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We investigate the learning of a rule from examples of the case of boolean perceptron.
Previous studies of this problem have been made using the full quenched theory. We consider
here two alternative approaches that can be applied easily. The two-replicas interactions
approach considerably improves upon the well-known �rst-order approach. The mean �eld
approach proved some results that have been obtained previously using the complex full
quenched theory. Both approximations have been applied to both continuous weights and
discrete weights perceptron.

I Introduction

The replica formulation of the statistical mechanics of

disordered systems has become a major research tool

in the study of complex systems [1]. In recent years,

the learning from examples in feedforward neural net-

works has been exhaustively studied in the framework

of statistical mechanics [2, 3, 4, 5]. In this �eld, the

replica trick (RT) has become a very useful tool for the

investigation of learning and generalization processes in

neural networks. The popularity of the replica method

is based mainly on the elegance and simplicity of the

formulation of the so-called quenched theory.

In the context of learning in single-layer feedfor-

ward neural networks, the full quenched theory has

been applied successfully within the framework of the

replica symmetry (RS) and one-step replica symmetry

breaking[4, 6, 7]. However, it is possible to extract

some information in a simpler way, borrowing tech-

niques from other �elds of physics and applying them to

the replicated Hamiltonian. Recent studies using high-

temperature limit approximation and annealed approx-

imation have been developed and applied to feedfor-

ward neural networks. These approaches are able to

predict the right behavior in some cases, but cannot

introduce the disorder e�ects produced by the random-

ness of the examples. These e�ects become essential

with decreasing temperature.

In the present e�ort we wish to study the gener-

alization process in the perceptron with boolean out-

put, the so-called boolean perceptron (BP), using two

di�erent approximations: two-replicas approximation

(TRA) obtained by recourse of a pertubative expan-

sion, and mean �eld approximation (MFA). Our results

can be extended to a perceptron with linear output.

We consider learning by a single-layered percep-

tron [8] within a statistical mechanics environment

[9, 10, 11]. Our neural network (NN) has N input units

Si connected to a single output unit �, whose state is

given by � (S;W) = g
�
N�1W � S�, where g (x) is the

transfer function. For each set W of weights, the NN

maps S onto �. Learning is said to take place whenever

the Wi are chosen so that � closely approaches the de-

sired, correct map �0 (S) = g
�
N�1W0�S

�
. Within the

supervised learning scheme [12] one reaches this goal by

recourse to a cost function that is constructed on the ba-

sis of P examples fSl; �0
�
Sl
�g with l = 1; : : : ; P: Here

we assume that the inputs Sl are randomly selected ac-

cording to probabilitiesD (S), (we have considered here

a Gaussian distribution) from the input spaces.

The learning process has been regarded as a stochas-

tic dynamics, associated to the minimization of an en-

ergy function Et, where the NN weights evolve accord-

ing to a Langevin-like relaxation prescription that leads

to a Gibbsian probability distribution for the weights

[13, 1, 14]

P (W) = Z�1 exp[��Et (W)]; (1)
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with � = 1=T and T a \temperature" characterizing

the noise level in the learning process. The normaliza-

tion factor Z is the partition function. The training

energy Et is de�ned by

Et (W) =

PX
l=1

�
�
W;Sl

�
; (2)

where � (W;S) is the mistake function, a measure

of the deviation between actual and correct out-

puts. Here we focus our attention upon percep-

trons with binary output, for which � (W;S) =

�
��N�1=2 (W � S) (W0 � S)

�
, � stands for the Heavi-

side function.

The remainder of the paper is organized as follows:

Section II is devoted to a brief recapitulation of basic

concepts concerning the replica formulation in the BP.

The two approximations that interests us here (TRA

and MFA), are derived in Section III. The thermody-

namics of the BP, with Ising weights and continuous

weights, are analyzed in Section IV. Finally, some con-

clusions are drawn in Section V.

II The Replica Method

The energy of the systems depends upon the particular

training examples selected. Therefore, the associated

\macroscopic" observables are evaluated by a double

averaging procedure involving two spaces: thermal av-

erage over the weight space with probability distribu-

tion P (W), to be denoted by h:::iT and a so-called

\quenched average" over all possible inputs, to be rep-

resented by � ::: �� R Q
l d�(S

l), where d�(Sl) is

some measure. Here we are using the standard Gaus-

sian measure: d�(S) = D (S) dS.

The NN free energy F is given in terms of the latter

type of average by

F (T; P ) = �T � lnZ �; (3)

where

Z =

Z
dW exp[��Et (W)]: (4)

The NN performance over the space of examples

is characterized by the average generalization error �g,

while the performance related to the training set is

given by the average training error �t, i.e.

�g (T; P ) = � h" (W)iT �; (5)

�t (T; P ) = P�1 � hEt (W)iT � : (6)

where " (W) =
R
d�(S)� (W;S) is the generalization

function. Graphs of either �g (T; P ) and �t (T; P ) ver-

sus � = P=N are called learning curves.

The RT is the usual tool employed to evaluate the

average over the examples [13, 14], and it originated

within the context of spin glasses [15, 16]. The RT is

recommended whenever it is feasible to evaluate aver-

ages of Z, but not the ones for lnZ. The RT exploits

the identity

� lnZ �= lim
n!0

n�1 ln� Zn �; (7)

where Zn can be regarded as the partition function of

n identical non-interacting systems, copies of the orig-

inal one. They are identi�ed by the label 
 = 1; ::::; n.

In performing the averaging process over the examples,

coupling arises between the distinct copies.

From (3), (4) and (7) the free energy F becomes

c

F = ���1 lim
n!0

1

n
ln

Z nY

=1

dW
 exp [�N�H (W
)] ; (8)

where the replicated Hamiltonian H is an intensive quantity that does not depend upon the number of examples

N , and it is given by

H (W
) = � ln

Z
D (S) dS exp

"
��

nX

=1

� (W
 ;S)

#
: (9)

The evaluation of H in the boolean perceptron is standard by now [4], so we present the results only

H (R
 ; Q
�) = � ln

Z nY



dbx
dx

2�

Z
dbydy
2�

exp

"
��

nX

=1

� (�x
 y) + i

nX



bx
x
 + ibyy#



� exp

0@�1

2

nX

;�

bx
bx�Q
� � by nX



bx
R
 � 1

2
by2
1A (10)

This replicated Hamiltonian depends on the weights through the order parameters R
 and Q
� given by

R
 = N�1W
 �W0; Q
� = N�1W
 �W�: (11)

Since H (R
 ; Q
�) depends on the weights only through parameters R
 and Q
� above de�ned, the replicated

partition function can be written as an integral over these order parameter introducing auxiliary parameters

� Zn �=

Z nY



dR
d bR


2�i

Z nY

<�

dQ
�d bQ
�

2�i
exp [N (S � �H)] ;

where

S
�
R
 ; Q
�; bR
 ; bQ
�

�
= �

nX



bR
R
 �
nX


<�

bQ
�Q
� + (12)

N�1 ln

Z nY



d� (W
) exp

24N
0@ nX




bR
R
 �
nX


<�

bQ
�Q
�

1A35 ;
is the logarithm of the density of replicated networks with the overlaps R
 and Q
�.

In the thermodynamical limit N !1 the integral (8) receives an overwhelming contribution from the minimum

of the variables R
 and Q
�.

Here some physical reasoning is needed in order to simplify things. Since the replicas have no a priori physical

meaning, it is reasonable to assume that all replicas have the same overlap with the teacher NN and that, further, the

overlaps between two of them are symmetric under permutation of the replica indices. This assumption constitutes

the RS ansatz. Therefore, we have

Q
� = �
� + (1� �
�) q;

R
 = R: (13)

Using the substitutions for R
 and Q
� (in a similar way for bR
 and bQ
�) in (10) and performing the integrals

over bx
 and by
 , and then evaluating the limit n! 0, the training error for the boolean perceptron takes the form

�t (R; q) = �2�
Z
1

0

Dy

Z
1

�1

Dt ln

"
e�� +

�
1� e��

� 1
2

"
1� erf

 
t
p
q �R2 � yRp
2 (1� q)

!##
; (14)

d
where Dy = 1=

p
2�e�y

2=2dy and erf (x) is the stan-

dard error function. The thermodynamical study of the

problem would involve a considerable e�ort, so it should

be useful to study a simpler approach. Borrowing ideas

from other �elds of physics we consider two approxi-

mations. Of course, we pay the customary price: the

approximation is valid just for some appropiate range

of �:

III Two approximation for BP

A. Two-replica approximation

It is our goal here to introduce a perturbative treat-

ment that enables one to incorporate the disorder ef-

fects produced by the randomness in the examples. We

shall consider an expansion of H given by (9) in powers



of � and then consider the Hamiltonian that incorpo-

rates the two-replica interactions [17]

H [W
 ] = �H1 +
1

2
�2H2 +O

�
�3
�
; (15)

with

H1 =

Z
D (S) dS� (W;S) ; (16)

H1 represents the \non-random" part of the training

energy, and coincides with the generalization function

" (W), which depends only upon the overlap R, for a

BP is given by 1=� cos�1 (R) [4, 5]. On the other hand,

H2 represent two-replica coupling arising from the ran-

domness of the training examples. When T diminishes,

this coupling becomes more and more important so that

one needs to consider H2 contributions. One has

c

H2 = e (W
) e (W�)�
Z

D (S) dS� (W
 ;S) � (W�;S) : (17)

d
Of course, higher order terms in � are associated

with three-replica coupling, four-replica ones and so on.

Replicas can be regarded as particles with N degrees of

freedom. The �rst term in (15) describes the coupling

of the particles with an external �eld, while the second

one represents two-particle interactions via an e�ective

potential depending upon the Hamming distance be-

tween the replicas.

The H2 contributions lead to consideration of the

integral of correlation

C (R
 ; Q
�) =

Z
D (S) dS� (W
 ;S) � (W�;S) : (18)

In second order, the replicated Hamiltonian in TRA for

the BP reads (see details in the Appendix)

HTR =
�

�

nX



cos�1 (R
)� �2

2

nX

�

C (R
 ; Q
�) ; (19)

where second-order terms in the total number of repli-

cas n have been eliminated. The relevant parameter

here is Q
�, which does not appear at high temperature

limits. The temperature T is associated with a coupling

constant. It is reasonable to expect our expansion to

yield an adequate treatment for T > 1. Using the RS

approximation for R
 , Q
�, bR
 and bQ
�, passing to the

limit n! 0, we are in a position to write

f = ��t � Ts; (20)

where

c

�t =
1

�
cos�1 (R)� �

4�

 
�

2
� tan�1

 
qp

1� q2

!!
; (21)

s =
1

2
(q � 1) bq �R bR+

Z
Dz ln

Z
d� (W) exp

h
W �

�pbqz+W0
bR�i : (22)

d
B. Mean �eld approximation

In some cases, the coupling between replicas pro-

duces only minor changes in the learning curves and

the phase diagrams. In other cases, such terms can

lead to the appearance of qualitalively di�erent phases

at low temperatures. These phases are conveniently

described by the properties of the matrix Q
� which

measures the overlap of the weights of two copies of the

systems. Since the replicated Hamiltonian is invariant

under permutation of the replica indices, one naively



would expect that Q
� = q for all 
 6= �, where q is

given by

q = N�1 � hWiT � hWiT � :

This characterizes the typical overlap of the solutions

to the constraints posed by the examples. As � in-

creases, more and more correlations are to be found

between the di�erent solutions, and q approaches unity.

For � = �cr, we have q = 1 and the concomitant de-

generation is broken. This parameter is known as the

Edward-Anderson parameter in spin glass theory, and

re
ects the degeneracy of the ground states. On the

other hand, the expected value of the overlap with the

teacher is given by R = N�1 � hWiT � �W0. Keep-

ing this correspondence in mind, we are interested in

considering an approximation like mean �eld theory.

We substitute q = R2 in (14), and the training error in

MFA becomes

c

�t = �2�
Z 0

�1

Dy ln

"
e�� +

�
1� e��

� 1
2

"
1� erf

 
y Rp

2 (1�R2)

!##
: (23)

d
We can see that this approximation takes into account

the degeneration of the ground states because it pre-

serves the structure of the matrix Q
� within the frame-

work of the replica symmetry.

IV Analysis of the Results

A. Ising-weights perceptron

Now, evaluation of the expression (22) using the ad-

equate constraint over weights space becomes manda-

tory. First we consider a BP with Ising weights. In

this case, the adequate a priori measure of the weights

is d� (W) =
Q

i dWi [� (Wi � 1) + � (Wi + 1)] and the

expression (22) becomes

c

s = �1

2
(1� q) bq �R bR+

Z
Dz ln 2 cosh

h�pbqz + bR�i : (24)

The free energy function in TRA is given by (20) with �t and s given by (21) and (24), respectively. Extremalizing

the free energy with respect to the parameters R; bR; q and bq and eliminating bR and bq, we obtain the pertinent saddle
point equations

R =

Z
Dz tanh

 s
�2�

2�

1p
1� q2

z +
��

�

1p
1�R2

!

q =

Z
Dz tanh 2

 s
�2�

2�

1p
1� q2

z +
��

�

1p
1�R2

!
: (25)

d
In the limit � ! 0, we recover the high temperature

results, with the mean �eld ansatz q = R2, as a bonus.

This relationship cannot be obtained in the �rst-order

treatment, as it does not involve the parameter q. This

result indicates that the mean �eld relationship is exact

in the high temperature limit.

On the other hand, since the MFA Hamiltonian de-

pends only on the overlap R, the free energy function

is given (20) where �t is now given by (23), and s is the

logarithm of the density of the perceptrons with overlap



R, given by

S (R) = �R bR+ ln 2 cosh bR (26)

The corresponding saddle point equation is obtained

extremalizing with respect to the variables R and bR.
Eliminating bR we obtain the thermodynamical equilib-

rium state

R = tanh

"
2�
�
e� � 1

�
� (e� + 1)

p
1�R2

#
(27)

Figure 1. Phase diagram obtained with TRA and with
MFA. The full lines correspond to TRA and the dashed
lines to MFA. Thermodynamical (Th.) and spinodal (Sp.)
curves has been indicated.

Both equations (25) and (27) describe the �rst-order

transition from a state with poor generalization to a

state perfect generalization with R = 1. Fig. 1 de-

picts the phase diagrams for both approximations. At

any �xed T , to left of thermodynamic transition line

(� < �th) there are two solutions, one with R = 1,

and one with R < 1. The state of poor generaliza-

tion (R < 1) is the equilibrium state, while the state

of perfect generalization (R = 1) is metastable. In the

region between the thermodynamic transition line and

the spinodal line (�rst-order transition), the situation

reverses, with R = 1 becoming the equilibrium state,

and R < 1 the metastable state. To right of spin-

odal line (when � > �sp), there is only one solution

with R = 1, there is no metastable state in this phase.

Anomalies in the phase diagram arise at low tempera-

tures (T = 0:5), which is an e�ect of the approxima-

tion in the TRA. The phases of poor generalization,

metastable, and perfect generalization are in indicated

in the Fig.1 with I, II, and III, respectively.

The training errors in TRA are given by (21), while

in MFA by (23). On the other hand, the generalization

error is given by �g = 1=� cos�1 (R). Fig. 2 displays

the learning curves for both approximations.

Some features of our approach deserve particular

mention. In Fig. 2, the spinodal transition at T = 1

takes place at �sp = 2:25 in MFA. While in TRA the

spinodal transition takes place at �sp = 2:95, which

agrees with the more elaborate complete quenched the-

ory (CQT) [4]. Our results considerably improve upon

the �rst-order approximation, for which �sp = 2:08. In

addition, unlike high temperature limit approximation,

�t and �g are di�erent in both TRA and MFA.
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Figure 2. Learning curves for the Ising perceptron computed
with TRA, MFA, and complete quenched theory (CQT) at
T = 1. The full lines correspond to the generalization errors,
the dashed lines correspond to the training errors.

B. Spherical-weights perceptron

Now, we derive the equilibrium properties for the

BP with spherical weights. In this case, the evaluation

is somewhat more complicated. We write the a priori

distribution as

c

d� (W) =

NY
i=1

dWip
2�e

Z i1

�i1

d�

2�i
exp [� (W �W�N)] ; (28)

and the entropy (22) is now given by

s = �1

2
+

1

2
�+

1

2
qbq �R bR� 1

2
ln (bq + �) +

1

2

bR2 + bqbq + �
: (29)



The additional parameter is the Lagrange multiplier as-

sociated with the spherical constraint. Following the

basic ideas presented in the previous sections, we de-

rive the equilibrium states by extremalization of the

free energy (where the entropy is given now by (29))

with respect to the parameters R; bR; q; bq and �. Elimi-

nating bR; bq, and � we obtain the pertinent saddle point

equations for the TRA

R =
�� (1� q)

�
p
1�R2

; (30)

q =
��2

�

"
(1� q)

2

2
p
1� q2

+
� (1� q)

2

� (1�R2)

#
:

In the limit � ! 0 the parameter q is zero. This result

indicates that the coupling between replicas in the per-

ceptrons with spherical weights is weaker than in the

case with Ising weights.

Similarly, the free energy function in the MFA can

be written as (20) where �t is given by (23) and the en-

tropy can be computed as the fraction of the weight

space with an overlap R, which is simply the vol-

ume of the (N � 2)-dimensional sphere with radiusp
1�R2. In the thermodynamical limit we have s =

1=2 ln
�
1�R2

�
, and the thermodynamical equilibrium

is given by the concomitant saddle point equation

R =
1r

1 +
�

�(e�+1)
2�(e��1)

�2 : (31)

Unlike the Ising-weights perceptron, the equations

(30) and (31) do not manifest transition to perfect

learning at any T and � values. The learning curves fall

with a 1=� tail for all T , in agreement with the correct

power law. The asymptotic behavior of the generaliza-

tion error in MFA is

�g (�; �) =

�
e� + 1

�
2 (e� � 1)

��1 +O
�
��2

�
:

Note that at T = 0 the prefactor is 0:5, slightly infe-

rior to the correct prefactor 0:625, while the annealed

approximation predicts 1.

The training error and the generalization error are

displayed in Fig. 3 at T = 1 for both approximations.
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Figure 3. Learning curves for the Ising perceptron computed
with TRA, MFA, and complete quenched theory (CQT) at
T = 1. The full lines correspond to the generalization errors,
the dashed lines correspond to the training errors.

V Conclusions

We have presented two approximations for the boolean

perceptron. These approaches introduce, in di�erents

way, the disorder e�ects produced by the random ex-

amples. They have been able to reproduce the behavior

of the system within the range of � where RS is right.

On the other hand, TRA allows us to establish that

the coupling between replicas in perceptron with con-

tinuous weights is weaker than the one with discrete

weights.

In any case, we hope to have convinced the reader

that these techniques are satisfactory tools for investi-

gating, at not too low temperatures, the thermodynam-

ics of the learning process.
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VII Appendix

We undertake here the calculation of the correlations (18). We recast the �rst of them in the form

C (R
 ; Q
�) =

Z
dSD(S)�

��N�1 (W0 � S)W
 � S
�
�
��N�1 (W0 � S)W� � S

�
; (32)

i.e.,

C =
1

4

Z
D(S)dS

Z
dr�

�
x�N �1=2W
 � S

�
�
�
y �N �1=2W� � S

�
�
�
z �N �1=2W0 � S

�
(33)

�� (�xz) � (�yz) : (34)

By recourse to the representation � (x) = 1
2�

R
dx0 exp (ixx0) of the delta function and remembering that

D(S) =
QN

i (2�)
�1=2

exp
�
�S2

i

2

�
, the integration process over dS leads to the (intermediate) result

exp

�
�
�
1

2
r0�r0 + x0zR
 + y0z0R� + x0y0Q
�

��
: (35)

Performing the integrations over the variables r and r0, we obtain

C =
1

2�

240@�

2
+ tan�1

0@ Q
�q
1�Q2


�

1A1A�
��
2
� sin�1

�
1� (R
)

2 � (R�)
2
��35 : (36)

Assuming the RS R
 = R and Q
� =

�
1 � = �
q � 6= �

, we �nd for the n diagonal terms, on one hand,

n

2
� n

2�

��
2
� sin�1

�
1� 2R2

��
;

and, for the n2 � n terms, on the other hand (terms of second order in n neglected),

n

2�

" 
�

2
+ tan�1

 
qp

1� q2

!!
�
��
2
� sin�1

�
1� 2R2

��#
:

Therefore, within the RS ansatz the correlations are given by

nX

�

C (R
 ; Q
�) 1
� =
n

2�

 
�

2
� arctan

 
qp

1� q2

!!
: (37)

These contributions come from the randomness in the examples.
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