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Electronic Transport Through a Quantum Wire with a Side-Coupled Quantum Dot
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We describe the Kondo resonance in quantum dots employing the atomic model. We calculate approximate
Green'’s functions of the impurity Anderson model employing the exact solution of the system with a conduc-
tion band with zero width, and we use the completeness condition to choose the position of that band. At low
temperatures, there are two solutions close to the chemical potergetisfying this condition, and we choose
the one with minimum Helmholtz free energy, considering that this corresponds to the Kondo solution. At high
temperatures, this solution no longer exist, corresponding to the disappearance of the Kondo peak. We present
curves of density of states that characterize the Kondo peak structure problem. As a simple application we cal-
culate the conductance of a side-coupled quantum dot and we obtain good agreement with recent experimental
results.
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I. CONDUCTANCE OF A SIDE-COUPLED QUANTUM Kondo channel (QD)
DOT

The Kondo effect explains the increased resistivity shown
by a metal with magnetic impurities at low temperatures. The
Kondo effect in quantum dots has been theoretically predicted
sincel988[1], and recent experiments confirmed its presence
[2]. These systems can be modelled by the Anderson impurity
model, and in this paper we apply the impurity atomic model
to study the electronic transport through a quantum wire with
a side-coupled quantum dot (QD). This system has been stud-
ied, from the theoretical point of view, [3, 4] and has been Ballistic channel
recently studied experimentally [5, 6].

In Fig. 1 we present a pictorial view of a simple one-
dimensional quantum wire with a side-coupled Anderson imFIG. 1: Pictorial view of the quantum wire with a side-coupled quan-

0

purity with infinite Coulomb repulsiob) at site0. The Hamil- ~ tum dot. The quantum wire is considered to be an impurity free one
tonian of the system can be written as dimensional metal and the quantum dot is modelled by an Anderson
impurity.
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whereo = —0o, and the threeXs 55 are the projectors into
the stateg f,a). The occupation numbers on the impurity
Nt.a =< Xf,aa > should then satisfy the “completeness” rela-

where the first term represents the noninteracting wire, cha
acterized by free conduction electroreselectrons), the sec-
ond describes the QD described by a localiZelével E¢ g,
(we employ the f letter to indicate localized electrons at the

impurity site) and the last one corresponds to the tunneling, Nio+Nfg+Nfg=L1. A3)
where the hybridizatioV denotes the tunneling matrix ele- ’ ’ '
ment between the QD level and the ditef the quantumwire, At low temperature and bias voltage electron transport is

and for simplicity we consider a constant hybridizatibrlWe  coherent, and a linear-response conductance is given by the
employ the Hubbard operators [7, 8] to project out the doublg andauer-type formula [3]

occupation statéf, 2), from the local states on the impurity.

As the X Hubbard operators do not satisfy the usual fermion 7

commutation relations, the diagrammatic methods based on G 2¢? ( ons ) S(w)dw @
Wick’s theorem are not applicable, and one has to use the TR ow ’

product rules [8t ap.Xt cd = Op,cXt ad, t0 derive a cumulant

expansion. The identity decomposition in the reduced spaceheren; is the Fermi function an&(w) is the transmission
of local states at the impurity is given by probability of an electron with energyw. This probability is
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given by From this equation we then obtain an explicit expression for
S(w) = 2| GY, 2 5) M3';(2) in terms of G} ;(2)

wherel” corresponds to the coupling strength of the site 0 to
the wire (which is proportional to the kinetic energy of the
electrons in the wire).G§, can be calculated by the Dyson
equation withV =[0)V (1] +|1)V (0] being the hybridization.  To decrease the contribution of teeelectrons, whose effect
The dressed Green’s functions at the site 0 can be written ijas overestimated by concentrating them at a single energy
terms of the undressed Green's functions localized at the QQeve| we shall replac®’? by A2, whereA = 1v2/2D is of the

911, and the undressed Green’s functions of the conductiogrder of the Kondo peak’s width. The atomic approximation

_ G?tf,o(z)
1+GH (2 |V 2 5k GRo(k2)

MZ4(2) (12)

electronsgoo consists in substitutingllgjgf(z) in Eq. (10) by the approxi-
G3o = 990+ 950V G+ 951V G0 (6) mateM3' (2) given by Eq. (12). AM3'(2) is k independent,
we can easily obtain the exact local Green function for the
GJo = 950+ 950V GJo+ 971V G (7)  Anderson impurity for a square band of bandwidh
Solving this system of equations, and considegng= 0 and . M2t (2)
go1 = 0, we can write Gits(2) = l\"/Tz TR
» 1+ M2 (2) 55 in (£324)
S0 = Tz ®)
(1—-950v971) and in the same way we obtain the conductiGg) @nd mixed
where (Gs¢) Green's functions. The difference between the exact
1 2+ D44 and the. approximate quantity is that different enerdﬁe}g
950 = (2D> In (D) . g5, =M3(2. (9) appearinthe c-electron propagators of the effective cumulant
Z-D+H MET(2), while these energies are all equaligin M2 (z).

The goo is the free Green function of the quantum ballistic AlthoughM2_(2) is only an approximation, it contains all the
channel, withi being the chemical potential amd5' (z) the  diagrams that should be present, and one would expect that the
approximate cumulant of the QD, obtained through the atomigorresponding GF would have fairly realistic features. One
model calculated in Sec. II. still has to decide what value & = Eq should be taken. As

the most important region of the conduction electrons is the
Fermi energy, we shall ud® = u— dEg, leaving the freedom

of small change8Ey to adjust the results in such way that the
completeness relation given by Eq. (2) should be satisfied.

IIl. THE ATOMIC MODEL

To obtain the exacf Green functionGs¢ ¢(ji,2) in real
space for the impurity at sitig, one can follow a procedure
similar to the one used in [9] within the chain approxima- Ill. RESULTS AND CONCLUSIONS
tion, but considering all the possible cumulants in the expan-
sion as it was done in [10] for the Anderson lattice. As with | Fig. 2 we represent the completeness- 2n; as func-

the Feynmann diagrams, one can rearrange all those that cojfisn of the position of the atomic conduction baBg. We
tribute to the exadB++ q(ji,2) by defining an effective cumu-  can see that at very low temperatures, there are two solutions
IantMg_fof (Ji,2), thatis given by all the diagrams Gf; t ¢ (ji, 2) close to the chemical potential satisfying this condition, and
that can not be separated by cutting a single edge (usuallye choose the one with minimum Helmholtz free energy, so
called “proper” or “irreducible” diagrams). We shall consider we consider that this corresponds to the Kondo solution. In
that the impurity is at the origin, and drop the indeXrom  the same figure we can see that if we increase the temperature
all the quantities. The exact GFy+ ¢(2) is then given by re-  this solution disappears, and this corresponds to the vanishing
placing the bare cumulaM? ;(z) = —D3/(z—&¢) by the ef-  of the Kondo peak in the density of states.

eff ' In Fig. 3 we plot the density of states corresponding to a

fective cumulaniM, ;' (z) at all the filled vertices of the chain Kondo situation. W the two struct haracteristi
diagrams in [9]. The exact GF for the f electron is then written onao situation. YWe can see the two structures characteristic
of Kondo densities of states: one non-resonant peak located in

as off the E? position and the Kondo peak located on the chemical
M, (2) potentialp. In the inset we represent a detail of the Kondo
fo,U(Z) = eff 2 o ) ( ) peak_
1- MZ,G (Z) | \% | Zk Gc,cr(kaz)

In Fig. 4 we represent the conductance of a side-coupled
whereG2,(k,z) = —1/(z—¢(k)). The exact GF in the atomic quantum dot. In this geometry there is an anti-Kondo reso-
limit G% (2) has the same form of Eq. (10 and can be calcuhance at very low temperatures, in the Kondo region. The
lated exactly. It is given in the Appendix (cf. Eq. 15): Kondo effect at the dot produce a destructive interference be-
Mt tween the electrons that follow the ballistic channel and the
G (2)= 2002 . ) electrons that go to the dot. The result is that in the Kondo

g 1- Mgfo(z) |V 25k Ges(k,2) region and at low temperatures the conductaB¢6,, goes
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FIG. 3: Density of states fofF = 0.0001A with E; = —5.0. Detail of
the Kondo peak formation.
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FIG. 4: Conductance of a side-coupled quantum dot.

TABLE I: States of the Anderson lattice in the lin#D =V = 0.

m,o > E n S
0,0> 0 [0] O
13,0> g |1]1/2
—3.0>] & [1]-12
0,7T> £q 1| 1/2
0, |> &q 1(-1/2
13,1> g +€q 2| 1
13,1> €f+€q 2| 0
|—3,1> |er+&q 2] O
—5,1> |er+eq (2] -1
0,7> 2q |2/ 0
13.11> e +2¢q|3] 112
|- 3,11>]er +2¢q|3]-1/2

BLE II: Energies of the twelve statd:,r) of #. The columns
ive the number of electrons in the stater, the spin component
S andenr = Eny — Ny, whereEy, is the energy of the stafen,r),

A=/ (Eo—Ef)?+4v2andd’ = \/(Eo—Er)?+8V2.

to zero as we can see in the Fig. 4. This result agrees we,
with recent experimental results [5].

Apendix: Atomic solution nir |S &nr = Enr —NU
0[1]0 Jeq

We assume a zero width conduction bami= 0, so that 12 [+1/2[1/2(es +q—4)
the hoping contributions are eliminated from the Hamiltonian. 1 i *i/g i/;(Ef tEq 72)
In this case we have a Fock space with twelve states charac- TTE f1§2 1;2%? iquAg
terized by|m,o > as can be seen in table 1 >T6 41 e +£f d

There is now an independent system at each site, with the 217 -1 8; +82
Anderson impurity at one of them, and the system Hamil- 218 [0 £ + £
tonian can be diagonalized exactly. There are four possible 219 10 1/2(es +3eq—A)
states at each normal sité0,1,],1]), while there are only 5 1100 1/2(e1 + 36+ )
threem extra states{0,+%,—%) at the impurity site ( with- 3 [11]+1/2ef + 2¢4
out a doubly occupied state becallse~ ). At the impurity 3 |12]—-1/2|et + 2¢q4

we then have a Fock space with the twelve states > de-
scribed in Table 1. To obtain the atomic Greens functions we
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where the poles of the Green'’s functions are given by

U =E3—E1=Eg—Es=E7—E4=35(etq—A);

1
G(w) = e PEni e PEn1i) 2
® Z%< ) Up=Es—E; =Eg—E3=E7—Ex =3 (g1q+A);

use the Zubarev’'s equation

~

us =E12— E10= 3 (1q—4);
. . Uy = Eqgp— Eg = 2 (8¢q +4");
n—1i n 2 2
= éj.|x.§‘ 1=F (14) Us = Bo — Bo = £q— 3 (&' —);
= (Eni ~En-ap) Us = E1o—E2 = &g+ 3 (& +4);
i i i i Uy =Eg—Es=¢gq— 3 (& +D);
whereQ is the thermodynamical potential and the eigenval- 7 9 a= 2 '
uesE,j and eigenvectorinj > corresponds to the complete Ug =E1o— Es=€q+3 (&' —A).
solution of the Hamiltonian. The final result is the following : . . .
and the residues are easily calculated employing Eq.(14) with
the exact eigenvectotaj > of the atomic Hamiltonian. We

8
G (w) = e Z wmu , (15)  have usedtq=€f +&q.
i= — Ui
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