class)
s =

�

2
=

(d+ 2)

8(d� 1)
; for d � 4: (4)

One can see that, unlike the case of the relaxation mo-

tion regime given in Eq.(1), the oscillatory motion is

characterized by non-Brownian superdi�usion dynam-

ics that implies z = 1=2. In real d = 3 space, it follows

from Eq.(4) that �s = 5=16 = 0:313. It should be

pointed out that this is close to �
0

s = 1
4 associated

with the soft-mode instability of the high-symmetry,

disordered paraelectric phase deduced from the quan-

tum TIM by the Green function method (see Eq.15 in

Ref.[4]). The Tc-universality of the classical IM and the

quantum TIM models, also known for the case of classi-

cal and quantum Heisenberg spin models, is due to the

fact that thermal 
uctuations drive the system through

the phase transition. As a consequence, the relaxation

mechanism does not depend on the details introduced

by quantum, Glauber or Kawasaki dynamics (for dis-

cussions, see Ref.[5] ). Meanwhile, this is restricted to

dimensions d > 1:

In the d = 1 case the TIM with nearest-neighbor in-

teractions exhibits T = 0 long-range-order near the crit-

ical �eld �c. The transition is driven by quantum 
uc-

tuations and can be mapped into the critical behavior

of the IM with the dimension increased by one[6, 7, 8].

By studying the T = 0 �xed-point scaling properties,

Continentino demonstrated[10] that the TIM exhibits

a dimensional shift from d to d+ z with respect to the

IM, where z is the growth-law exponent[9, 10].

One of the substantial characteristics of the action

introduced in Ref.[3] is its Galilean invariance. The

e�ectivity of the classical action (2) to �nd the criti-

cal behavior driven by thermal 
uctuations has been

demonstrated above. Generally, there is a length Lmin

corresponding to the lower wavelength (ultraviolet) cut-

o�. For the classical case (2) one can show that Lmin is

large enough to avoid a relativistic treatment. On

the contrary, the quantum behavior requires the low

wavelength regime that can be introduced through the

Lorentz invariant action (see Eq.(5) below). We then

write the following quantum action endowed with a

Lorentzian invariance for the scalar order parameter,

A� =

Z
dd+1x

�
1

2
(@�	(x))(@

�	(x))�
"�r(L)

2
	2(x)

+
u(L)

4
	4(x)

�
;

with

@�	@
�	 = @0	@0	� @1	@1	� @2	@2	� @3	@3	;

(5)

where 	(x) stands for the scalar �eld, and the integra-

tion is performed over some (d+1)-dimensional space-

time hypercube of volume Ld+1. The joint integration

in time-like (� = 0) and space-like (� = 1; 2; 3) coor-

dinates is performed in accordance with the relativistic

treatment of the problem. As before, r(L) and u(L) are

not critical, but "� = j�c � �j=�c measures a deviation

from the critical �eld.

To reveal the critical behavior in action (5), we also

adopt the Thompson method[2]: (A) the absolute value

of the each integrated term in Eq.(5) is of order of unity;

(B) in the limit L ! 1; the functions r(L) and u(L)

remain �nite, and (C) the 
uctuation part of the ac-

tion (5) is of order �
�(d+1)
L ; where ��1L (=

p
r(L)) is

the characteristic correlation length.

Within the spirit of the Landau approach to second-

order phase-transitions, we introduce the \equilibrium"

order parameter,



Brazilian Journal of Physics, vol. 30, no. 4, December, 2000 785

c

	2
� = "�	

2
L; for � < �c; and 0 otherwise;

with
	2
L = r(L)=u(L) and � = ("�r(L))

�1=2 � ("�)
�1=2�L: (6)

d

Within the Landau scheme, r(L) and u(L) are
constants and the critical exponents associated with
the order parameter, �, and the correlation length,
�; are equal, i.e., � = � = 1

2 : According to
the renormalization-group recipe, the critical 
uctu-
ations are accounted through the correlation length.
Thus, Eq.(6) provides the self-consistent equation � =
("�r(�))

�1=2 for the diverging correlation length � s
"�
��� . Application of the prescription A to the �rst

term in Eq.(5) providesZ
Ld+1

r	(x)2dd+1x s L(d+1)�2 < 	2 >s 1; (7)

and, thus, < 	2 > s L2�(d+1). For the second term,
one hasZ

Ld+1
"�r(L)	

2(x)dd+1x s "�r(L)L
d+1 < 	2 >s 1;

(8)
that gives "�r(L)L

2
s 1. Finally, the third term yields

Z
Ld+1

u(L)	4(x)dd+1x s u(L)Ld+1 < 	2 >2
s 1; (9)

where we have adopted a weak-correlation assumption,
< 	4 >t< 	2 >2. By applying the result (7), < 	2 >
s L2�(d+1); to Eq.(9), in combination with the pre-
scription B, we have

u(L) s L(d+1)�4; for d+1 < 4; and s 1; if d+1 � 4:
(10)

We see that there is a special dimension, given by
d + 1 = 4, above which the exponents become clas-
sical. From relation (7), < 	2 > s L2�(d+1); it follows
that the dimension, given by d+ 1 = 2, is also special.
In both cases, we expect logarithmic corrections. Note
that, by putting L = � in relation (8), we obtain the
RG result (6).

To use the prescription C we introduce the normal-
ized 
uctuation order parameter, '2 = 	2=	2

L: Thus,
the quantum action (5) is given by

A� =
r(L)

2u(L)
a�;

with

a� =

Z
Ld+1

�
(r')2 � "�r(L)'

2 +
r(L)

2
'4
�
dd+1x:

(11)

We treat a
�
as the 
uctuation part of the quantum ac-

tion. Application of the prescription C means that a
�

s �
�(d+1)
L = [r(L)]

d+1
2 . Substituting into Eq.(11), and

using Eq.(10) along with the relation A� s 1 (due to
the prescription A), we have

r(L) s L
2(d+1)�8

(d+1)+2 ; for d+1 � 4; and; s 1; if d+1 � 4:
(12)

Solving Eq.(6) for �, and taking into account that
� s "�

��� ; we arrive at our main result,

� =
(d+ 1) + 2

4 [(d+ 1)� 1]
;

for d+ 1 � 4, and

� =
1

2
; if d+ 1 � 4: (13)

This result can also be written in terms of the slow-
down critical exponent,

�(quant)
c = z� =

d� + 2

4(d� � 1)
;

for d� � 4 with

z = 1 and d� = d+ z : (14)

Otherwise (d� � 4 ), we come back to the classical
result � = 1

2 and z = 1: From Eqs.(1) and (14), one
can see that the quantum-TIM critical behavior can be
mapped into the classical IM critical behavior by the
formal transformation d! d+z: This is consistent with
the dimensional shift predicted by Continentino[10].

To conclude, we have discussed order-disorder phase
transitions within the framework of classical and quan-
tum Ising models on the basis of the Ginzburg-Landau-
Wilson action within the heuristic scaling method pro-
posed by Thompson. The critical behavior of the clas-
sical Ising model near the non-zero critical temperature
(for dimensions d > 1) and of the quantum Ising model
(d � 1) near the critical transverse �eld, which are
driven by thermal and quantum 
uctuations, respec-
tively, are described in terms of the correlation-length �
and the growth-law z critical exponents. The two-time
order-parameter relaxation scenario is given in terms of
the slow-down � = �z critical exponent of the order-
parameter excitations.
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