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The Public Good Game on Graphs: Can the Pro-Social Behavior Persist?
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This communication proposes new alternatives to study the pro-social behavior in artificial society of players
in the context of public good game via Monte Carlo simulations. Here, the pro-social aspect is governed by a
binary variable called motivation that incites the player to invest in the public good. This variable is updated
according to the benefit achieved by the player, which is quantified by a return function. In this manuscript we
propose a new return function in comparison with other one explored by the same author in previous contribu-
tions. We analyze the game considering different networks studying noise effects on the density of motivation.
Estimates of pro-sociability survival probability were obtained as function of randomness (p) in small world
networks. We also introduced a new dynamics based on Gibbs Sampling for which the motivation of a player
(now a q−state variable) is chosen according to the return of its neighbors, discarding the negative returns.
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I. INTRODUCTION

The Evolutionary game theory [1, 3] has contributed mean-
ingfully for the understanding of the emerging aspects in ar-
tificial societies modeled with players rules that evolve along
time. This approach has incorporated dynamic aspects to the
classical game theory, becoming an interesting laboratory to
study economic and social quantities of an artificial society
like wealth distribution, pro-social behavior, cooperation and
other similar measures that can model some real situations.

Many games have been considered to explain properties
originated from bargaining, cooperation, competition and why
not altruism, fairness, selfishness. From the experimental eco-
nomics1, an interesting game was proposed to explain the pro-
social behavior (the behavior intended to benefit others in the
society as a whole), i.e., how altruistic actions can lead to good
situations where benefits are distributed for a group of people.
This game is known as the public good game [1, 2, 7]. The
original version of this game models the public spending for
the community, like roads, bridges, libraries. Players are of-
fered the opportunity to invest their money into a common
pool. The profits, which are obtained from tolls and member-
ship fees are equally distributed among all participants irre-
spective of their contributions after the duplication or tripli-
cation of the stored amount in the pool to encourage the con-
tribution. However, each player unaware of the contribution
of the other players would invest nothing which corresponds
to the rational behavior. Thus, for purely rational players the
dominant solution is to default, i.e., absence of pro-social be-
havior!

Several aspects of this game have been studied by econo-
mists in experiments with human beings. [4] has conducted

1 http://en.wikipedia.org/wiki/Experimental economics

experiments in United States and Japan aiming to study the
voluntary participation in the public goods. The work claims
that japanese are more likely to act spitefully which leads to
more efficient contributions when compared with American
subjects.

Other experimental results from [5] show that in institu-
tions, i.e., group of people interacting according to the public
good game are more competitive when punishments among
the participants are adopted, i.e., sanctioning institutions are
more efficient. Group size effects are also studied in the provi-
sion of public good via experiments of voluntary contributions
[6] which shows that a group’s ability to provide the optimal
level of a public good is not inversely proportional to group
size as expected previously by premises.

Alternatively, computational and analytical results can also
give some understanding of important properties of public
goods game. In our previous contributions [7–9], a version of
this game with a binary motivation parameter was introduced
to lead the investment among the players where the return per
agent is calculated according to

Ri(t) =
(a+br)

L

L

∑
k=1

[
σk(t)+h(ρ(k)(t)−1/2)

]

−
[

σi(t)+h(ρ(k)(t)−1/2)
]

, (1)

where

ρ(k)(t) =
1

∑L
j=1 Ak j

L

∑
j=1

σ j(t)Ak j (2)

Here the formula are defined for any directed graph. Ai j,
i, j = 1, ...,L is the adjacency matrix of the graph and we as-
sume that there is only one player in each node. The return is



Roberto da Silva 75

governed by two parameters: one is deterministic and is de-
noted by a and the other is non-deterministic, which stands for
the noise which amplitude is b since r is an uniform random
variable distributed in [−1,1]. Each player is characterized by
its motivation level, a variable initially defined as σi ∈ {0,1}:
the players are motivated or unmotivated.

Each player k = 1, ...,L invests a quantity Sk = σk +h(ρ(k)−
1/2) where the investment is a function of the individual moti-
vation σk and the motivation of the neighborhood represented
by the function h(ρ(k) − 1/2). This neighborhood influence
assumes the values 0,1 or 2 respectively if ρ(k) is smaller than
1/2, exactly 1/2 and higher than 1/2, where the quantity ρ(k)

corresponds to density of motivation of the neighborhood of
the player k.

A first original contribution of this communication is to ex-
tend some of the explored results in other contributions by the
same author of this manuscript and collaborators. In this pa-
per, I obtained new results for the game in one dimensional
lattices, small worlds and in the complete graph under mean
field approximation. We have introduced a new alternative re-
turn function that considers a continuous contribution of the
neighborhood. Basically, we replaced h(ρ(k) −1/2) by ρ(k)in
1:

RC
i (t) =

(a+br)
L

L

∑
k=1

[
σk(t)+ρ(k)(t)

]
−

[
σi(t)+ρ(i)(t)

]

(3)
More precisely we have studied the effects of this continu-

ous influence in diagrams a×ρ0, when the noise is off (b = 0)
for different networks. In these diagrams, for each pair (a,ρ0)
is attributed a symbolic value corresponding to the kind of be-
havior of ρ(t) for long times (for the symmetry of the problem
just 3 possible behaviors are observed in the 2-state motivation
model). In our model, the evolutionary aspect comes from the
update of the motivation to be performed according to the re-
turn achieved by each player. The return function as exposed
in the equation 3 is particularly important in small world net-
works (SW) because in this case the survival probability is
strongly dependent of p as we will see in the future sections.

We also explore in this contribution a dynamics for evolu-
tion of the density considering the update of motivation ac-
cording to the return of neighbors prescribed by Boltzmann
weights (Gibbs sampling dynamics). In this case we extended
the granularity of motivation, i.e., σi ∈ {0,1, ...,q−1}. Plots
of the density of motivation as a function of time for different
values of noise and different values of q were performed.

Our manuscript is organized as follows: in the section II we
present a brief overview about the model. Section III exposes
a novel dynamics based on Gibbs sampling dynamics. In the
section IV we present the diagrams a× ρ0 that describe all
possible behaviors of the density of motivation as function of
time for all possible values of a starting from a initial density
ρ0. We have built a program that discover all possible ”pat-
terns” for ρ evolving along time. We compare the diagrams
using the two return functions (equations 1 and 3) here pro-
posed. In the section V we present the results for the model
in two dimensions. And last but not least, we present some

conclusions of our results in the section VI.

II. THE MODEL AND PREVIOUS WORKS

We consider L agents in the context of public good game,
where each agent can invest a particular quantity Si. Agents
invest cooperatively, i.e., the average profit of the group influ-
ences the investment motivation level of each agent, modelled
by a binary variable σi ∈ {0,1} (σi = 1 means an agent is mo-
tivated while σi = 0 means it is not). This abstraction aims
at capturing issues such as insider information and economic
prospects as perceived by agents.

We update the motivation at each time step by the profit rate
gk(t):

σk(t +1) =




1
2 (1+ Rk(t)

|Rk(t)| ) if Rk(t) �= 0

0 otherwise
(4)

This update is based on a simple principle: an agent’s
wealth relies on the wealth of the group. However, since
agents are autonomous and there is room for cheating, we
end up with two kinds of situations: one in which everyone
is cooperative, and another where different types of individual
behaviors are simulated.

Our previous work [7] has explored a particular one di-
mensional lattice (1DP) with periodic boundary conditions
(σ0 = σL). For this particular contribution, the investment of
player i depends only of the motivation of the player in the
left (σi−1) and its proper motivation (σi) that are added, i.e.,
Si = σi +σi−1 which assumes values in {0,1,2}. In this case,
we concluded (see [7]) that this dynamical system can be seen
as a kind of cellular automata (CA) and we proved that the
long-time behavior for the density of motivation is an oscilla-
tion between two positive values (ρ1 → ρ2 → ρ1 → ρ2...) or
the system goes to the fixed points ρ → 0 or ρ → 1.

FIG. 1: Left plot: Phase diagram for the game in the case b = 0 for
1DP (analytical results). Right plot: Computing simulations corre-
sponding to 1DP.

More precisely, the system is divided in three regions in
the diagram a× ρ0, as can be seen in the Fig. 1: Region I
represents the situation where the system is attracted to an os-
cillatory behavior, except for ρ0 = 1 or 0. In these two cases,
the system is attracted to the fixed point ρ = 0. In region II,
the system is either attracted to ρ = 1 or oscillates between
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two densities (no other situation can be observed). In region
III, the system is always attracted to ρ = 1. However, the an-
alytical results are not precise enough to say where exactly in
the region II the system goes to oscillatory case and where the
system goes to 1. In the next section, we will show simula-
tions that explain this indetermination.

The same model was initially explored in small world net-
works [8] also just for the profit function of equation 1. In
this case, simulations were performed changing the influence
of randomness of the small world (p) on the probability of a
particular player to reach the bankruptcy, i.e., different power
laws are observed for this probability as a function of the time.
Finally the case of complete graph (the player interacts with
all other players in the limit L → ∞) has been studied by the
author and collaborators in other contribution [9]. The authors
analytically proved that the density just can assume four val-
ues ρ0, 1−ρ0, 0 and 1 and for any region of diagram (a,b), a
four states Markov chain describes the equilibrium states for
density of motivation.

In the next section we present a novel dynamics that will be
applied for simulations of the model in two dimensions.

III. A MODIFIED GIBBS SAMPLING FOR EVOLVING
THE PUBLIC GOOD GAME ON GRAPHS

In this part we propose a new dynamics for the public goods
game to explore some other interesting evolutionary aspects
alternatively to updating rules based on 4. First of all we ex-
tended the possibilities of motivation, which now it is a q-state
variable: σi assumes values in {0,1, ...,q−1}.

An interesting evolutionary dynamics in the public good
game can be simply based on the return of all neighbors. For
updating its motivation the player copies the motivation of one
of the neighbors giving higher probability as much higher as
is its return. A natural choice is a sampling process known
as Gibbs sampling or heath bath algorithm that prescribes a
transition probability between two motivation level as:

Pr(σi → σ j; t) =
Ai j exp[G j(t)/T ]

∑n
k=1 Aik exp[Gk(t)/T ]

. (5)

where G j(t) is the return function (in this manuscript Ri(t)
or RC

i (t)) and T is an expansion parameter of the model that
mimics the temperature in a magnetic model.

However, the use of these probabilities as so nullifies the
effects of a and b since these probabilities are invariant over
changes of a and b for both return functions used in this pa-
per as can be easily seen. To solve this problem we added
a extra rule in dynamics that considers only neighbors with
positive return function for the sampling, reestablishing the
dependency on parameters a and b. In this case the formula 5
is rewritten as

Mod
Pr (σi → σ j; t) =

Ai j f (G j)exp[G j/T ]
∑n

k=1 Aik f (Gk)exp[Gk(t)/T ]
(6)

where f (G j) = 1 if G j ≥ 0 and f (G j) = 0 elsewhere.

In the section V we will show simulations of density of mo-
tivation based on the dynamics here described. We have stud-
ied the influence of noise, number of motivation levels (q) and
temperature in the public good game in two dimensions.

IV. RESULTS I: COMPARING PHASE DIAGRAMS
UNDER DIFFERENT PROFIT FUNCTIONS

We performed numerical simulations to build diagrams de-
scribing all possible evolutions starting from an initial config-
uration with density ρ0 = 1/L∑L

i=1 σi(0) for each parameter
a in absence of noise (b = 0). Here, it is considered a binary
motivation level (σi ∈ {0,1}) and for a suitable comparison,
both return functions (see equations 1 and 3) were used.

In these conditions, the graphs studied in this manuscript
presented 3 distinct behaviors: (1) the system goes to oscil-
latory behavior between two densities ρ1 and ρ2 or (2) all
players become motivated ρ → 1 or all players become un-
motivated ρ → 0.

A simplified version of the algorithm used to build these
diagrams is shown in the table I. This algorithm attributes
ρ∞ = 0 for the case which all players remain unmotivated
at t → ∞ , ρ∞ = 1 when they remain motivated t → ∞ and
ρ∞ = 1/2 for oscillatory behavior at long times (here the attri-
bution is symbolical). A threshold nrep is employed to recog-
nize a ”pattern” of ρ∞ = 1 (a robust sequence of 1’s) because
for the recognition of ρ∞ = 0 is necessary just to find the first
occurrence ρ = 0 and complementarily ρ∞ = 1/2 is assumed
when none of the two first situations occur. In the Fig. 1 (right
side) we show computing experiments that complete the lacks
from theoretical predictions for 1DP (left side in the same fig-
ure). In the region II, we now can see clearly where is the
region corresponding to ρ = 1 and where the oscillatory be-
havior happens. The theoretical predictions [7] have claimed
coexistence of these two behaviors in the region I, but it does
not state anything about its partition. Clearly the most part
is in oscillatory behavior since the dark gray corresponds to
phase ρ = 0, the light gray to the oscillatory behavior while
the gray corresponds to phase ρ = 1.

FIG. 2: Left plot: Diagram a × ρ0 for the ρ(t → ∞) in the one-
dimensional public good game using the return function from equa-
tion 1 Right plot: The same plot of left plot considering the alterna-
tive return function (eq.3).

We also study the one-dimensional lattice (under bound-
ary periodic conditions) when each player interacts with its
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Pseudocode: Diagram a×ρ0

input: amin,amax,ρmin,ρmax,∆a,∆ρ0,nmc,L, [Ai j]i, j=1,...,L,nrep

output: ρ∞(a,ρ0)
1 for a from amin by ∆a to amax

2 for ρ0 from ρmin by ∆ρ0 to ρmax

3 · Generate a network with density ρ0

4 j = 1;
5 while ( ( j < nmc).and.(ρ( j) �= 0) ) then
6 · Compute Ri( j) for all players (i = 1, ...,L);
7 · Update the motivation level : σi( j) = (1/2)(1+Ri( j)/ |Ri( j)|);
8 · Store the density of motivated players ρ( j) and j = j +1;
9 endfor
10 count0 = 0; count1 = 0; count1/2 = 0;

11 if (ρ( j) = 0) then
12 count0 = nrep;
13 else
14 count1 = 1; j = 1;
15 while ( count1 < nrep) then
16 j := j +1; α := ρ( j−1)+ρ( j); count1 := δα,2 · (1+ count1);
17 endwhile
18 endif
20 if (count0 = nrep) then
21 ρ∞ = 0;
22 else
23 If (count1 = nrep) then ρ∞ = 1;else ρ∞ = 1/2;endif
24 endif
25 print (a,ρ0,ρ∞)
26 endfor
27 endfor
28 end

TABLE I: Algorithm

two nearest neighbors. We elaborate two diagrams consid-
ering for each one of them a different return function: Ri(t)
(Si ∈ {0,1,2,3}) and RC

i (t) (Si ∈ {0,1,3/2,2}), respectively
shown in the left and right side plots of the Fig. 2. In the left
plot, we can note the arising of the one new ”sawtooth” inside
of oscillatory behavior region (region II from the Fig. 1). Sur-
prisingly, when the return function RC

i (t) is used (right plot of
2), two smaller sawtooth appear.

The problem becomes more interesting if we consider time
evolving in small world networks. For the sake of simplic-
ity we consider in this paper small world networks generated
from rings with nearest first and second neighbors (k = 2).
First of all, we performed many simulations to test the influ-
ence of the different initial small worlds generated with same
p on the diagrams a× ρ0. Although we found the results to
be highly sensible to different p values, the diagrams a×ρ0
remain qualitatively unchangeable under different initial con-
figurations of small worlds with the same p. After this check,
we perform simulations changing the value of p. In the Fig. 3,
we can see the different diagrams for different values of p. It

was used p = 0, 0.5 and 1 for building the diagrams. The left
plots were obtained using Ri(t) and the right plots using the
return function RC

i (t). It is particularly interesting the effects
for the second return function.

For instance, if p = 0.5, a lot of dark gray regions (no mo-
tivation regions) emerge in the diagram, differently from the
plot using Ri(t). This behavior motivated us to study the den-
sity of dark gray in an effective region of the diagram a×ρ0.
More precisely we are interested in the complement of this
amount, that in our problem can be interpreted as the survival
probability of pro-social behavior:

Pr(ρ → 0|p) = 1− 1
N

n(ρ → 0|p),

where n(ρ → 0|p) is the number of points (a,ρ0) such that
ρ → 0 given a small world with parameter p and N points
on the grid [amin,amax]× [ρmin,ρmax]. For our experiments,
∆a = 0.025 and ∆ρ0 = 0.025 were used as well as amin =
ρmin = 0 and amax = 2 and ρmax = 1, resulting in N = 3200
points. A plot of Pr(ρ → 0|p) as function of p can be seen in
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FIG. 3: The plots in the left side shows different diagrams for the
different small worlds, respectively (from top to bottom) p = 0, p =
0.5 and p = 1 using 1. The right side plots corresponds to the same
plots from return function RC

i (t).

the Fig. 4 (10 p values were simulated). A convex behavior
as function of p is observed for the probability of the popu-
lation to remain motivated when t → ∞. A minimum for this
probability happens when p ∼ 0.6, indicating less pro-social
behavior in intermediate small worlds.

It is important to mention that we also simulated under the
same conditions b = 0 and using binary motivation level, the
diagrams a×ρ0 for the model in two dimensions using lattices
50× 50 and both return functions here defined. The results
found were highly similar to the case of a small world when
p = 0 (see again the two plots on the top of the Fig. 3) and for
this reason were not shown in this paper.

We also explore some simulations for the case where a
player interacts with all players in a complete graph (Ai j = 1
for all i, j = 1, ...,L) under mean field approximation ρ(t) =
limL→∞(1/L)∑L

i=1 σi(t). In this case the possibilities are re-
duced to four state of densities, since the population starts in
ρ(0) = ρ0, ρ(t) just will assume values in {0,ρ0,1− ρ0,1}.
No other possibility can occur because players in the same
state can only change to the same state (for a extensive analy-
sis of mean field approximation for this model, using the profit
function 1 see [9]).

We have also compared the effects of two return functions

FIG. 4: Survival probability of motivation, Pr(ρ → 0|p) as function
of disorder p in the small world network.

for the complete graph under mean field behavior. For that,
a graph with L = 105 points was used. In the Fig. 5, the left
side plot shows the diagram for return function Ri(t). The
straight lines comes from analytical results (see [9]) and are
ρ = 7/2 − (5/2)a, ρ = (5/2)(a − 1), ρ = (15/4)(a − 2/3)
and ρ = (7/2)− (15/4)a. We can observe that our numer-
ical simulations corroborate the analytical predictions. Cu-
riously, when we use the return function from equation 3
the region corresponding to ρ → 0 was reduced and the re-
gion corresponding to the oscillatory behavior enlarged. The
region of oscillatory behavior before determined by straight
lines ρ = 7/2− (5/2)a and ρ = (5/2)(a− 1) in the right is
now determined by functions ρ = a−1.75 and ρ = 1− a−1.75

respectively, which were numerically adjusted.

FIG. 5: Diagram a×ρ0 for the complete graph (mean field approxi-
mation). The left plot corresponds to the first return function and the
right plot to second one.

In the next section we present results for the model in two
dimensions. A novel dynamics developed in the section III is
now applied for the game in two dimensions. A time-analysis
of density of motivation was studied looking noise effects and
motivation for more than two levels.
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V. RESULTS II: MONTE CARLO SIMULATIONS FOR
THE TWO DIMENSIONAL MODEL

The noise effects (b �= 0) can highly influence the density of
states in function of the time and performing simulations with
a large number of repetitions is more interesting in this case.
Looking for the model in two dimensions but still in two-level
motivation, simulations were performed using only dynamics
explored until now, which the updating is given according to
the equation 4. In this case only the return function RC

i (t) was
used.

Considering a nsample = 1000 repetitions in a system 50×
50, we analyzed time evolving of ρ(t) considering 〈ρ0〉= 1/2.
In the Fig.6 are presented 4 plots, the three first corresponding
to b = 0.15, b = 0.30, b = 0.50 respectively and the last plot
in this same figure shows two cases: b = 0.75 and b = 0.90.
For all plots we consider a = 1, which is exactly the border
line between profit and financial damage.

FIG. 6: Time evolution of density of motivation averaged over
nsample = 1000 for different values of noise keeping a = 1.

We can observe that lower values of noise b = 0.15 and
b = 0.30 shows that in the most of repetitions the system goes
to an oscillatory behavior when t →∞ (ρ1 → ρ2 → ρ1 → ρ2...)
with ρ1 and ρ2 being different for different runs. In some of
the runs ρ → 0 or ρ → 1 can occurs, justifying the interesting
behavior observed in the plot.

Finally for an intermediate value the model presents a sat-
uration phenomena in the density of motivation as can be ob-
served for b = 0.50. For higher values of b we finally arrive
on a power law behavior when b = 0.75, ρ(t) ∼ t−θ where
θ = 0.335(3). After setting b = 0.90 an exponential tail is
observed.

Here we test the approach developed in the section III for
the two dimensional public good game. First of all we test
the modified Gibbs sampling procedure fixing T = 103(β =
10−3) for the same nsample = 1000, but now using a = 2 and

b = 0, changing the number of motivation levels (q)1, as can
be observed in the Fig. 7.

FIG. 7: Monte Carlo simulations of public good game in two di-
mensions using the modified Gibbs sampling. This figure shows the
effects of the number of motivation states in time evolving of the
density of motivation. For all cases, a = 2 and b = 0 were used .

The inside plot in this same figure shows particularly the
case q = 3, that notoriously present a power law behavior dis-
carding the initial 50 MCsteps. We found θ = 0.433(2).

Last but not least a complete analysis we study the noise
and temperature effects on the two dimensional simulations
using the modified gibbs sampling dynamics.

FIG. 8: This figure shows the noise effects (left plot) and temperature
effects (right plot) in the density of motivated players using the Gibbs
sampling dynamics.

Considering here also the parameters a = 2 and b = 0 we
can see the noise effects (left side plot) and temperature effects
(right side plot) in the Fig. 8. Both plots show that the system
is highly sensible to these parameters, changing the density of
motivation as a function of the time. In these plots we used
q = 3.

VI. CONCLUSIONS

We have analyzed in this contribution a new way to explain
how the pro-social behavior can emerge in an artificial soci-

1 Here the density of motivation is normalized: ρ(t) = (qL)−1 ∑L
i=1 σi(t)
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ety based in a known game from experimental economics:
the public good game. To model this behavior a motivation
variable was introduced, based on previous contributions of
the same author of this manuscript. This motivation initially
imagined a binary variable which corresponds to the player
being motivated or not, and is updated according to a return
function. The investment in the public good is obtained ac-
cording to combinations of motivations among neighbor play-
ers and an analysis of different graphs is performed. Our
first contribution was to perform a comparative analysis of
diagrams for the motivation average behavior at long times
starting from a graph with different initial values of density of
the motivated players, ρ0, and different values of determinis-
tic return parameter a. We introduced a new return function
that directly considers the motivation average of the neigh-
borhood. A comparison with the return function of previous
works was performed. In small world networks our results
shows the survival probability of the pro-social behavior has

its lowest value in small worlds with p ∼ 0.6.
Finally we have introduced a evolutionary dynamics to ex-

plore the game in the two dimensional lattice. In this case we
analyzed the model considering the motivation with more pos-
sibilities (q−states motivation). The motivation change of a
player follows a modified Gibbs sampling prescription which
establishes higher probability of copying the motivation of the
neighbor with higher payoff – discarding the negative ones.
Our results show a strong dependence of density of motiva-
tion with q and b (the noise amplitude of the return).
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